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Abstract. Recently Nickle et al. introduced a new model of genetic diversity that summarizes a
large input dataset into a short sequence containing overlapping subsequences from the dataset.
This model has direct applications to rational vaccine design. In this paper we formally investi-
gate the combinatorics of the vaccine optimization problem. Here the vaccine is constructed as
a sequenceé of amino-acids such that as many of the most frequently occurring epitopes found

in mutated viruses are subsequences$ tdVe rigorously present the related design optimiza-

tion problem, establish its complexity, and present a simple probabilistic algorithm to find an
efficient solution. Our vaccine designs show improvement of over 20% in the coverage score
over the previously best designs and produce over 15% shorter vaccines that achieve equivalent
epitope coverage.

1 Introduction

Recent work in the rational design of HIV vaccines has turned to cocktail approaches with the
intention of protecting against a set of variants of rapidly mutating viruses such as HIV [7]. One
of the potential difficulties with this approach is vaccine size. Vaccines with a large number of
nucleotides or amino-acids are difficult to deliver, expensive to manufacture, and more likely to
cause autoimmune reactions.

Recently Nickle et al. introduced an approach for generating smaller vaccines that represent a
wide genetic diversity [14]. The key to their approach is the use of a T-cell vaccine in which MHC-I
epitopes (of length 8-11 amino-acidsjerlap This idea is illustrated in Figure 1. On the top of the
figure is a list of MHC-I epitopes obtained from HIV strains found in a population of people. The
vaccine candidate at the bottom of the figure covers each of these epitopes, exploiting their overlap.
A color coding of the epitopes is used to highlight their overlap. The vaccine candidate is more than
twice as short as one with no overlap. They call a vaccine candidate that exploits oves|gifpame
as it epitomizes the many epitopes that went into its creation. Fisher et al. have recently proposed a
similar strategy in [6].

In this paper we build upon their work and postulate the gensx@CINE DESIGNPROBLEM as
a combinatorial optimization problem, demonstrate that it is NP-hard, and present an efficient algo-
rithm that significantly surpasses previous designs in terms of epitope coverage and vaccine length.
Finally, we argue in advantage of combinatorial search strategies for solving similar problems ver-
sus constructive heuristics guided by traditional machine learning and signal processing primitives
as the latter do not take into account the randomness of the best design structures.

The optimization problem we address here is the discovery of a seqSesfamino-acids that
covers the most MHC-I epitopes in a given set of viral sequeRciEem a population. We translate
the biological problem into a computational one via the following definition of epitope coverage:
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Fig. 1. A synthetic example of an epitome (top) and twelve amino-acid sequences (below) that it epitomizes
in terms of their epitopes (select subsequences). A letter (amino-acid) is colored if and only if it is contained
in at least one epitope. Boxes are used to show some epitopes and their mappings to the epitome. In the last
sequencegveryepitope is marked with a box to indicate that some epitopes overlap. The varying colors help

to illustrate the mapping of the epitopes to the epitome.

Definition 1. Epitope coverageA sequencs is said tocoveran epitope in a (single) viral sequence
if the epitope is a substring ¢f.

Note that, if a viral sequence contains two copies of the same epitope, it can be covered only
once. In contrast, if two viral sequences contain the same epitope, then the epitope can be covered
in both sequences. Now, giv@dh we can identify all the unique epitopes found in the set, and attach
a frequency of occurrencg to each epitopé. Our optimization problem then becomes: given a set
of epitope—frequency pairs, find a sequescguch thab _, ¢ f; is a maximum.

This problem formulation makes several assumptions:

(1) we know what peptide sequences are MHC-I epitopes, i.e., what peptide sequences are presented
with MHC-I molecules on the cell surface and trigger T-cell recognition;

(2) the infected cell processes the vaccine candidate so as to present every epitope on its surface;
and

(3) a T-cell trained to recognize an epitope will only attach that epitope, i.e., there is no cross-
reactivity. Jojt et al. show how these assumptions can be relaxed and still lead to the optimiza-
tion problem we have just specified [8].

2 The Vaccine Design Problem

In this section we formally define the problem and evaluate its complexity. We start with a database

X ={z;,i =1...N} of N 10-amino-acids-long epitope sequences which appear in the strains of
the target virus populatioh.

1 Such a definition of the optimization problem can be augmented with additional models such as cross-
reactivity, MHC binding affinity, etc.

2 |n practice, epitopes (good MHC binders) are not all known. We make a conservative assumption that every
10-mer is a potential epitope.



Epitope overlap
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Fig. 2. An example of the epitope graph. Nodes represent epitopes, two nodes are connected by a vertex if they
overlap.

2.1 The Model

Definition 2. Epitope WeightEach epitoper; is weighted using a non-negative integer scalare
Z* wherew; is proportional to the frequency of occurrence \fin the observed population of
strains.

Each epitope is denoted using a 10-symbol word {A}'° where the symbols iA are drawn
from the alphabet of 20 amino-acids.

We construct the weighted epitope overlap grggl, W, E, L) as follows. For each epitope
we create a vertex; € V, whereV is the set of vertices ig. Consequently, we hay®'| = N.
Next, we connect two nodes andv; using a directed edgg; = v; — v; € £ if the corresponding
x; andx; “overlap.”

Definition 3. Epitope Overlap.Epitopesz; = {a1...a10} andz; = {b1...b1o} “overlap” if
{ai1_k...a10} = {by... by}, where alla;, b; € A andk is a positive non-zero integére 7.

E denotes the set of all directed edgesjinWe consider only the maximum overlap for an
ordered pair of epitopes. For example, epitopesPGVRYPLTFG andrs=GVRYPLTFGW over-
lap at nine positions in a resulting sequence “PGVRYPLTFGW.” We do not consider the inferior
overlap “PGVRYPLTFGVRYPLTFGW.” Also we do not honor the inverse overlap. For example,
7=WGFTLPYRVG (amino-acids i3 are inversely ordered amino-acidsagf) does not overlap
with x; as the groove into which epitopes bind are not symmetric about its center.

Each vertex; € V is weighted with the corresponding ; we defineW = {w;,...,wx}.

Finally, each directed edgs; is weighted with a non-negative integgy € Z* that quantifies
the depth of the overlap. From Definition 3, we derive the following definition:

Definition 4. Overlap DepthOverlap depth for two epitopes andx; represents the largestfor
whichx; andz; “overlap.”



In the example in Figure 2, we conclude thhat = 9. The set of all edge weights is denoted as
L. By default, two vertices; andv; that are not connected haie = 0.

2.2 Optimization Objective
We impose the paramount design objective using the following problem defidition:

PROBLEM: MAX-WEIGHT LENGTH-CONSTRAINED PATH (MLP)

INSTANCE: GraphGg(V, W, E, L).

SOLUTION: A permutationr : {1... M} — {1...M} of a cardinalityd/ subsetS C V such
that10 + Z?i;l [10 - Zs(ﬂ(i))s(ﬂ(i+1))} = K, whereK = const.

MEASURE: A = 3" w, .

In the problem statement/ is a variable that depends upon the selected pafh € G and K.

By setting this objective, we impose that from a given population of strains, using the overlap
method we construct a vaccine of given lengftamino-acids such that it maximizasthe number
of epitopes that frequently occur in these strains. There is no biological proof that this criterion is
optimal, but it is considered reasonable by several researchers [13, 14].

Theorem 1. MAX-WEIGHT LENGTH-CONSTRAINED PATHis NP-hard.

Proof. (sketch) We define a simple polynomial transformatfon: G(V,W, E, L) — G'(V, Z, E, L)
such that for each node € V it sets the corresponding; = 1 and for each edge € F it in-
troduces a constant edge weiglft) = 1 € Z. A polynomial time algorithm that finds an opti-
mum solution to MLP onf(G) would also solve the equal-edge-weight variant of the LONGEST
WEIGHT-CONSTRAINED PATH problem og’. The latter problem has been proven to be NP-hard
via the KNAPSACK problem in [1]42.4, pp.25)1

2.3 Discussion

In this subsection, we present a short discussion on several important assumptions exhibited in our
model. First, the assumption that all 10-mersXinare possible epitopes is not realistic; thus, the
number of possible epitopes could be reduced before applying the optimization algorithm. One way
to address this issue in the problem model is to define weighted coverag& avieere each k-mer

is weighted by the probability that it is an epitope [8]. Interestingly, a model that would address this
additional constraint, would, in concept, remain equivalent to the one presented in Subsection 2.1.
As a result, a vertex weight; would be computed as a product of:

— the number of times the corresponding 10-mghas occurred i, and
— the probability thatr; is an epitope. An algorithm that aims to quantify this probability has been
introduced in [10].

Next, the presented model does not reflect the phenomenon of cellular processing of epitopes.
Processing of a k-mer is thought to be mostly influenced by relatively small (5-10 amino-acids
long) flanking regions on either side of the k-mer [17]. Thus, to handle the processing, one can

3 The definition format is adopted from a comprehensive existing compendium of NP optimization problems
[15]. It is straightforward to derive definitions according to alternate formats such as the Garey-Johnson
format [16].



simply increase the size of the considered k-mers [18]. Similarly, we can model the effect of cross-
reactivity by noting that a k-mex; in the vaccine will cover k-met; if «; andz; are similar, where
similarity is defined by some cross reactivity model (e.g., [9]). By introducing multi-k-mer weights
overV, one would incorporate this additional constraint. In this case, by adding a single k-mer to
the vaccine, the weights of all similar k-mers would be added to the overall measure more
complex model, the added weights of similar k-mers would be initially scaled proportional to the
level of their similarity.

Because the above adjustments do not fundamentally alter the optimization algorithm, we adopt
the model presented in Subsection 2.1 in the remainder of this article for both simplicity and brevity
of presentation.

3 An Efficient Algorithm

The collected strain databases for the HIV virus certainly pose sufficient difficulty for exact solvers.
Just as in the case of many computational biology problems, here also we are significantly more in-
terested in the solution than in the algorithm. As a consequence, in our proposed algorithm we trade
off speed for solution quality. To that extent we propose a simple least-constraining most-constrained
probabilistic heuristic preceded by a constraint analyzer which aims at simplifying problem’s search
space.

3.1 Search Space Reduction

The first step in the developed algorithm is to preprocess the input epitopes in order to reduce the
overall search space. The key idea is to merge two epitopes into a longer sequence if there exists a
strong force between them to appear jointly in virus strains. We perform the reduction as follows.
We first sort all epitopes iX in decreasing order af(x;) = w;/h(z;). Functionh(z;) returns the
current length of the sequenge Initially we have(Vz; € X)h(x;) = 10. We process the resulting
sorted list of sequences starting from vertexwith the highesty(z;). Then, we find a group of
verticesG such that;; > ¢ = const. for anyz; € G and then identify the sequenge € G with

the largesy(x;). Next, we find a group of verticeS’ such that;;, > o for anyz;, € G’ and then
identify the sequence;, € G’ with the largesy(z). If z; = z, then we merger; andz; into a

single epitoper,, of lengthh(x,,) = h(x;) + h(z;) — l;;, removex; andz; from X and insertc,,

into X. We repeat this procedure until there exists a pair of verticéstinat could merge according

to these requirements.

The constant} is a threshold on the overlap. The purpose of this filter is to exclude merging
nodes that have a shallow overlap in preprocessing — such vertices are connected in the search phase
of the algorithm.

The reduction procedure is sub-optimal for arbitrary input. Its key objective is to attach epitopes
that match well in terms of depth of overlap and frequency of occurrence in the observed strain popu-
lation. Although examples where it performs sub-optimally could be constructed, in our experiments
its benefits, primarily reduction dfX| of 7% (from 860 to 800), were worthwhile considering the
proximity of the obtained final solution to an optimistic upper bound.

3.2 A Simple MLP Solver

We developed a probabilistic least-constraining most-constrained algorithm to find the best vaccine
design. The key idea was to generate random patlésusing a lottery-scheduling-based search



strategy [2] and a set of computationally inexpensive cost functions. The algorithm is detailed using
the pseudo-code in Figure 3.

We use lottery scheduling (LS) as the fundamental selection process in the algorithm [2]. LS is a
simple method of selecting an item from a set of itemsY such that the probability of its selection

is proportional to a certain normalized criterion functiaf;) [>.., c v a(m)]_l. The selection
process can be done #(log, | X|) via a simple binary tree. We represent this procedure using a
functionLS(X, «()) which returns a member of.

The algorithm creates distinct paths ovef and chooses the one with the best total weght
We use a simple least-constraining most-constrained heuristic to construct each path. First, we select
the starting node in the patfi = {v} = LS(V, ¢()) whereg(v;) = (s Then, we concatenate
iteratively new nodes tél = {ry,...,nr} until the length of the resulting sequence is equal to or
greater thar’l'. Each new vertex is concatenated as follows. For both the hgaahd the taibr,
of the path we compute the concatenation candidates= LS (V — I, oy (7wy)) andvyr = LS
(V —II, o7 (77)). Functionsey () ander () are defined as:

max w
veV —II Yomrr W

on(v,mH) = { } { ] @

_ 2
9(v) = max yor,]| |1+ max yZ,.,

max YrpoWy
eV —1I1
or(v,mr) = ve . 2
_ 2
{g(v) max ym]] [1 + max ymT}

The o()-functions quantify heuristically how attracted two vertices are. The most constrained
vertices in the current remainder of nodés— II with high overlap at the head or the tail &f
as well as high weight tend to increase the outpup©f On the other hand, the cost function is
relaxed if the candidate vertex has a high overlap with a verteX in I (see second term in
the denominator). Thus, we enforce that less constraining head/tail is chosen while concatenating
candidegccandicede vertices; andvr are identified we determine which one will be appended to
IT using another round of lottery scheduling that uses the correspon(ihdunction to establish
the probability of occurrence. We constructed our search algorithm with the aim to rapidly produce
new candidate paths which have a high likelihood of producing Rigfus, simple iterative search
can be used to produce the final resulting path).

4 Experiments

In this section, we evaluate candidate vaccines constructed using our approach under various as-
sumptions. We compare the optimization score of our vaccine candidates with those of other designs
and an optimistic upper bound. The data we use are a set of 197 clade B HIV sequences taken from
GenBank (numbers available on request). Each HIV sequence in the dataset was obtained from a
different person.

In the first experiment, we assume that all 10-mers from each HIV sequence are epitopes. Under
these conditions, the optimal vaccine is one that maximizes the coverage of all 10-mers found in
the virus population. In Figure 4 (left), we plot this coverage of the HIV-1 gag region as a func-
tion of vaccine length for the epitome. There are three sets of results provided: one returned by the
greedy epitome design approach [8], results obtained using our MLP algorithm, and an optimistic
upper bound. We computed the upper bound by assuming\that V)(Vj € V,j # i)y;; = 9



A SimpleMLP SOLVER
Inﬁjt: G, number of search iteratiods

1| whileL>0
(2| SetpathiT = LS(V, ¢()).
3] whieY, ., 9() <K
(4| mx andrwr are the head and the tail 6f.
5 | Head-candidatey; = LS (V — IT, or (111)).
E Tail-candidateyr = LS (V — I1, o7 (7r)).
7 Add-ona = LS ({vi,vr}, {on (v, mr)?, or (vr, 77)?}).
8 if a =vg thenIT = {vy, I}
9 | elsell = {II,vr}.
E FA=2 v e Wi > Amaa
[11] then current best patlil,,,q.. = I, S€tAmaz = A.

(12| L=L-1.

Lottery Schedulind-S

Input: SetX, objective functionx() : {z € X} — R.
(1] Compute(Vz; € X)a; = a(x;)

Generate random numbewvithin [0, Z‘Zf'l ai).
Find j such thaty>/_, a; <r < 71 as.
return z;.

1
2]
Ea
(4 |

Fig. 3. Pseudo-code of the developed MLP Solver.

and then taking\* = Zmeﬂ* w;, whereIl* is a path created in descending order of weights

in G. Clearly this upper bound is not likely to be reached in a real-life solution as the maximum
depth of coverage (i.e., 9) between two epitopes can be achieved only for at most 20 other epi-
topes inG. We compute the improvement of the developed MLP solver against [8] by reporting
[AMGE) — AM(MLP)|[MGE) — /\*]_1, where indexG E denotes results produced by the reference
greedy algorithm for epitome construction [8]. For example, for vaccine leAgth 618 we ob-

tained a 25.3% improvement with respect to the greedy epitomes. We do not comment on the opti-
mality of the obtained solutions as we did not use an exact solver for either & #@ots due to

the involved problem complexity. Another way to report results is to compare the vaccine lengths
obtained using the two methods with identical coverage. In order to achigyg, ., w;] =

0.8821, we haveK ;1 p = 618 and Kgg = 711 amino-acids, an improvement of 15% over the ex-
isting method. It is important to notice that the improvements are more significant with the increase
in vaccine size.

Finally, the problem representation proposed in this experiment is independent of flanking re-
gions and assumes no cross-reactivity.6Jejial. have demonstrated problem definition adjustments
to address these constraints [8].

From the same experiment, we report the progress of our algorithm as the number of iteration
increase. Figure 4 (right) illustrates the improvement in the best found resulf fer 618 as L
increases compared to the result obtained by a single iteration of the greedy algorithm. We ran
the MLP solver forL ~ 102 iterations and recorded the moments at which the best results were
computed. We can observe that the greedy result is achieved within one second of run-time. The
3.2GHz Pentium machine we used in the experiment, prodscg@bpaths/sec.
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Fig. 4. (left) Coverage of 10-mers from 197 clade B HIV protein sequences by vaccines of various lengths and
types: greedy epitome, results obtained by our MLP solver, and an optimistic upper bound. Note that the MLP
solver performed. ~ 10® iterations only during the search for the béSt= 618 amino-acids vaccine. In all

other tests, it performed ~ 10° iterations. (right) A single run of the MLP solver fdr ~ 108 iterations.

We recorded the moments at which the best results were computed. The result obtained by the greedy epitome
algorithm is also illustrated.
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Fig. 5. Two diagrams describing the efficacy of the new vaccine design. We singled out th& best18
amino-acids long vaccine desighwith normalized epitope coverage af= 0.8821 and plotted: (top) how
many epitopes from the final vaccine desigappear in the 197 HIV strains collected from distinct individuals
and (bottom) the number of occurrences of a given epitope in distinct virus strains.



Finally, we plot two histograms in Figure 5. The top diagram identifies how many epitopes
from the final vaccine desigf (with K = 618 amino-acids and normalized epitope coverage of
A = 0.8821) appear in the 197 HIV strains collected from distinct individuals. One can observe that
all strains are covered lfywhich points to the efficacy of the new vaccine design methodology. Note
that there exist four strains in the databank (with indices 7—10) for which most of their genotype is
still not uncovered — understandably we recorded poor coverage on these strains. Finally, most of the
other strains have more than 30 containing epitopes present in the target vaccine design. A potential
design improvement from this perspective could be achieved by readjusting the optimization goal
to provide maximum-minimum coverage of distinct strains. We plan to address this issue in future
work. The bottom plot identifies the number of occurrences of a given epitope in distinct virus
strains. Again we used the bekt = 618 amino-acids vaccine design to present the data. The
resulting vaccine covered 501 out of 860 identified epitopes. From the diagram one can note that
several dozens of epitopes appeared in the vast majority of individual strains.

5 Conclusions and Future Work

We have formally defined the optimization goal behind a promising vaccine design approach that
exploits overlap in MHC-I epitopes to create vaccines that cover a large fraction of a viral diver-
sity. We have shown that the problem of finding optimally compact vaccines can be modeled as the
MAXIMUM-WEIGHT LENGTH-CONSTRAINED PATH problem, we have proven that this prob-

lem is computationally intractable, and introduced an efficient algorithm to find near-optimal vaccine
candidates. By applying our MLP solver to the GenBank dataset, we demonstrate quantitatively that
our technique produces vaccine candidates with significantly larger coverage of potential epitopes
than previous methods that include a greedy heuristic with a similar design objective and alternative
approaches based on cocktails of observed strains, cocktails of consensus strains, or cocktails of
tree centers [8]. With respect to [8], we obtained improvements in coverage in excess of 20% for
equivalent vaccine length and 15% shorter vaccine designs for vaccines of equivalent coverage.

The vaccine design is a flexible representation of HIV (and other pathogen) diversity and can ac-
commodate several extensions. Our design model can be adjusted to include additional constraints
that pertain to the expressiveness of epitopes in a vaccine strain. To that extent several adjustments
could be readily included such as a cross-reactivity submodel [9], a model that quantifies the un-
certainty about whether a peptide sequence is an MHC-I epitope [10], a model that accounts for
the influence of flanking regions on epitope presentation, a model that associates viral mutations
with individuals’ HLA types [11], and physics-based T-cell binding models. As another example,
problems with immunodominance may be attenuated by delivering components of a cocktail in dif-
ferent vectors [12]. The epitome can be optimized for this format. As yet another example, blocking
virtually all evolutionary pathways in a protein segment may prove more effective than blocking
many but not all pathways in a full protein. Creating vaccines that achieve such full blockage can be
constructed by directing the algorithm to concentrate on a particular segment of the protein.

Finally, we argue that combinatorial optimization techniques excel in problem statements such
as the Vaccine Design Problem because of their ability to explore search spaces efficiently. As op-
timal designs in such search spaces often have certain degree of randomness associated with their
structure, greedy heuristics guided by traditional signal processing and machine learning algorithms
are typically unable to find such structures.
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