
MSRLM: a scalable language modeling toolkit

Patrick Nguyen, Jianfeng Gao, and Milind Mahajan
{panguyen,jfgao,milindm}@microsoft.com

November 2007

Technical Report
MSR-TR-2007-144

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

Abstract

MSRLM is the release of our internal language modeling tool chain used in Microsoft Re-
search. It was used in our submission for NIST MT 2006. The main difference with other
freely available tools is that it was designed to scale to large amounts of data. We success-
fully built a language model on high end hardware on 40 billion words of web data within
8 hours. It only supports a minimal set of features. Large gigaword language models may
be consumed in a first pass machine translation decoding without further processing. This
document describes the implementation and usage of the tools summarily.

It is our stated goal and hope that this release will be usefulto the scientific community.
The tool may not be used in a commercial product, or to build models used in a commercial
product, or in for any commercial purpose. In addition, we require that you kindly cite this
technical report when publishing results derived with thislanguage model tool chain.

This describes the LM tool which is available as:
http://research.microsoft.com/research/downloads/details/78e26f9c-fc9a-44bb-80a7-
69324c62df8c/details.aspx

1

Contents

1 General Description 2
1.1 Introduction . 3
1.2 Basic functionality . 3

2 Technical description 5
2.1 Algorithms . 5
2.2 Network protocol . 8

3 Tool reference 10
3.1 lmapp: generic options . 10
3.2 lmapp: vocabulary collection . 12
3.3 ngram count collection . 13
3.4 lmapp: modified absolute discounting 14
3.5 lmapp: serving the language model 14
3.6 lmbld: creating count files . 15
3.7 lmbld: Knesery-Ney . 16

4 Running the tools 16
4.1 Compiling the code . 16
4.2 Running the recipe . 16

5 Conclusion 17

1 General Description

In this section, we give a rough overview of the tool. Unlike other tools avail-
able publicly, our release has the specific charter of provding the ability to build
relatively large language models. It may be used to build typically long-span lan-
guage models on large amounts of data. It provides only the minimal set of features
required, namely language model building and evaluation. Compared with other
toolkits, we provide just the bare minimum of tools requiredto build and use lan-
guage models. Higher level functionality, such as lattice rescoring, is out of the
scope of this release.

Again, we provide tools for building n-gram language modelson large amounts
of data. Once built, we provide the ability to query the language model to get
the conditional probability of a word given its history. Ourlanguage models are
probability measures, i. e., summing up over all words and the unknown class
given any history returns one. That is a useful property, forinstance, for computing

2

perplexity, and also for linearlyinterpolating language models. This is achieved
by computing exact backoff weights. We typically build, store, and serve language
models on a single high end machine. We use this tool routinely internally to build
gigaword and web language models for machine translation, and we are confident
that it will fit the needs of most users in that respect.

We have found the tools to be usually about six times faster than the publicly
available CMU toolkit. They also exhibit fewer problems with high vocabulary
sizes and may scale to large texts.

1.1 Introduction

Language model building usingMSRLM follows a well-known pattern: it consists
of collecting the vocabulary, counting up n-grams occuringin some text, and build-
ing a large trie. Our implementation follows typical implementations, save for a
couple of critical twists, and parallelization points are similar with other LM toolk-
its. We were careful to use the simplest and more scalable algorithms whenever
possible.

For historical reasons, our language model toolkit comes intwo parts: lmapp
and lmbld. Each part implements radically different data structures. lmapp is used
for vocabulary and ngram collection, and modified absolute discounting. lmbld is
used for Kneser-Ney smoothing.

1.2 Basic functionality

We provide a small set of core functionality listed below. Note that these tools
were used to build language models on 40 billion words of web data, with almost
no modification. Up to that amount of data, you should not havea problem with
scalability of the tools. To achieve scalability, all of ourtools operate on streams of
data and output streams of data to the extent possible, and donot require random
access to large memory buffers. of data whenever possible, The tools may be
extended to larger data sets.

Vocabulary and word frequency: Given a text stream of space delimited words,
we provide a list of words and corresponding frequencies in the stream. We ignore
words longer than a given threshold. This was implemented with a naı̈ve hash table
and scales well up to several millions of words. We do not provide parallelization
tools. The word frequency file may be used to truncate the vocabulary by selecting
the top most occuring entries, or entries which occur more than a certain cutoff
count. We recommend that you sort the vocabulary file by decreasing occurrence
count.

3

Counting n-grams: Given a text stream, we collect joint occurrence counts of
word sequenceswn

1 . To that end, we use a memory buffer and temporary disk space
when the buffer overflows. The resulting n-gram file is sorted. The text stream
may be arbitrarily long. We provide the option of using compressed files when
processing power exceeds disk speed overwhelmingly; that is the case on many-
core hardware. When the vocabulary is sorted in lexicographical order, these count
files will be compatible with the CMU SLM toolkit.

Merging n-gram count files: When collected separately, sorted count files may
be merged. We use a hierarchical binary merge-sort which scales in thelog of the
number of input count files. We use multiple threads. We recommend using on-
the-fly merging on compressed n-gram files on multi-core hardware while building
language models. A separate merging step is required when the amount of open
file handles allowed by the operating system is exceeded.

Building n-grams: Building n-grams requires a vocabulary file, cutoff counts,
and a single sorted n-gram count stream. (Lower order n-gramcount streams are
computed on the fly.)

TCP serving protocol: The best way to interact with our language models from
a computer farm is to serve up a central language model and connect to it with the
distributed applications. In our current configuration, wetypically use one quad-
core server which can serve 80 first-pass machine translation processes, at roughly
40% of the CPU capacity on the server.

Smoothing: We provide two smoothing methods: modified absolute discounting
(MAD), and Kneser-Ney (KN). KN typically gives superior results, but MAD nor-
mally converges to the same performance on large amounts of data. MAD is more
scalable.

Perplexity computation: We provide sample code to compute perplexity.

IO format: We made no attempt to optimize the data structure on disk, e.g.,
quantize counts. Our language models are larger than they could be. There should
be no coding artifacts, however.

4

input 1 input 2 input 3 input 4 input 5

merge 1 merge 2

thread 1 thread 2

merge 3

merge 4

Figure 1: Multi-threaded hierarchical mergesort

2 Technical description

In this section, we give a technical description of the key changes that were imple-
mented in our model.

2.1 Algorithms

Most of our algorithms typically scale up linearly in the amount of data and n-gram
order.

Multithread hierarchical mergesort: The architecture of the mergesort is shown
on Figure 1. We found this specific emobdiment to work well. Itis especially suited
when disk I/O is fast. In practice one thread is spawn for eachthree levels (8-way
merge). Multi-threading has not been ported to GCC.

Backsorted trie: Used in Modified Absolute Discounting, the use of a back-
sorted trie allows us to have maximum scalability at minimalcost. The backsorted
trie is shown on Figure 2. We read from a stream of n-grams and write sequentially
to n − 1 output tapes. This includes backoff calculation, which, obviously, is the
tricky part.

n-grams are in so-called backsorted order, that is, forwn
1 , the first sort key

is wn−1, thenwn−2, etc until w1, and lastlywn. Therefore, allwn which have
a givenwn−1

1 will appear contiguously in the file. Moreover, it is trivialto get

5

w1

w4

w3

w2

w5

Figure 2: Backsorted trie organization: the last predictedword is at the leaf, other-
wise the history is in reverse order

the marginalized countsc(wn−1
1) =

∑

wn
c(wn

1). Going backwards in the n-
gram order, we may marginalize both on conditional of a weaker historyc(wn

k) =
∑

wk−1
c(wn

k−1), and on a the history itselfc(wn−1
k) =

∑

wk−1
c(wn−1

k−1). Consider
the backoff formula at a levelk away from the leaf ordern:

β =
1 −

∑

wn∈Ω(wn−1

k
)

c̃(wn

k
)

c(wn−1

k
)

1 −
∑

wn∈Ω(wn−1

k
)

c̃(wn

k+1
)

c(wn−1

k+1
)

. (1)

Numerators, which count up town, are collected up in memory and accumulated
backwards from the farthest node away from the root. Denominators, which count
up to wn−1, are accumulated from the n-gram stream. Therefore, the maximum
memory required is of the order of bigrams.

Lookup cost in the backsorted trie: Let us now compare worst case lookup
costs in the backsorted structure vs the forward sorted structure. Let us expand the
Katz formula for lookup:

p(wn|w
n−1
1 =















p̂(wn|w
n−1
1) if wn

1 is in the trie, else

ˆ
β(wn−1

1)







p̂(wn|w
n−1
2) if wn

2 is in the trie, else

ˆ
β(wn−1

2)

{

p̂(wn|w
n−1
3) if wn

3 is in the trie, else
...

(2)
and:

β̂(wn
1) =

{

β(wk
1) if wk

1 is in the trie, else
1.

(3)

6

Let us definêk andĥ, the highest orderk for which there exists ap(wn|w
n
k) and

β(wn−1
k) respectively. The conditional probability is:

p(wn
1) =

(n−1
∏

k=ĥ

β(wn−1
k)

)

p̂(wn|w
n−1

k̂
). (4)

Note that we are guaranteed that allβ(wn−1
k) exist fork ≥ ĥ. Also, we know that

ĥ + k̂ ≤ n.
The cost of looking up entries is dominated by how many times we have to

find a conditional word entry given a history. This is tpyically done with a binary
search. We use a slightly different variation. Instead, we use the fact that word
IDs are sorted in decreasing order of unigram frequency. We assume that this is
correlated with conditional probability given any history. First, we start reading a
few entries and search linearly for a few entries. If found, this will bypass random
access to successors, and will also make it faster for words will low word IDs, and
slower for all others. Then, we use a biased binary search where we do not cut
each interval in half, but rather, make the lower half (associated to lower word IDs)
smaller than high half. This will make looking for words withlower IDs faster, and
finding higher word IDs slower. In addition, when given a sorted n-gram array, we
share the common prefix or suffix to avoid lookup twice.

Let us describe how looking up probabilities naı̈vely in theforward trie struc-
ture. First, we start looking forwn

1 , performingn − 1 binary lookups in the worst
case, the last one of which fails to findwn. (In practice, unigrams are indexed
directly.) After the search, we would have collectedβ(wn−1

1) if present. Then,
we weaken the history town−1

2 , and performn − 2 searches, starting fromw2 on-
wards. So, in the worst case, we have collected the backoff weights, and performed
(n−1)(n−2)

2 , or O(n2).
In the backsorted trie, we pursue two search branches. Let usfirst assume that

we have built a backsorted trie of ordern + 1. This may be done with the same
code and setting infinite cutoffs for ordern + 1. We start withwn−1 and perform
exactlyn − k̂ searches, by successively strengthening the history. We will then
have collectedc(wn|w

n

k̂
). Then, we must findc(wn−1

k̂
). This is guaranteed to be

in the trie, and it is found withn− k̂ − 1 searches. Up to now, we have performed
exactlyn − 2k̂ − 1 searches. At that stage, we are at the node associated with
wn

k̂
. We need to find the backoff history,starting from that pointupwards in the

trie. There are at most̂k because we have backed offk̂ times. In other words, in
the second branch of searches ending atwn−1, we may not go down more than
n − 1 times. Therefore, in the worst case, we have performedO(2n). Therefore,
searching in the backsorted trie becomesO(n) faster than in the forward trie in the

7

worst case. Forn = 5 they should be roughly equal. In practice, we found the
backsorted version to be significantly faster.

Why the forward sorted trie is not feasible: Building language models using
a forward trie is done by induction, by building the unigram structure, then the
bigram structure, then trigram, etc. Consider the problem of building an ngram
level n when then − 1 structure was built. Again, the problem lies in backoff
calculation. The problem is that the numerator and denominator in eq. (1) may not
be both available at the same time. Note that the summation has to be done over
the seen mass ofwn−1

1 . While building all histories under thew1 branch, A pointer
on thew2 starts in the beginning of the(n− 1)-gram structure and is incremented.
At the end of processingw1, this pointer will be at the end of the lower order
structure. If there areV words in the vocabulary, the(n − 1)-gram structure must
be traversed sequentiallyV times, that is, every time we get a neww1. To fix ideas,
V is typically of the order of104 to 107. For large texts, if the n-gram structure
does not fit entirely into memory, this becomes quickly prohibitively slow.

2.2 Network protocol

Language models are typically large. To ensure best performance for first pass
decoding, it is best to offload them on a machine different from the ones which
runs the decoding processes. In practice, during NIST evaluations, we use a single
server machine for our Gigaword language models.

To that end, we use a TCP/IP network layer to access language models re-
motely. To minimize network traffic, the server supports upstream and downstream
compression. The protocol is depicted on Figure 3. Each client prepares a bulk of
ngram entries for which it needs conditional probabilities. Each ngram has a length
(number of words in the history plus one), and the list of words in the history fol-
lowed by the word for which the conditional probability is requested. Then, the
client:

1. Sorts in appropriate order (forward order for KN, backward for MAD), to
enable server optimizations and improve compression ratio.

2. Decides if it wants to compress its request. If not, it justsends an int32
indicating the size in bytes of the bulk request, then sends bytes immediately
thereafter. If it decides to compress:

(a) It sends the negated uncompressed byte length, announcing compres-
sion and how many bytes need to be allocated in the srever.

8

send buffer

Client Server

Collect n-grams
n = 5|w1, w2, ...w5

n = 4|w′

2
, w′

2
, ...w4

Compress?

Entries:K Buffer len: B

Compress into buffer
of lengthZ

send−B

sendB

sendZ
send z-buffer

send buffer

waiting forK logprobs

negative?
ReceiveK − 1 floats

Receive 1 floatf

Receive compressed
buffer of lengthf

B > 0?

ReceiveZ, thenZ bytes
decompress

Query LM

No compress?

send compress len as float
Compress

Figure 3: Flow of the network protocol

9

(b) It compresses its bulk request as one batch. It then sendsan int32
indicating the length of the compressed buffer, then the compressed
buffer follows.

3. The server is expected to return as many probabilities as there were ngrams
present in the bulk request. Both client and server know whatthis number is
and it needs not be transmitted.

4. The server may decide to compress its output. If not compressing, it will just
send log probabilities in IEEE single precision (float) format.

5. If compressing, it will compress its reply, and send the length of its output
in bytes, as a single precision float number. A positive float number (> 1)
therefore announces compressed output, since log probabilities may not be
greater than one.

Another simpler protocol was implemented. In that case, unicode strings are
sent. The number of ngram is sent as a 32bit integer. Then eachword is sent as
a 32bit integer representing its length including zero terminator, then the string
including the zero terminator. It is the responsibility of the client and servers to
agreea priori which protocol should be used.

3 Tool reference

3.1 lmapp: generic options

lmapp welcomes generic options listed in Table 1. These options are available by
prefixing a double-dash, for instance:

lmapp --printcfg true

will print some compilation configuration information and exit the program. Stan-
dard I/O is turned off by default to facilitate debugging output. For best perfor-
mance while piping, for instance an ngram counting to a compression program,
it is better to turn that option off. Binary stdio is turned off by default. While
piping text containing end of line characters, the operating system might decide to
translate them and prepend a carriage return at each occurence. This would cor-
rupt binary files. Also, the operating system might declare an end of stream if it
encounters either ˆZ or ˆD. This special processing may be explicitly turned off by
setting this to true. All options are found inlmapp/ngcore/cfggen.xml.

10

Option Type default Description
task Task LMCOUNT What to do, cf Table 2
printcfg bool false Print configuration info and exit.
crtdbgbrk bool false (In VS debug builds only) Raise exception to inter debugger
bufstdio bool false Allow default buffering of standard input and output
binstdio bool false Change mode of stdio to binary, e.g., turns off ˆM and ˆZ processing.
include string "" include a configuration file

Table 1: lmapp: generic options

Include files. For common configuration options to be shared across multiple
commands, it is sometimes convenient to set options in a file,and include that file
as a configuration. For instance, the previous example may beachieved by creating
a file, saya.cfg, and calling:

lmapp --include a.cfg

The filea.cfg would contain:

printcfg true

Specifying arrays. lmapp sometimes allows arrays to be specified from the com-
mand line. For instance, cutoff frequencies are expected tobe an array of integers.
The name of the option is--app.lmbuild.coff. There are three was of spec-
ifying cuttoffs of, say, “0 2 4”. The first would be to specify aspace delimited
string as asingleargument, as:

lmapp --app.lmbuild.coff "0 2 4"

The second way would be to specify each as an option:

lmapp --app.lmbuild.coff0 0 --app.lmbuild.coff1 2 --app.lmbuild.coff2 4

The last way is to create a file, say,coff.txt, and call:

lmapp --app.lmbuild.coff @coff.txt

The filecoff.txtwould contain:

0
2
4

11

Value Description
LMWFREQ Collect word frequencies

LMWFREQMERGE Rarely used. Merge word freqs
LMCOUNT Collecting n-gram counts

LMCOUNTMERGE Merging multiple count files
LMBUILD Build backsorted MAD LM

LMSERVER Serving backsorted MAD LM
LMEVAL Eval probabilities and perplexity

Table 2: Task types for lmapp’s--task option.

Option Type Default Description
text string - filename of text or ’-’ for stdin
maxwlen size t 80 maximum word length

Table 3: Options prefixed by--app.wfreq.

Special filenames. There is a special filename defined as the dash character (-).
When used in a write context, it means standard output, and when used in a read
context, it means standard input.

3.2 lmapp: vocabulary collection

The first step in building language models consists of vocabulary collection. The
vocabulary is the finite length list of words which may predicted by the language
model. That is done by applying some strategy to a word frequency file. The
strategy is to either take the firstV words which have highest frequencies, or to
take all words which we have seen more thanC times. We do not provide tools to
implement this policy. The word frequency is collected withlmapp, as follows:

echo Some training text text here | \
lmapp --task LMWFREQ --app.lmwfreq.wfreq - --bufstdio true > wfreq.txt

The vocabulary may be recovered as:

cat wfreq.txt | sort -nr -k2 | head -10 > vocab.txt

For reasons highlighted before,we recommend that the words in the vocabulary be
sorted in reverse frequency. Options are shown in Table 3.

12

Option Type Default Description
vocab string filename of vocabulary file
text string - filename of text or ’-’ for stdin
order int 5 order of count (n)
bufsiz int 50 buffer memory size
backsort bool false backsorted (for MAD)
count file string full.ngc output filename or ’-’ for stdout
padunk bool false pad the input text with unk tokens (for small files)
temp string . temp directory
tempbase string tmpcount temp basename for tmp files (for parallel runs)
compresstmp bool false compress the temp count files
final merge bool true merge temp files before exiting

Table 4: Options prefixed by--app.lmcount.

3.3 ngram count collection

Once we have decided what the vocabulary is going to be, we will collect n-gram
counts. Options are shown in Table 4. The most useful are vocab, text, order, buf-
siz, backsort, and countfile. The vocabulary was produced in the last subsection.
The text is the same text as before. The bufsiz specifies, in MB, how much tempo-
rary memory should be used to sort the ngram entries. It should be set to the largest
available quantity available on the machine.

The option padunk is used to ensure that all lower-order ngram entries will
be present by marginalizing, by inserting a number of tokenswith UNK id at the
end of the word stream. While collecting ngrams on the same machine, be sure
to change either temp or tempbase to make sure that temp files will not get the
identity.

The example command line is:

echo Some training text text here | \
lmapp --task LMCOUNT \

--app.lmcount.vocab vocab.txt \
--app.lmcount.order 5 \
--app.lmcount.bufsiz 128 \
--app.lmcount.backsort true \
--app.lmcount.text - \
--app.lmcount.count_file ngc.bin \
--app.lmcount.padunk true \
--binstdio true \

13

Option Type Default Description
incount string backsorted count file
order size t 5 order of the ngram
lm string output lm (output)
disc string binary discount parameters (output)
vocab string vocabulary file
coff vector(int) vector of cutoff counts for all orders. First must be zero.
discbin size t 4 bins of counts for discount

Table 5: Options prefixed by--app.lmbuild.

--bufstdio true

It will produce a file calledngc.bin. Once this is done, we no longer need the
input text.

3.4 lmapp: modified absolute discounting

The modified absolute discouting code is the more scalable way of building lan-
guage models. Invoking LM building is done as follows:

lmapp --task LMBUILD \
--app.lmbuild.order 5 \
--app.lmbuild.vocab vocab.txt \
--app.lmbuild.incount ngc.bin \
--app.lmbuild.lm lm \
--app.lmbuild.disc lm.disc \
--app.lmbuild.coff "0 1 1 2 2"

It will produce fileslm andlm.disc. Notice that the count cutoffs are specified
for all orders including unigrams, but for unigrams it must always be zero.

3.5 lmapp: serving the language model

The binary language model is now ready to be used by clients. To set up the
language model on a server port, the following command line is a prototypical
example:

lmapp --task LMSERVER \
--app.lmserver.order 5 \
--app.lmserver.lm eg.blm \

14

--app.lmserver.disc eg.blm.disc \
--app.lmserver.vocab eg.vocab \
--app.lmserver.binipc true \
--app.lmserver.bulkipc true \
--app.lmserver.port 9350

3.6 lmbld: creating count files

Because of its complex structure, Kneser-Ney requires multiple types of informa-
tion, and backsorting will not help. Therefore, multiple lower-order count files, in
forward and backward order, must be created before efficientand scalable creation
of language models may be performed. First, a forward count file is created by
lmapp:

echo Some training text text text here | \
lmapp --task LMCOUNT \
--app.lmcount.vocab vocab.txt \
--app.lmcount.order 5 \
--app.lmcount.bufsiz 128 \
--app.lmcount.backsort false \
--app.lmcount.text - \
--app.lmcount.count_file - \
--app.lmcount.padunk true \
--binstdio true \
--bufstdio true > n.id

This count file must be first sorted in backwards order (sortedby wn, then
wn−1, etc up tow1). This is done with:

lmbld --bsid -idngm n.id -bs_idmgm n.bs.id -n 5 -m 5 \
-temp n.tmp. -buffer 128

Then, we produce a foward and backward count for each lower order counts by
marginalizing:

J=5
for i in 5 4 3 2 1; do
lmbld --ngm2mgm -ngram n.bs.$J.id -mgram n.bs.$i.id -n $J \

-m $i -vocab vocab.txt -u;
lmbld --bsid -idngm n.bs.$i.id -bs_idmgm n.fs.bs.$i.id -n $$i \

-m $i -temp n.tmp. -buffer 128;
J=$i;

done

15

Note that filenames follow a convention which is required by lmbld. The first
command in the loop marginalizes down, and counts types instead of tokens (i.e.
unique histories). The second command resorts in backward order. This step is
the dominating step for language model building with Kneser-Ney. In general,
KN LMs may not be built as efficiently as MAD language models. They exhibit
significantly superior performance when the size of the training text is reduced.

3.7 lmbld: Knesery-Ney

Finally, the KN language model may be built:

lmbld --bld -idngm n.5.id -lm lm.bin -voc vocab.txt -n 5 -temp n. -ex

We also provide a simpler, faster method available for smaller sizes of training
data. We can describe it upon request, otherwise, please read the code, when the
option “-ex” is removed. lmbld does not support cutoffs.

4 Running the tools

4.1 Compiling the code

Under Visual Studio There is one solution file for each of lmapp and lmbld.
Compiling the code from each of these solution files will produce binaries located
in the bin directory, in a subdirectory called either Release or Debug, and in that
directory another subdirectory called x64 or win32, depending whether a 32bit ver-
sion or 64bit version was requested. 32bit language models are limited to a file size
of 2GB, memory limits (e.g. counting) of 2GB, and generally 32bit counts. Chang-
ing the cfggen.xml will not rebuild the source files: in that cae, calling cfggen.pl
must be done by hand.

Makefile and GCC Each source directory contains a Makefile. We have ported
the software to a recent version of GCC. Multi-threading wasnot ported to GCC.
We have not tested the software thoroughly in that configuration, although it passes
the regression test provided in the “recipe” directory.

4.2 Running the recipe

We have provided a simple regression test in the directory called recipe. Again,
a Makefile builds the language models, runs the server, and tests perplexity. The
source code is used as sample text.

16

Preamble The preamble contains definitions. Some are configurable. For in-
stance, it is possible to switch between 64bit and 32bit by changing the “DARCH”
definition. Definitions may be overriden on the fly, for instance:

make DMODE=Debug X_TXT="cat essay.txt|\
perl -wnle ’print \"<s> $_ </s>\"’"

will instead use the debug version of the tools, and use essay.txt as the training text.

Mnemonic rules and xall To run the recipe end to end, please use the xall rule.
The dependency graph is explicitly described by the makefile, so as to assist the
user in understand what input and outputs are produced by each command, and
to aid readability. Therefore making the evalpresent rule is equivalent. For ease
of understanding, however, we have provided mnemonics to break down the pro-
cess into sub-steps described above. The mnemonics are vocab, count, lm, and
eval present. Vocabulary collection is the same for KN smoothingand MAD.
Counting in MAD is done in backsorted mode, whereas countingin KN is done in
forward mode, and then all lower-order backsorted ngram count files are generated.
LM building and perplexity test are duplicated for each branch. For instance, the
language model building is achieved by the “lm” rule, and results in eg.blm, and
eg.lm being produced.

For convenience, we have provided read-text and read-test-text as examples.
Also, the “clean” rule will kill the server and delete files tocome back to the clean,
released state.

make xall. Running make xall in the recipe directory will produce all intermedi-
ate eg.* files. It will launch the server and run the perplexity tests as well. To detail
what each step would do, please use the make -n dry run capability, for instance,

make -n eg.lm

will show what commands have to be launched to build a MAD language model,
from the current state. If starting from the clean state, it will show what needs
to be built from scratch. If the command make eg.ngc was issued (successfully)
immediately preceding, then it will show a single command.

5 Conclusion

We are delighted to be able to make this tool available and sincerly hope that it
will be useful to the scientific community. We have done our best to document the

17

tool, but we are understand that this documentation may be improved. Such as it
is, the release is a “research” prototype, it is not intended– and may not – be used
in a production environment. If you become aware of deficiencies in this release,
or have any comment, please let us know. If there is a pressingneed to extend the
toolkit expressed by the community, we will do our best to address it.

18

