A Genetic Approach to Gateless Custom VLSI
Design Flow

Mohammed Shoaib, Noor Mahammad Sk and Kamakoti.V
Reconfigurable and Intelligent Systems Engineering Group
Department of Computer Science and Engineering
Indian Institute of Technology, Madras, Chennai - 600036, India

Abstract—In this work, we propose a novel technique for
evolving transistor netlists from truth table descriptions of
arbitrary digital circuits. The proposed methods incorporate the
effective use of Genetic Algorithms (GAs). In typical semi-custom
and custom design flows, logic optimization is done at the gate
level after Boolean translation of the input truth table. The final
transistor netlist is then deduced from the simplified gate logic
to be laid out on a chip. However transistor level optimizations
after the boolean simplification step would still not lead to the
minimum number of transistors. This final optimization level is
non-existent in present custom design flows. This work aims to
address this need. A salient feature of the proposed technique
is the bypassing of gate level representation and optimization in
the VLSI design flow. We provide genetic methods to directly
optimize truth table inputs using transistor level simplification.
This eliminates the intermediate gate level optimization step and
provides optimized transistor netlists which could be used for
dynamic library cell generation for custom and semi-custom
designs on the fly.

I. INTRODUCTION AND BACKGROUND

Automation in modern microelectronics has resulted in multi-
ple methods for the design and optimization of digital circuits.
These automated methods incorporate gate level optimizations
followed by the use of standard library cells to map the designs
to hardware. In several custom designed Integrated Circuits
(ICs), the use of standard libraries translates to hardware
redundancy. This is because, standard library cells, due to their
limitations in size and number, often result in having several
unused transistors for the custom logic. Consequently, the use
of tailored cells for specific applications become necessary.
Application specific generation of such cells utilizes on-chip
hardware effectively besides providing fast and flexible de-
signs operating with lesser redundancy and better performance.

Realization of custom circuits - cells or blocks, involve three
implementation phases [1]:

o Creation of transistor circuit topologies which provide a

specific digital function.

e Sizing and ordering of the transistors in the circuit

topology.

o Placing, routing and compacting the transistors in layout.
Each of the above stages involve trade-offs which must be opti-
mized across all stages. This work proposes to address the first
phase of transistor circuit topology creation, automatically.

In literature, much attention has been given to the sizing
[2], [3] and placing of transistors [1], [4], [5] in custom and
semi-custom circuits. Using Genetic Algorithms (GAs), in

978-1-4244-1847-3/07/$25.00 ©2007 IEEE

[4], Murphy, et. al, describe the placement optimization of a
cell followed by the extraction of the netlist. They employ
sigmoidal transistor characteristics for an Artifical Neural
Network (ANN) model unlike the switch characteristics in our
case. Their major aim is the use of primitive components and
reduction of the parasitic capacitance rather than a topological
optimization. In [5], Bahuman, et. al, describe a GADO model
for a custom cell. But their starting point is the placement
optimization unlike the configuration optimization in our case.

In this work, we focus on the direct transistor netlist
generation using Genetic Algorithms for optimization. Genetic
methods have been applied in the past for gate level synthesis
[6] besides specific optimization methods for Pass Transistor
Logic (PTL) [7], Complementary PTL (CPL) [8], Differential
PTL (DPTL) [9], Double PTL (DPL) [10] and other non-
complementary MOS logic styles. Mazumder and Rudnick, in
[11] provide a good insight into the problems in VLSI design
and synthesis techniques.

The methods we use in this work involve the use of Genetic
Operators to evolve transistor netlists for a certain functional
requirement described by an input truth table. The netlist
generation, because of the characteristics of the genetic oper-
ators, inherits direct optimization at the transistor level. This
gives an optimized transistor netlist which would otherwise
be derived after converting the truth table to its minterms and
then applying the Boolean simplification operations. In the
latter case, the netlist obtained would still not be optimized
to exploit internal topological optimizations of the transistors.
The main contribution of this work is to propose the genetic
methodology of direct evolution for the transistor netlist from
functional descriptions of cicuits. The paper also provides a
methodology for incorporating a gateless optimization algo-
rithm in the custom circuit design flow to provide the creation
of custom library cells in-situ, Fig. 1. This favorably enhances
the performance of custom circuit syntheses and provides
better utilization of transistor resources besides automation and
simplification of the design flow, by eliminating the boolean
optimization step. In the following paragraph, we present
the basic concepts of Genetic Algorithms [12] necessary to
understand this paper.

Genetic algorithms work on a set of chromo-
somes/genotypes called the population. Each chromosome
represents a solution to the problem which is associated
with a fitness value that reflects how good it is compared

IEEE ICM - December 2007

i Truth Table
i Specification

iLogic Translation|
i - Gate list

Transistor size,
layout optimization| |
Translation
N |: transistor netlist|

Mapping & > |

Fnbn(nnorl/ ,

’ Boolean
N i Optimization
N\

AN | Transistor size, Truth Table
/l‘echnology !\ layout optimization Specification
< Mapping & L3
_ Fabricaton
// Optimized transistor HDL/ABSTRACT
B\/ netlist. GA FUNC DESCRIPTION

Fig. 1. Custom design flow simplification using the proposed genetic method
: The genetic flow eliminates the intermediate Boolean simplification step from
the normal gate optimized flow (A) providing a direct transistor optimized
netlist (B), ready for size/layout tuning in custom circuits.

/ Technology

A
| HDL/ABSTRACT
|| FUNC DESCRIPTION

A

TABLE I
GENE STRUCTURE IN A CHROMOSOME USING .SIM ENCODING ¢

Tij Sij "2_7 "22.7 Wi; Lij fi 6
D CLK Vaa 1 4 2
n Rij(A1..An) 1 Rij(2.N+1) 4 2
n Rijy1(A1..An) Rij41(Sik..Sij—1) Rij(2.N +1) 4 2
n CLK maz[nll]‘2 .. n”fr,\] gnd 4 2 fi b

a Transistor lype Szg Transistor gate node, WU Transistor width in pem, LTJ Length in pm, N:

Number of {npuls R : Uniform Random Selector

to the other solutions in the population. The variation
process comprises of crossover and mutation, which concoct
material by partial exchange among genotypes and by random
alterations of data strings. The frequency of these operations
is controlled by certain pre-set probabilities which require
heuristics appropriate for the particular problem at hand. The
representation, variation, evaluation and selection operations
constitute the basic GA cycle or generation.

II. GENETIC TOPOLOGICAL SYNTHESIS
A. Representation and initial population

Gene representation in the Allele: Representation of the
genes for evolution is a critical choice to keep the circuit
topology valid and provide faster convergence. Eq. (1) shows
the chosen representation. Each transistor is represented as
a triplet < Sj,nj,n >, where S; stands for the node to
which the input signal and the gate of the ;' transistor are
connected. nj1 and n? are the nodes to which the source and
drain of the j* transistor are connected. A chromosome is a
sequence of such triplets which are equal in number to the
input signals determined from the truth table. These form
netlist inputs to the /RSIM simulator for fitness evaluation
and selection. A subsequence of these signal triplets can be
used for mapping the inputs (or transistor gates) to one of the
variables Ay, Ay ... Ay. In other words, the S; values of the
triplets in the subsequence shall be a one-one mapping from
among A;’s, 0 <i < N.

Gene Structure: The internal gene structure of a chromo-
some is shown in Table. I. The representation using a Perl
parser is designed to conform to the spice netlist. This can
be directly used for evaluation, using the IRSIM switch level
simulator.

12 1 2 1 2
[Sj g Ty ‘Sj+1 M1 i1 ‘ ~~~~~~ ‘ Sj+N-1Mj N1 nj+N—1] M

The methodology for the generation of the initial population

Fig. 2. Initial population generation with the corresponding transistor
topology and SFG for the netlist. The dotted lines contribute to the random
node choice for the next chromosome. The final obtained netlist is functionally
valid.

is shown in Fig. 2 and in Table. I. The first node, n(l), for
the i*" chromosome in the population is chosen to be 1 to
which the pMOS, CLK signal is connected. The second node is
randomly chosen between (N+1) and 2. These form the source
and the drain for the first nMOS transistor. For the second
and subsequent j*" device, the first node is chosen randomly
from among the previously chosen nodes, < n},,n? >, where
0 < k < 7 and the second node is chosen randomly between
(N+1) and 2. This ensures circuit connectivity and appropriate
intermixing of the nodes to provide a broad outreach in the
search space. A matrix of P chromosomes is chosen this way
to form the valid initial population.

B. Variation: Crossover and Mutation

Algorithm 1 crossover(n)

Require: An integer 0 < nl 2<N + 1
Ensure: Network connect1v1ty and “o =0.

1: for all ¢ such that 0 <¢ < P do

2 for all j such that 0 < j < 4; do
3 S ;= R(S -Sz'j—i-N—l)

72 1,2

4 n'LJ g(nlj)

5 if j = O then

6: return nj; =1

7 end if

8 end for

9: for all k£ such that §; <k < N do
10: Sz’j = R(Sij—i-l . Sij—i—l—i—N—l)
11 ny? = R(n;”...nl2s)

: y 5 T g4
12: ng; = f(nijJrl)
13: end for

14: end for

The initial population generated as described in Sec. II-A is
used to proceed with the evolutionary variation. The crossover

IEEE ICM - December 2007

operator algorithm is shown in Algorithm.1. For the ;'
chromosome in a population size of P, §; transistor selections
from the j'" chromosome and (N-§;) selections from the
(j+1)*" chromosome are used. The copy operator, £ is used to
copy the corresponding nodes for the ¢; devices. The first node
is then set to 1 as in Sec. II-A to ensure circuit connectivity
in the phenotype. For the rest of the IN-J; transistors, the first
node is chosen randomly from among the previous 20, nodes.
The second node for all the genes in the chromosome other
than the first one is copied (&) from the (j+1)** chromosome.
The select-scalar, d;; is calculated as shown in Eq. (2).

5ij = lOggl — ’V fl -‘ (2)

logsl

where, [is the length of the truth table input by the user and f;
is the fitness value for the i;;, chromosome set in the genotype
matrix. The mutation operator works similar to the initial
population generation described in Sec. II-A. These randomly
mutated and the varied chromosomes (F,/,,) total to P-1.
These are appended at the end of the chromosome matrix with
P elements to obtain a total of 2P-1 chromosomes in the next
generation.

C. Selection and termination:

Algorithm 2 seLection(n)

Require: An integer 0 < n21J2 <N +1.
Ensure: P: Population; G: Generation

1: for all g such that 1 < g < G do

2 Rq:Pi+Pco/m

3 fq = e(Py) {irsim *.proc g;.sim g;.cmd}
4: P,y = A[P,(1...P)] {sort and select P}
5: if g = 0.1G then

6 | = P; + P, {variation mutation}

7 P, = A[Py(1...P)] {sort select}

8 end if

9:

end for

Q

With the variation generated FP.,/,,=P-1 chromosomes ap-
pended at the end of the initial population, P;=FP, a new
genotype matrix is created. For all of these, the fitness (¢)
is evaluated. This is an @& (XOR) operator with the input truth
table supplied by the user. This compares the deviation of the
current chromosome from the required truth table. The ¢ is
evaluated using the /RSIM simulator. From the resulting 2P-
1 chromosomes generated, the sorting operator A, sorts the
chromosomes according to their fitness values and the top P
of them are selected to move on to the next generation. This
way, only the best characteristics of a generation are passed on
to the next generation. After about 10% of the total generation
size (G, mutation is introduced to increase the generation gap
and introduce diversity in the current population. When the
best fit chromosome is found from the sorted matrix, the algo-
rithm is terminated. The selection operation is algorithmically
described in Algorithm.2. An elitist model is also used in the
design.

III. EXPERIMENTAL RESULTS

Test case simulations for the proposed design flow were run
using an embedded switch level IRSIM simulator. Fig. 3 shows
the evolved fitness values over the iterations numbers for a test
input truth table whose boolean functions are shown in Fig. 4
and Fig. 5. The netlist obtained from the genetic evolution
using the operations described in Sec. II provides a quick
way of custom generating library cells. The fitness value is
evaluated by summing up the exclusive-OR vector derived
using the input (required) truth table from the user and the
evolved truth table response for the stimulus vector obtained
from IRSIM. When the fitness value reaches 0, the two re-
sponses match and the netlist obtained from the genetic method
is valid. Fig. 4 and Fig. 5 show evolved netlist translations to

Fitness Evolution
25

20 |} 4

Fitness
%

' '
6000 8000 10000 12000
Iter. Sample

Fig. 3. The fitness evolution samples over intermediate generations, plotted
for cases in Fig.4 and 5 with four and five inputs respectively.

dynamic CMOS circuit schematics. Our genetic methodology
guarantees a convergence to a point which gives the simplified
netlist incorporating all the boolean simplification rules. This
means that the final netlist obtained after evolution has the
minimum transistor count. The netlist could be used directly
as a library cell instead of simplifying the logic at the gate level
and then translating it to the transistor netlist which may still
miss out a few optimizations in the transistor topologies. This
transistor level simplification can be carried ahead into layout
level optimization. Better transistor sizing can also be obtained
by using the stochastic methods described in [2]. This would
be the next step in optimization to obtain the best layout and
size for characterizing a cell. Table. Il shows the convergence

v = (Wry)wx+z
Yo = wx+z
P = 100

I,Z N=4
Mut. rate = 0.5
Elitism = 0.05
Iter = 6300

Evolved Netlist: zZ13w35x33y15
Fig. 4. Evolved SPICE Netlist for the testcase with N=4, P=100 and G=23

rates and parameters used for the experiments conducted on
a few test cases for the proposed genetic methodology. It is

IEEE ICM - December 2007

Vg Vyg
¥ = VHWKHYHZ
CLK_%
Out

CK
e = 15300 ~|

L Evolved Netlist: v14w14x14y14z14 GND

Vo= VHVERHHZ
P =100

N=5 v
Mut. rate = 0.25

Fig. 5. Evolved SPICE Netlist for the testcase with N=5, P=100 and G=153

evident that the convergence is practical, albeit stochastic. Our
genetic methodology could easily be incorporated into any
digital circuit design flow to enable the creation of dynamic
library cells on the fly. Fig. 1 shows one such methodology
where the genetic netlist creation forms the fundamental step
in the process of custom and semi-custom circuit design.

IV. FUTURE WORK

From the design methodology and the results described in
Sec. II and III, it is evident that our methods are scaleable
to incorporate four and five input truth tables with extremely
practical speeds of convergence. It is important to note that
the search space complexity in the problem is of the order
22" which is enormous even for a four or five input truth
table. For higher order functions, convergence rates become a
serious issue. However, the shannon’s decomposition, laid out
in [13] and the equation below, could be effectively used to
exploit some parallelism.

. ,Io) = f(xn,xn_l, ey 1)x0
+ f(xn7xn717 e

f(xn; Tn—1y--
,0)Zo

The decomposed functional topology with fewer inputs can
easily be evolved in parallel using our genetic methods and the
whole truthtable can be realized by combining the decomposed
parts using the dynamic CMOS logic. Scalable functionality
can hence be incorporated into the proposed method at various
levels. Experiments with the scaleable models could be the
future direction for the current design methodology. This
would make it feasible to work with arbitrary truth table inputs.
This automatic transistor level optimization of the topology
starting from truth tables, completely avoiding the Boolean
simplification approach is the first known methodology to the
best of our knowledge. The transistor sizing [2] and placement
optimization [1], [4] and [5] can easily be incorporated in the
current model for the complete genetic custom design flow.

V. CONCLUSION

The results and designs set out in this paper clearly describe
the implementation techniques for the genetic evolution of
optimized transistor netlists starting from truth table descrip-
tions. These can be effectively used to generate custom library
cells on the fly. Although demonstrated for the dynamic
CMOS and the domino logic case, the design methodology
can generically be extended to include static CMOS and
other logic styles using the principle of duality. Appropriate

heuristics in the evolution of the transistor netlist starting from
truth table descriptions are shown to perform practically. These
include Boolean simplifications and other optimizations using
genetic operators of crossover and mutation. The methodology
bypasses the normal way of Sum of Product (SoP) or Product
of Sum (PoS) formulation of a function description followed
by gate level optimization and transistor netlist generation. The
netlist obtained directly from the functional specification can
be used for layout preceded by optimizations for sizing and
placement.

TABLE I
EXEMPLARY CIRCUIT RESULTS FOR TEST TRUTH TABLE INPUTS WITH
THE MUTATION AND ELITISM RATE OVER MULTIPLE GENERATIONS

BOOLEAN EXPR ELITE RATE MuUT RATE N ITER FINAL NET

Y =(z+y)(yz+z)+ay 0.1 0.1 3 1300 x12,y22, 2234
Ys =x2

Y = ayz +Tyz + 2yz

+Tyz + xyz + Tyz 0.1 0.1 3 2300 xl4,yl4, 214
Ys=z+y+z

Y = wayz + wayz + wryz

+wzyz + wryz + Wryz + wryz 0.1 0.1 4 6600 wl4, x14,y12, 225

Ys = wx + yz

Y = (w+y)wz + 2z 0.05 0.5 4 6300 d13,a35, b33, c15

Ys =wx + 2z

Y=vtwtazt+y+z 0.1 0.25 5 15300 wvl4,wl4,x14,yl14, 214

Ys=v+w+az+y+z

REFERENCES

[1] Lefebvre, M, Marple, D and Sechen, D, The future of custom cell
generation in physical synthesis, Proc. 34t" Annual Conference on
Design Automation, pp.446-451, 1997

[2] Rogenmoser, R, Kaeslin, H and Blickle, T, Stochastic Methods for
Transistor Size Optimization of CMOS VLSI Circuits, Proc. 4t" Intl.
Conference on Parallel Problem Solving from Nature, pp.849-858, 1996

[3] Heusler, L.S, Transistor sizing for timing optimization of combinational
digital CMOS circuits, PhD Thesis, ETH Zurich, 1990

[4] Ho, M.C, Leung, S, Kurokawa, H and Choy, O.C, Digital logic synthesis
using genetic algorithms, 2"% Intl. Conference On Genetic Algorithms
In Engineering Systems: Innovations And Applications, GALESIA, pp
296-301, September 1997

[5] Bahuman, A, Bishop, B and Rasheed, K, Automated Synthesis of
Standard Cells using Genetic Algorithms, Proc. IEEE Symposium on
VLSI, pp.126-133, April 2002

[6] Hounsell, B.I and Arslan, T, A Novel Genetic Algorithm for the Auto-
mated Design of Performance Driven Digital Circuits, Proc. Congress
on Evolutionary Computation, pp.601-608, vol.1, July 2000

[71 Geun Rae Cho and Chen, T, Mixed PTL/Static Logic Synthesis Using
Genetic Algorithms for Low-Power Applications, Proc. Intl. Symposium
on Quality Electronic Design, pp.458-463, August 2002

[8] K.Yano, et al, A 3.8ns CMOS 16x16-b multiplier using complementary
pass-transistor logic, 1EEE J.Solid-State Circuits, vol.25, pp.388-395,
Apr.1990

[9] J.Pasternak et al, Differential Pass Transistor Logic, IEEE Circuits and

Devices, pp.23-28, July 1993

Makoto Suzuki, et al, A 1.5ns 32b CMOS ALU in Douple Pass-Transistor

Logic, IEEE J.of Solid-State Circuits, vol.28, no.11, pp.1145-1151,

November.1993

Mazumder,P and Rudnick, E.M, Genetic algorithms for VLSI design,

layout and test automation, Prentice Hall, pp.264-266, 1999

Goldberg, D.E, Genetic Algorithms in Search, Optimization and Machine

Learning, Addison-Wesley Publishing Company Inc., 1989

Woods, S and Casinovi, G, Efficient solution of systems of Boolean

equations, 1EEE/ACM International Conference on Computer-Aided

Design, ICCAD-96, pp.542 - 546, November 1996

[10]

[11]
[12]

(13]

IEEE ICM - December 2007

