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ABSTRACT
Dynamically discovering likely program invariants from con-
crete test executions has emerged as a highly promising
software engineering technique. Dynamic invariant infer-
ence has the advantage of succinctly summarizing both “ex-
pected”program inputs and the subset of program behaviors
that is normal under those inputs. In this paper, we intro-
duce a technique that can drastically increase the relevance
of inferred invariants, or reduce the size of the test suite
required to obtain good invariants. Instead of falsifying in-
variants produced by pre-set patterns, we determine likely
program invariants by combining the concrete execution of
actual test cases with a simultaneous symbolic execution of
the same tests. The symbolic execution produces abstract
conditions over program variables that the concrete tests
satisfy during their execution. In this way, we obtain the
benefits of dynamic inference tools like Daikon: the inferred
invariants correspond to the observed program behaviors.
At the same time, however, our inferred invariants are much
more suited to the program at hand than Daikon’s hard-
coded invariant patterns. The symbolic invariants are liter-
ally derived from the program text itself, with appropriate
value substitutions as dictated by symbolic execution.

We implemented our technique in the DySy tool, which
utilizes a powerful symbolic execution and simplification en-
gine. The results confirm the benefits of our approach. In
Daikon’s prime example benchmark, we infer the majority
of the interesting Daikon invariants, while eliminating in-
variants that a human user is likely to consider irrelevant.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Symbolic execution; D.2.4 [Software Engineering]: Soft-
ware/Program Verification—Class invariants

General Terms
Design,Languages
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1. INTRODUCTION AND MOTIVATION
Dynamic invariant inference was introduced less than a

decade ago, pioneered by the Daikon tool [7, 8, 26], and
has garnered significant attention in the software engineering
community. With the help of a test suite that exercises
the functionality of an application, an invariant inference
system observes program properties that hold at pre-selected
program points (typically method entries and exits). The
outcome of the system is a collection of such properties,
postulated as object state invariants, method preconditions,
or method postconditions (collectively called “invariants” in
the following). The properties have no formal assurance that
they are correct, but they do match the observed program
executions and they are produced only when there is some
statistical confidence that their occurrence is not accidental.
A crucial aspect of the dynamic invariant inference process is
that the invariants produced do not reflect only the behavior
of the program, but also the assumptions and expectations
of the test suite. This makes the approach doubly useful
for software engineering purposes, by introducing the usage
context of an application.

So far, dynamic invariant inference systems have had a
pre-set collection of invariant templates, which get instanti-
ated for program variables to produce the candidate invari-
ants under examination. The user can expand the collection
by adding more templates, but the number of possible in-
stantiations for all combinations of program variables grows
prohibitively fast. Therefore, dynamic invariant inference
systems typically perform best by concentrating on a small
set of simple candidate invariants. Even so, for a tool like
Daikon or DIDUCE [16] to produce invariants that match
the understanding of a human programmer, an extensive
test suite that thoroughly exercises the application is neces-
sary. Furthermore, it is likely that the inference process will
also produce several invariants that are either irrelevant or
false (i.e., hold accidentally).

In this paper we propose a dynamic symbolic execution
technique to drastically improve the quality of inferred in-
variants (i.e., the percentage of relevant invariants) or the
ease of obtaining them (i.e., the number of test cases re-
quired to disqualify irrelevant invariants).1 In dynamic sym-
bolic execution, we execute test cases, just like a traditional
dynamic invariant inference tool, but simultaneously also
perform a symbolic execution of the program. The symbolic
execution results in the program’s branch conditions being

1The benefit of our approach can be viewed along either
axis. Holding one metric constant results in improving the
other.



int testme(int x, int y) {

int prod = x*y;

if (prod < 0)

throw new ArgumentException();

if (x < y) { // swap them

int tmp = x;

x = y;

y = tmp;

}

int sqry = y*y;

return prod*prod - sqry*sqry;

}

Figure 1: An example method whose invariants we
want to infer.

collected in an expression, called the path condition in the
symbolic execution literature. The path condition is always
expressed in terms of the program inputs. It gets refined
while the test execution takes place, and symbolic values of
the program variables are being updated. At the end of ex-
ecution of all tests, the overall path condition corresponds
to the precondition of the program entity under examina-
tion. Symbolic values of externally observed variables pro-
vide the dynamically inferred postconditions, and symbolic
conditions that are preconditions and postconditions for all
methods of a class become the class state invariants.

For a demonstration of our technique, consider the method
of Figure 1. (The example is artificial but is designed to il-
lustrate several points that we make throughout the paper.)
Appropriate unit tests for the method will probably exercise
both the case “x < y” and its complement, but are unlikely
to exercise the code producing an exception, as this directly
signifies illegal arguments. Consider the outcome of execut-
ing the code for input values x smaller than y (e.g., x ==

2, y == 5), while also performing the execution in a sym-
bolic domain with symbolic values x and y (we overload the
variable names to also denote the respective symbolic values
designating the original inputs). The first symbolic condi-
tion that we observe is “x*y >= 0”: The branch of the first
if is not taken, and local variable prod has the value x*y in
the symbolic domain. The symbolic execution also accumu-
lates the condition “x < y” from the second if statement.
At the end of execution the symbolic value of the returned
expression is “y*x*y*x - x*x*x*x”. Note that this expres-
sion integrates the swapping of the original x and y values.

If we repeat this process for more test inputs (also exercis-
ing the other valid path of the method) and collect together
the symbolic conditions, then our approach yields:

• A precondition x*y > = 0 for the method.

• A postcondition \result == (((x < y) -> y*x*y*x

- x*x*x*x) else -> (x*y*x*y - y*y*y*y)).

(Our example syntax is a variation of JML [21]: we intro-
duce an if-else-like construct for conciseness. Our tool’s
output syntax is different but equivalent.) This captures
the method’s behavior quite accurately, while ensuring that
the only symbolic conditions considered are those consis-
tent with actual executions of the test suite. Thus the
approach is symbolic, but at the same time dynamic: the
symbolic execution is guided by actual program behavior

on test inputs. Note that the inferred invariants are not
postulated externally, but instead discovered directly from
the program’s symbolic execution. This approach directly
addresses many of the shortcomings of prior dynamic in-
variant inference tools (with Daikon used as the foremost
reference point). For this example, Daikon-inferred precon-
ditions and postconditions are exclusively of the form “var
>= 0” or “var == 0”, and are often encoding arbitrary ar-
tifacts of the test suite, unless a very thorough test plan
exercises many possible combinations with respect to zero
(e.g., x, y both negative, both positive, one/both zero, etc.).

Overall, our work makes the following contributions:

• We introduce the idea of using dynamic symbolic ex-
ecution for invariant inference. We believe that our
approach represents the future of dynamic invariant
inference tools, as it replaces a blind search for possi-
ble invariants with a well-founded derivation of such
invariants from the program’s conditions and side-
effects.

• We implemented our approach in the invariant infer-
ence tool DySy, built on top of the Pex framework for
instrumentation and symbolic execution of .NET pro-
grams. We discuss the heuristics used by DySy in order
to simplify symbolic conditions (e.g., our abstraction
heuristics for dealing with loops). DySy represents well
the benefits of the proposed technique. For instance,
DySy’s symbolic approach can infer invariants, such as
purity (absence of side-effects), that are too deep for
traditional dynamic tools. In contrast, prior dynamic
invariant inference tools (which only observe after-the-
fact effects) typically can establish purity only in very
limited settings, as they would need to observe the en-
tire reachable heap.

• We evaluate DySy in direct comparison with Daikon,
in order to showcase the tradeoffs of the approach. For
the StackAr benchmark (hand-translated into C#),
which has been thoroughly investigated in the Daikon
literature [9], DySy infers 24 of the 27 interesting in-
variants (as independently inferred by a human user),
while eliminating Daikon’s multiple irrelevant or acci-
dental invariants.

The rest of this paper begins with a brief discussion of
what our work is not (Section 2), and continues with some
background on dynamic invariant inference and symbolic ex-
ecution (Section 3) before detailing the technical aspects of
our approach and tool (Section 4) and presenting our evalu-
ation (Section 5). Related work (Section 6) and our conclu-
sions (Section 7) follow.

2. POSITIONING
Our approach is a combination of symbolic execution with

dynamic testing. As such, it has commonalities with mul-
tiple other approaches in the research literature. To avoid
early misunderstandings, we next outline a few techniques
that may at first seem similar to our approach but are deeply
different.

• Our dynamic symbolic execution is not equivalent to
lifting conditions from the program text (e.g., condi-
tions in if statements or in while loops) and postu-



lating them as likely invariants. (Several prior analy-
sis tools do this—e.g., Liblit’s statistical bug isolation
approach [23] and Daikon’s CreateSpinfo supporting
utility.) For instance, notice how the precondition of
our example in the Introduction (x*y > = 0) does not
appear anywhere in the program text. Instead, pro-
gram conditions are changed during the course of sym-
bolic execution: local variable bindings are replaced
with their symbolic values, and assignments update
the symbolic values held by variables, thus affecting
the path condition.

• Our approach is not invariant inference through static
techniques (e.g., using abstract interpretation [24], or
symbolic execution [30]). Inferring invariants through
static analysis is certainly a related and valuable tech-
nique, but it is missing the dynamic aspect of our work,
as it takes into account only the program text and not
the behavior of its test suite. Specifically, our dynamic
symbolic execution uses the test suite as a way to dis-
cover properties that users of the code are aware of.
This is highly valuable in practice, as invariant infer-
ence tools are often used to “read the programmer’s
mind” and discover the interesting parameter space of
a method (e.g., for testing [4]).

• Our approach is not concolic execution (as in tools
like Dart [15], Cute [27], or Parasoft’s original “dy-
namic symbolic execution” patent [19]). Although we
do a concrete execution of test cases in parallel with
a symbolic one, we do not use the symbolic execution
to produce more values in order to influence the path
taken by concrete executions. Our technique follows
precisely the concrete program paths that the original
test suite induces.

3. BACKGROUND
We next present some background on dynamic invariant

inference and on symbolic execution, emphasizing the fea-
tures of both that are particularly pertinent to our later
discussion.

3.1 Dynamic Invariant Inference: Daikon
Dynamic invariant inference is exemplified by (and often

even identified with) the Daikon tool [7, 8, 25, 26]—the first
and most mature representative of the approach, with the
widest use in further applications (e.g., [2, 5, 6, 10, 20, 33]).

Daikon tracks a program’s variables during execution
and generalizes the observed behavior to invariants—
preconditions, postconditions, and class invariants. Daikon
instruments the program, executes it (for example, on an
existing test suite or during production use), and analyzes
the produced execution traces. At each method entry and
exit, Daikon instantiates some three dozen invariant tem-
plates, including unary, binary, and ternary relations over
scalars, and relations over arrays. Example relations in-
clude comparison’s of a variable with a constant value (x
= a, or x > 0), linear relationships (y == a*x + b), order-
ing (x <= y), membership and sortedness, etc. Users can
extend the invariant templates with application-specific or
domain-specific properties. The number of candidate in-
variants grows combinatorially, however. For each invariant
template, Daikon tries several combinations of method pa-
rameters, method results, and object state. For example,

it might propose that some method m never returns null,
or that its first argument is always larger than its second.
Daikon subsequently disqualifies invariants that are refuted
by an execution trace—for example, it might process a situ-
ation where m returned null and it will therefore ignore the
above invariant. So Daikon summarizes the behavior ob-
served in the execution traces as invariants and generalizes
it by proposing that the invariants might hold in all other
executions as well. Daikon can annotate the testee’s source
code with the inferred invariants as JML annotations [21].

3.2 Symbolic Execution
Symbolic execution [18] is a technique for using a pro-

gram’s code to derive a general representation of its be-
havior, by simulating execution with some values being un-
known. Specifically, symbolic execution replaces the con-
crete inputs of a program unit (typically, a method) with
symbolic values, and simulates the execution of the pro-
gram so that all variables hold symbolic expressions over
the input symbols, instead of values. For symbolic execu-
tion to “simulate” regular, concrete execution, its semantics
must correctly generalize that of concrete execution. The
key property is commutativity: performing symbolic execu-
tion and instantiating its output state with concrete values
must yield the same result as instantiating the initial sym-
bolic state with the same concrete values and performing
concrete execution.

A concept of symbolic execution that is particularly im-
portant for our work is that of a path condition, defined as
“the accumulator of properties which the inputs must satisfy
in order for an execution to follow the particular associated
path” [18]. Thus, a path condition can be seen as a precon-
dition for a program path, which is exactly the way we use
it in our work.

Generally, the greatest challenge of symbolic execution is
to reason about symbolic program properties. For instance,
in traditional symbolic execution, when accumulating pred-
icates in the path condition, it is important to recognize
when the path condition becomes unsatisfiable by the addi-
tion of an extra predicate—i.e., when the existing path con-
dition contradicts a program branch. To do so, a symbolic
reasoning engine (typically an automatic theorem prover) is
employed. In our approach, we do not need to recognize in-
feasible program paths, as the concrete execution guarantees
that the paths we are examining are feasible. Nevertheless,
we need similar automatic reasoning power in order to sim-
plify path conditions and symbolic expressions and present
them to the user as program invariants.

4. DYNAMIC SYMBOLIC EXECUTION
FOR INVARIANT INFERENCE

We next discuss the general elements of our approach,
as well as the technical specifics of our DySy tool, and the
abstraction heuristics we employ for handling loops.

4.1 Overview and Insights
As outlined earlier, our dynamic symbolic execution per-

forms a symbolic execution of the program simultaneously
with its concrete execution. For a method under examina-
tion, all class instance variables, the method’s parameters,
and the method’s result are treated as symbolic variables.
The path condition of the symbolic execution is determined



purely by the paths taken in the concrete execution—no ex-
ploration of other paths using symbolic values is performed.
When executing a single test case, the path condition at
the end of the symbolic execution represents the symbolic
condition for the path the program followed. Thus, the
path condition corresponds exactly to a precondition for
that particular test case execution. Similarly, the symbolic
values of the method’s result and of the object instance vari-
ables form the method’s postcondition for the specific test
case. Repeating the process for all test cases, we get a col-
lection of preconditions and postconditions, which all need
to hold for the method. Combining the preconditions and
postconditions for all test runs, we obtain the total pre-
condition and postcondition of the method. The conditions
are simplified through symbolic reasoning before being pre-
sented to the user. Individual conditions (i.e., without log-
ical disjunction—see later) that concern only instance vari-
ables (i.e., no parameters) and that hold on entry and exit
of all methods are reported as class invariants.

This general scheme elides several important elements.
The first interesting point concerns how conditions are com-
bined. Consider the following simple method from the
StackAr benchmark, described in Section 5.

public Object top() {

if(Empty)

return null;

return theArray[topOfStack];

}

Imagine that we execute this method for two test cases:
first on an empty stack and then on a non-empty one.
The first execution produces a path condition “Empty ==

true”. (Empty is a C# “property”, therefore taking its
value results in calling a method, which checks the value
of topOfStack. Nevertheless, this method is pure so
our system uses Empty as a logical variable in condi-
tions instead of expanding it, as we discuss later in Sec-
tion 4.2.) The path condition becomes the precondition
of the method for this test case. Similarly, the postcon-
dition is “\result == null”, again only for this particu-
lar execution. The test case of a non-empty stack pro-
duces a precondition “Empty == false && topOfStack >=

0 && topOfStack < theArray.Length”. The corresponding
postcondition is “\result == theArray[topOfStack]”.

Combining preconditions is done by taking the disjunction
(logical-or) of the individual test cases’ preconditions. In
this example, the combined precondition becomes:

Empty == true ||

(Empty == false && topOfStack >= 0 &&

topOfStack < theArray.Length)

Similarly, postconditions are combined by taking their
conjunction but appropriately predicated with the corre-
sponding precondition. Following common convention, we
report the conjunction of postconditions as two separate
postconditions. In our example, the inferred postconditions
become:

Empty == true ==> (\result == null)

and

(Empty == false && topOfStack >= 0 &&

topOfStack < theArray.Length)

==> (\result == theArray[topOfStack])

Combining invariants by disjunction, conjunction, and im-
plication brings out an interesting feature of our approach.
Consider method preconditions. The crux of every dy-
namic invariant inference system is its abstraction technique.
Given a method void m(int i) and test input values from 1
to 1000, the most precise precondition that an invariant sys-
tem can infer is by disjunction—i.e., “i == 1 || i == 2 ||

... || i == 1000”. Generally, the system can be precise
by inferring one disjunct for every test case executed, and
combining them to form the complete precondition. Never-
theless, this precision means that dynamic observations do
not generalize to other test inputs that have not been al-
ready encountered. The value of an invariant inference tool
is exactly in this generalization. Thus, traditional dynamic
invariant inference tools (such as Daikon or DIDUCE) often
avoid combining observations precisely using disjunction and
instead try to generalize and abstract. For instance, a rea-
sonable abstract precondition for the above inputs is “i >

0”. Once conditions have been abstracted sufficiently, they
can be combined precisely across test cases using disjunc-
tion. The tool is overall responsible for heuristically decid-
ing when to use disjunction and when to abstract away from
concrete observations. The typical result is that dynamic in-
variant inference tools use disjunction (i.e., multiple cases)
sparingly, instead preferring to generalize, which often leads
to over-generalization. Instead, our approach employs no
such heuristics. Our observations are already generalized,
since they correspond to branch conditions in the program
text, appropriately modified in the course of symbolic exe-
cution. Thus, they can freely be combined precisely using
disjunction. Even if there is a large number of test inputs,
the number of disjuncts in our output is bounded by the pro-
gram paths in the method under examination. (Of course,
the number of program paths can be infinite in the case of
loops, and we have to apply special abstraction techniques,
discussed later in the paper.)

Another interesting feature of the dynamic symbolic ex-
ecution technique is that some relatively “deep” invariants
can be easily established. For the above example, our DySy
tool easily infers the postcondition pure, indicating that the
method has no effects visible to its clients. In contrast, tradi-
tional dynamic invariant inference tools treat the method as
a black box, and can only establish shallow properties with
observations at its boundaries. For instance, Daikon infers
several shallow purity properties for the above example, such
as “theArray == \old(theArray)”. It cannot, however, es-
tablish the full purity of the method relative to all reachable
heap data (e.g., with respect to the elements held inside the
array, and all the elements referenced by them, etc.).

Finally, the dynamic symbolic execution approach to in-
variant inference is heavily dependent on a symbolic rea-
soning engine (e.g., a theorem prover) for producing output
that is close to the expectations of a human user. Without
symbolic simplification of conditions, invariants end up too
verbose, with multiple tautologies. For a simple example,
consider a method allInts with the following structure:

void allInts(int i) {

if (i < 0)

{ ... } // do something

else if (i == 0) { ... } // do something else

i++;

if (i > 1) { ... } // do something else

}



If the program’s regression test suite exercises all paths,
then it is natural to expect a precondition of true rather
than the unreduced “((i < 0) && !(i+1 > 1))

|| (!(i < 0) && (i == 0) && !(i+1 > 1))

|| (!(i < 0) && !(i == 0) && (i+1 > 1))”. Thus, sym-
bolic reasoning is necessary to establish this tautology.
It is worth noting that existing dynamic invariant infer-
ence tools can also benefit from symbolic reasoning in or-
der to simplify their reported invariants. For instance,
Daikon produces several extraneous invariants for the ear-
lier top routine of StackAr: a postcondition “topOfStack
== \old(topOfStack)” is reported, but other postconditions
include both clauses “\result == theArray[topOfStack]”
and “\result == theArray[\old(topOfStack)]”.

We next discuss our specific implementation of dynamic
symbolic execution for invariant detection in the DySy tool.
DySy benefits from the mature symbolic execution and rea-
soning capabilities of the Pex framework.

4.2 DySy, Pex, and Symbolic Reasoning
Pex [29] is a dynamic analysis and test generation frame-

work for .NET, developed by the Foundations of Software
Engineering group at Microsoft Research. Pex monitors the
execution of a program through code instrumentation. The
instrumented code drives a “shadow interpreter” in parallel
with the actual program execution. For every regular .NET
instruction, there is a callback to Pex, which causes the
“shadow interpreter” to execute the operation symbolically.
The Pex interpreter is almost complete for the .NET instruc-
tion set. It is only missing the logic to perform control-flow
decisions, since it is passively monitoring the actual program
execution, which performs the decision actively.

Pex’s main functionality is similar to the Dart tool [15]:
Pex tests programs exhaustively in a feedback loop, in which
an automatic constraint solver finds new test inputs that
represent execution paths that Pex did not monitor yet.
While we do not use this test input generation feature in
DySy, we do use Pex’s capability to construct and reason
about symbolic program states.

4.2.1 Background: Pex Symbolic States, Terms
A symbolic program state is a predicate over logical vari-

ables together with an assignment of terms over logical vari-
ables to locations, just as a concrete program state is an
assignment of values to locations. The locations of a state
may be static fields, instance fields, method arguments, lo-
cals, and positions on the operand stack.

Pex’s term constructors include primitive constants (inte-
gers, floats, object references), and functions over integers
and floats representing particular machine instructions, e.g.,
addition and multiplication. Other term constructors imple-
ment common datatypes such as tuples and maps. Pex uses
tuples to represent .NET value types (“structs”), and maps
to represent instance fields and arrays, similar to the heap
encoding of ESC/Java [12]: An instance field of an object
is represented by a single map which associates object ref-
erences with field values. Constraints over the .NET type
system and virtual method dispatch lookups can be encoded
as well. Predicates are represented by boolean-valued terms.

Pex implements various techniques to reduce the overhead
of the symbolic state representation. Before building a new
term, Pex always applies a set of reduction rules that com-
pute a normal form. A simple example of a reduction rule

is constant folding, e.g., 1 + 1 is reduced to 2. All logical
connectives are transformed into a BDD representation with
if-then-else terms [3]. All terms are hash-consed, i.e., only
one instance is ever allocated in memory for all structurally
equivalent terms.

Recall the method top given in an earlier example. When
we execute the method and Empty == false, then the result
of the method call, theArray[topOfStack], will have the
following term representation.

select(select(int[]_Map,

select(theArray_Map, this)),

select(topOfStack_Map,this))

where select(m, i) represents the selection of the value
stored at index i in the map m. theArray_Map and
topOfStack_Map are maps indexed over object refer-
ences, so select(theArray_Map, this) corresponds to
this.theArray in the source language. int[]_Map is a map
of array references to another map that contains the ele-
ments of the array, indexed over integers.

A state update, e.g.,

this.topOfStack = this.topOfStack+1;

which method push may perform, is represented using an up-
date function update(m, i, v), which represents the map
m after is was updated at index i with new value v.

topOfStack_Map’ =

update(topOfStack_Map, this,

add(select(topOfStack_Map, this), 1))

The interpreter records all conditions that cause the pro-
gram to branch. In addition to the explicit conditional
branches performed by the program, Pex’s interpreter also
models all implicit checks performed by the runtime which
may induce exceptional behavior—e.g., following a reference
is treated as an implicit branch based on whether the refer-
ence is null (exceptional path) or not (normal path).

Based on the already accumulated path condition, terms
are further simplified. For example, if the path condition
already established that x > 0, then x < 0 reduces to false.

Pex has a term pretty printer which can translate back
reduced and simplified terms into readable C# syntax.

4.2.2 DySy Algorithm
DySy symbolically monitors the concrete execution of a

given test suite. For the duration of each method call,
DySy registers a separate interpreter with Pex’s monitor-
ing framework. Thus, as soon as there are nested method
calls, multiple interpreters will be listening to the callbacks
of the instrumented code. DySy builds a set of quadruples
(method, pathCondition, result, finalState) as it monitors the
program. Each quadruple characterizes an execution path
of a method.

Step 1: Path condition and final state discovery.
When the program initiates a call to a method M (in-

cluding the Main method of the test suite), DySy creates a
new interpreter instance along with a new symbolic state in-
stance. DySy initializes the locations of the symbolic state,
including the method’s arguments, with logical variables.
The interpreter will evolve the symbolic state according to
all subsequently executed instructions, including transitions



into and out of other method calls. When the call to M that
spawned this interpreter instance returns, DySy records the
quadruple (M, pathCondition, result, finalState), and aban-
dons the interpreter. The result is the term that M returns.

During nested method calls, the state’s locations always
hold terms built over the original logical variables of M , and
the result of the call is also a term over the original logical
variables. When the program performs no state updates
during a (nested) call, except updates to the local variables
of newly created stackframes and updates to instance fields
of newly created objects, DySy considers the call pure. DySy
replaces the result of a pure call with a term representing
the call—e.g., in our earlier example it replaces the explicit
result topOfStack >= 0 with Empty.

Also, DySy abstracts all, directly or indirectly, recursive
calls to M in this way, regardless of whether they are pure
calls or not. This is a heuristic treatment, which results in
recursive invariants. (This avoids unbounded paths through
recursive methods. The other interesting case is unbounded
paths through loops, which we discuss separately in Sec-
tion 4.3.) For example, the factorial function

int fac(int i) {

if (i<=1)

return 1;

else

return i * fac(i-1);

}

is eventually characterized by DySy as a method with no
precondition, and the postcondition

\result == ((i <= 1) -> 1) else -> i*fac(i-1)

Pex does not know the effects of code that it does not
monitor. For example, calls to “native” methods are not
monitored. Here, the user can choose between a conservative
and an optimistic treatment.

Step 2: Class invariant derivation.
At the end of symbolic execution and before outputting

method preconditions and postconditions, DySy first com-
putes class invariants, which are used to simplify the meth-
ods’ invariants. DySy defines the set of “class invariant can-
didates” of a class C as the set of conjuncts c of all recorded
path conditions of all methods of C, where c only refers to
the this argument but no other argument. (For future work,
one could existentially quantify the other argument symbols
to gain more class invariant candidates.) For each path con-
dition and final state of a method of C, DySy then checks
which candidates are implied by all path conditions in the
final states of all methods of C. (In fact, in its current im-
plementation, DySy does not perform a precise implication
check using an automatic theorem prover. Instead, it simply
executes the test suite again, and checks the candidates in
the concrete final state of each call to a method of C.) The
implied candidates are the “class invariant” of C.

Step 3: Pre- and postcondition computation.
Finally, DySy further simplifies the method’s path con-

ditions, assuming the derived class invariant. As a conse-
quence of this simplification, some of the quadruples might
collapse together.

The precondition of a method is the disjunction of its path
conditions. The postcondition of a method is the conjunc-

tion of path-specific postconditions. A path-specific post-
condition is an implication with a path condition on the left
hand side and a conjunction of equalities, where each equal-
ity relates a location to the term assigned to that location in
the final state. (E.g., recall postcondition “Empty == true

==> (\result == null)” in our earlier example.)

4.3 Abstraction for Loops
Handling loops is a fundamental challenge for symbolic

execution in general. In our specific context, we discussed
earlier how loops result in a method having an infinite num-
ber of possible paths. Since our symbolic execution is guided
by a concrete execution, every path we observe has a finite
length, but grows quickly and without bounds. In prac-
tice, this means that straightforward symbolic execution
produces enormous path conditions that are overly specific
and defeat the purpose of using program conditions as po-
tential invariants. We next discuss the heuristics that DySy
uses for abstraction in the case of loops.

Let us examine the problem with the example of a simple
linear search method, for which we want to derive invariants.

public int linSearch(int ele, int[] arr) {

if (arr == null)

throw new ArgumentException();

for (int i = 0; i < arr.Length; i++) {

if (ele == arr[i])

return i;

}

return -1;

}

Consider running tests for this method with a single input
array {5, 4, 3, 12, 6} and the numbers 0 to 9 as candi-
date element values. Performing symbolic execution along
the path of concrete execution for ele equal to 0 will yield
a long and too-specific path condition, even after full sim-
plification: “arr != null && arr.Length == 5 && ele !=

arr[0] && ele != arr[1] && ele != arr[2]

&& ele != arr[3] && ele != arr[4]”. The precondition
is not only unwieldy, but also fairly bad for our purpose
of inferring invariants because it does not contain general
observations that may also appear in preconditions derived
for other test cases: Even after all tests are run, the com-
bined preconditions and postconditions will end up having
few commonalities (e.g., “arr != null && arr.Length ==

5”) and 5 separate cases. (Four cases correspond to the four
numbers from 0 to 9 that appear in the array, and one case
corresponds to the path for numbers that are not found in
the array.) This is exactly the “precise but useless” invariant
that dynamic invariant inference aims to avoid, as discussed
in Section 4.1. The problem is that our technique is based
on using program conditions to partition the abstract space
of possibilities into a few general but interesting categories.
These coarse partitions can then be combined together with
disjunctions (i.e., case-analysis). When the partitions be-
come too fine, there is no abstraction benefit and the in-
variants describe exactly the behavior of the test inputs and
little more.

The general approach to dealing with such over-specificity
in program analysis is to force abstraction by forgetting some
of the information in the too-precise program paths. We
can do this by keeping a maximum number of conditions,



after which we collapse conditions together (e.g., one con-
dition per-program-point) or by turning program variables
into unknowns (i.e., symbolic values) if they get assigned
more times than a given threshold. The main heuristic ap-
proach along these lines that we employ in DySy and that
we have found to work quite well is to treat specially the
common code pattern of for loops that introduce explicit
loop variables. Loop variables are treated as symbolic val-
ues, and a loop’s exit condition does not become part of the
path condition if the loop body is entered at all. Further-
more, symbolic conditions inside the body of the loop are
collapsed per-program-point: If a certain if statement in
a loop body evaluates to true in one iteration and to false
in another, only the latest condition becomes part of the
path condition. This effectively treats a loop as if it were an
if statement with the symbolic conditions in the loop body
collapsed per-program-point.

To illustrate the approach, our linSearch example uses
a for loop with loop variable i, declared explicitly in the
for loop’s initialization expression. This signals to DySy
that variable i will likely be assigned multiple values, and
will participate in conditions. DySy then treats i as a sym-
bolic value and does not keep track of its state updates.
By itself, this would be insufficient: executing the loop and
then exiting would produce contradictory symbolic condi-
tions. In our example, we would have “i < arr.Length”
(for the part of the path executing the loop body) and “!(i
< arr.Length)” (when the same path later exits the loop
body). Since both conditions are conjoined (logical-and)
together in the same path condition, the path condition be-
comes just false, which is clearly erroneous. In our heuris-
tic, we ignore a loop’s exit condition (unless the loop is not
entered at all). In our example, the total precondition be-
comes:

arr != null &&

($i < arr.Length && !(ele == arr[$i]) && $i >= 0 ||

$i < arr.Length && ele == arr[$i] && $i >= 0 )

This demonstrates a few interesting points. First, sym-
bolic variable $i is treated as a pseudo-input. Essentially, in
the above logic formula, $i is existentially quantified: there
exists some $i with these properties. Second, no condition
“$i >= arr.Length” is output. Every test case enters the
loop at least once. Third, we can see how path conditions
are collapsed per-program-point inside the loop body: Exe-
cutions that do find the searched element produce both the
condition“!(ele == arr[$i])” (for iterations over other el-
ements) and the complement, “ele == arr[$i]” (for the it-
eration that finally finds the element). Yet the former are
replaced when the latter take place. Finally, this precondi-
tion contains redundancy. It covers the complementary cases
of “ele == arr[$i]” and “!(ele == arr[$i])”, which can
be simplified away. It is fortunate, however, that the DySy
simplifier misses this opportunity because this helps illus-
trate how the different cases arise. The separation of the
cases does not matter for the method’s precondition, but
does matter for the postcondition. There, we obtain (slightly
simplified):

!(ele == arr[$i]) ==> \result == -1 ||

ele == arr[$i] ==> \result == $i

This is a quite informative postcondition for the method,
and captures its essence accurately.

5. EVALUATION
We next discuss and evaluate DySy in comparison with

the Daikon dynamic invariant inference tool.

5.1 Discussion
At a high level, our discussion of the dynamic symbolic

approach should give the reader a qualitative idea of the
comparative advantages of DySy. Every dynamic invariant
inference process captures, to some extent, the peculiarities
of the test suite used. Nevertheless, our symbolic approach
has a smaller risk of being overly specific, since the condi-
tions themselves are induced by the program text and refined
through symbolic execution. Instead, an approach observ-
ing arbitrary, pre-set conditions at method boundaries is
bound to be “fooled” much more easily. For the linSearch

method of the previous section, with the test cases described
earlier (all numbers 0..9 searched in the array {5, 4, 3,

12, 6}) Daikon infers almost no useful invariants, but a
large number of spurious ones. Example “accidental” in-
variants include “size(arr[]) in arr[]”, “size(arr[])-1
in arr[]”, “arr[i] != i”, etc. (These relate the index or
size of an array to its contents!) Certainly these spurious in-
variants can be disqualified with a more extensive test suite
that uses more arrays as inputs. Nevertheless, test suites
encountered in practice tend to exercise as many different
cases in the program logic as possible, but without much
variety of data. It is, thus, very plausible for a programmer
to unit-test method linSearch with only a single array, yet
with multiple input search values. A larger test input (e.g.,
a system-test) that exercises linSearch may also fail to in-
validate some of the false invariants—for instance, “arr[i]
!= i” is likely to hold for many arrays.

On the other hand, a possible threat for DySy compared
to Daikon is that interesting conditions are not reflected in
the program text. For instance, an interesting concept, such
as ordering, may be implicit or hard to infer from program
conditions, yet may be inferable by Daikon. Nevertheless,
we have not found this to often be the case. We believe
that this is not surprising: finding an implicit interesting
concept by unguided search over a space of pre-set invariant
templates is quite unlikely.

5.2 A Case Study
We evaluate DySy by replicating a case study analyzed in

the Daikon literature. The StackAr class was an example
program originally by Weiss [31], which is included as the
main example in the Daikon distribution. StackAr is a stack
algebraic data type implemented using an array. Ernst et al.
[9] examine StackAr in detail and discuss Daikon’s ability to
infer StackAr’s invariants. In order to perform a comparison
with DySy, we rewrote StackAr in C# (also with the help
of the Java Conversion Assistant in the Visual Studio IDE).

We ran Daikon on the test suites supplied for StackAr

by the Daikon authors. To do a comparison of Daikon and
DySy, we needed an “ideal” reference set of invariants for
StackAr. Before beginning our experimentation, a human
user hand-produced our reference invariants. Inspection re-
veals that this set of invariants is comprehensive and min-
imal (in informal terms). It captures the behavior of each
method in terms expected by human users. (We discuss
specific examples later.)

Running DySy on the test suite takes 28 seconds, com-
pared to 9 seconds for Daikon (2.2 seconds monitoring and



Table 1: How many of the “ideal” invariants Daikon
and DySy infer for StackAr methods and construc-
tors exercised by the test suite. (Higher is better.)
“Goal inv” is the number of our manually deter-
mined ideal invariants. “Recognized inv” is the num-
ber of these ideal invariants inferred by Daikon and
DySy. For each tool, we report a strict and a re-
laxed count (the numbers in parentheses) because
of object equality invariants. If the tool does not
establish the deep equality of objects (or full pu-
rity of a method), but does establish some shallow
equality condition (e.g., reference equality, or value
equality up to level-1) then the “relaxed” number
in parentheses counts this as matching the expected
invariant.

Goal Recognized inv
inv Daikon DySy

Invariant 5 5 4
Constructor 3 3 2
push 4 2 (4) 2 (4)
top 3 1 (3) 2 (3)
topAndPop 4 2 (4) 2 (4)
isEmpty 3 2 (3) 3
isFull 3 2 (3) 3
makeEmpty 2 2 2
Total 27 19 (27) 20 (25)

6.7 seconds inference reported) on a 2 GHz AMD Athlon 64
X2 dual core 3800+ with 4 GB of RAM. Generally, our sym-
bolic execution adds significant overhead, which, however, is
strictly lower than that of concolic execution [15, 27]. This
is fast enough for real use on specific program units. Gener-
ally, we believe that the matter of invariant quality is much
more significant than that of runtime overheads, as there is
substantial potential for optimizations in the future.

The results of the DySy and Daikon inference are summa-
rized in Tables 1 and 2. Table 1 shows the number of ideal
invariants that were actually detected by Daikon and DySy.
As can be seen, the test suite is quite thorough and both
tools detect the vast majority of the target invariants. An
interesting issue concerns object equality (and method pu-
rity), which is often part of the ideal invariant. The meaning
of equality in our human-produced invariants is deep equal-
ity. This is not always inferred by the tools, but reference
equality is more often inferred (which cannot preclude that
the members of an object changed). The table offers a strict
and a relaxed count. The strict count considers the invariant
found even if only reference equality is established.

Although both tools infer the required invariants for this
test suite, the benefit of DySy is demonstrated in its avoiding
irrelevant invariants. Table 2 shows how many total invari-
ants Daikon inferred (third column). To detect the 27 ideal
invariants, Daikon produced a total of 138 invariants. We do
not give a similar count for DySy, since its output consists of
condensed expressions (e.g., if-like constructs join together
invariants into a single top-level one) which make the com-
parison uneven. Instead, we list a more reliable metric for
both tools’ output: The last two columns of Table 2 present
the number of unique subexpressions in the invariants in-
ferred. We parse the output for both tools and count the
number of unique subtrees in the abstract syntax tree: if a

Table 2: Metrics on all reported invariants (lower is
better), compared to ideal reference set. “Goal inv”
is the number of ideal invariants. “Daikon inv” is the
number of invariants reported for Daikon. “Unique
subexpr”are the unique subexpressions produced by
Daikon and DySy to present their invariants to the
user. The total expression count is relative to the
entire class so here it is less than the sum. (Some
subexpressions are common across methods.)

Goal Daikon Unique subexpr
inv inv Daikon DySy

Invariant 5 8 26 16
Constructor 3 7 24 17
push 4 21 69 43
top 3 22 81 25
topAndPop 4 41 145 50
isEmpty 3 13 53 9
isFull 3 11 45 13
makeEmpty 2 15 47 22
Total 27 138 316 133

subtree/subexpression occurs on two branches, it is counted
only once. Thus, surface verbosity is ignored: what is mea-
sured is the number of truly distinct clauses that each tool
infers. (Measuring the full size of the output would bias the
numbers in favor of DySy, as its output is simplified symbol-
ically with common subexpressions factored out.) As can be
seen, DySy infers many fewer total invariants than Daikon—
about a third of the total size. Indeed, the DySy output is
very close to the reference set of invariants for StackAr.

To see an example of the differences, consider method
topAndPop, which removes and returns the stack’s most re-
cently inserted element, or null if the stack is empty. The
two important postconditions for this method concern its
effect on topOfStack and its return value. We have:

\result == ((Empty -> null)

else -> theArray[\old(topOfStack)])

and

topOfStack == ((Empty -> \old(topOfStack))

else -> \old(topOfStack) - 1)

Both DySy and Daikon infer these postconditions. One more
precondition states that all stack contents below the top
element remain unchanged by the method’s execution. Both
tools infer that precondition but only under shallow equality.
At the same time, to infer these correct invariants, Daikon
infers a total of 41 invariants for this method. Many range
from erroneous to irrelevant from the perspective of a human
user. One invariant is:

\old(this.topOfStack) >= 0) ==>

(this.theArray.getClass() != \result.getClass())

The invariant relates the type of the array with the types of
elements it holds. Another Daikon invariant is:

\old(this.topOfStack) >= 0) ==>

((\old(this.topOfStack) >>

stackar.StackAr.DEFAULT_CAPACITY == 0))

This relates the topOfStack variable with the stack’s default
capacity using a bit-shift operator! (We hand-translated the



above invariants to JML. They were originally only output
in Daikon’s dedicated invariant language because they are
not allowed in JML—e.g., because of references to private
fields.)

Eliminating the extraneous Daikon invariants would be
possible with a larger test suite that would exercise the
StackAr functionality under many conditions. Nevertheless
the fundamental tension remains: If Daikon is to infer all
true invariants, it needs to explore a great number of in-
variant templates, which increases the probability of acci-
dental invariants. In contrast, DySy obtains its candidate
invariants directly from the program’s conditions and as-
signments, therefore the invariants it infers are very likely
relevant.

6. RELATED WORK
We have already discussed the most directly related work

throughout the paper. We next present some less directly
related work that still exerted influences on our technique,
yet either uses exclusively static methods for invariant in-
ference, or infers program specifications purely dynamically,
by examining pre-defined patterns.

For reverse engineering, Gannod and Cheng [13] proposed
to infer detailed specifications statically by computing the
strongest postconditions. Nevertheless, pre/postconditions
obtained from analyzing the implementation are usually too
detailed to understand and too specific to support program
evolution. Gannod and Cheng [14] addressed this defi-
ciency by generalizing the inferred specification, for instance
by deleting conjuncts, or adding disjuncts or implications.
Their approach requires loop bounds and invariants, both of
which must be added manually.

Flanagan and Leino [11] propose a lightweight verification-
based tool, named Houdini, to statically infer ESC/Java an-
notations from unannotated Java programs. Based on pre-
set property patterns, Houdini conjectures a large number
of possible annotations and then uses ESC/Java to verify
or refute each of them. The ability of this approach is lim-
ited by the patterns used. In fact, only simple patterns are
feasible, otherwise too many candidate annotations will be
generated, and, consequently, it will take a long time for
ESC/Java to verify complicated properties.

Taghdiri [28] uses a counterexample-guided refinement
process to infer over-approximate specifications for proce-
dures called in the function being verified. In contrast to
our approach, Taghdiri aims to approximate the behaviors
for the procedures within the caller’s context instead of in-
ferring specifications of the procedure.

Henkel and Diwan [17] have built a tool to dynamically
discover algebraic specifications for interfaces of Java classes.
Their specifications relate sequences of method invocations.
The tool generates many terms as test cases from the class
signature. The results of these tests are generalized to alge-
braic specifications.

Much of the work on specification mining is targeted at
inferring API protocols dynamically. Whaley et al. [32]
describe a system to extract component interfaces as finite
state machines from execution traces. Other approaches use
data mining techniques. For instance Ammons et al. [1]
use a learner to infer nondeterministic state machines from
traces; similarly, Yang and Evans [34] built Terracotta, a
tool to generate regular patterns of method invocations from
observed runs of the program. Li and Zhou [22] apply data

mining in the source code to infer programming rules, i.e.,
usage of related methods and variables, and then detect po-
tential bugs by locating the violation of these rules.

7. CONCLUSIONS
The excitement that followed the original introduction

of dynamic invariant detection in the Software Engineering
world seems to have been followed by a degree of skepticism.
Dynamic invariant inference tools require huge and thorough
regression test suites, and infer properties that are occasion-
ally interesting but often too simplistic. Additionally, having
enough tests to eliminate false invariants does not preclude
extraneous invariants, which are disappointing to a human
user. In this paper we presented an approach that holds
promise for the future of dynamic invariant inference: us-
ing symbolic execution, simultaneously with concrete test
execution in order to obtain conditions for invariants. We
believe that this technique represents the future of dynamic
invariant inference. It combines the advantages of invariant
inference through static analysis, with the immediate prac-
ticality of observing invariants by executing tests written
by programmers who exercise valid scenarios. Furthermore,
the technique is strictly an increment over prior approaches,
as it adds an orthogonal dimension: It is certainly possible
to combine dynamic symbolic execution with observation of
properties from pre-defined templates, as in other dynamic
invariant detectors. The symbolic simplification approach
can then apply to both symbolically inferred invariants and
invariants instantiated from templates. A complete evalua-
tion of such a hybrid is part of future work. We hope that
this will be just one of many avenues that the present paper
will open for dynamic invariant detection.
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