MSRLM: a scalable language modeling toolkit

Patrick Nguyen, Jianfeng Gao, and Milind Mahajan
{panguyen, j f gao, m | i ndm}@ri cr osoft. com

November 2007

Technical Report
MSR-TR-2007-144

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
http://ww.research. nicrosoft.com

Abstract

MSRLM is the release of our internal language modeling tool cha@dun Microsoft Re-
search. It was used in our submission for NIST MT 2006. Thenrdédference with other
freely available tools is that it was designed to scale tgdamounts of data. We success-
fully built a language model on high end hardware on 40 hillieords of web data within
8 hours. It only supports a minimal set of features. Largagigyd language models may
be consumed in a first pass machine translation decodingutithrther processing. This
document describes the implementation and usage of thesaoimarily.

Itis our stated goal and hope that this release will be usethle scientific community.
The tool may not be used in a commercial product, or to buildet®used in a commercial
product, or in for any commercial purpose. In addition, wauiee that you kindly cite this
technical report when publishing results derived with taigguage model tool chain.

This describes the LM tool which is available as:

http://research.microsoft.com/research/downloadsildér8e26f9c-fc9a-44bb-80a7-
69324c62df8c/details.aspx

Contents

1 General Description 2
1.1 Introduction 3
1.2 Basicfunctionality 3

2 Technical description 5
2.1 Algorithms 5
2.2 Networkprotocol 8

3 Tool reference 10
3.1 Imapp:genericoptions, 10
3.2 Imapp: vocabulary collection 12
3.3 ngramcountcollection 13
3.4 Imapp: modified absolute discounting 4 1
3.5 Imapp: serving the language model 14
3.6 Imbld: creating countfiles 15
3.7 Imbld: Knesery-Ney 16

4 Running the tools 16
4.1 Compilingthecode 16
4.2 Runningtherecipe, 16

5 Conclusion 17

1 General Description

In this section, we give a rough overview of the tool. Unlikiber tools avail-
able publicly, our release has the specific charter of praydhe ability to build
relatively large language models. It may be used to builictlly long-span lan-
guage models on large amounts of data. It provides only themmal set of features
required, namely language model building and evaluatioomgared with other
toolkits, we provide just the bare minimum of tools requiteduild and use lan-
guage models. Higher level functionality, such as lattescoring, is out of the
scope of this release.

Again, we provide tools for building n-gram language model$arge amounts
of data. Once built, we provide the ability to query the lamg® model to get
the conditional probability of a word given its history. Oanguage models are
probability measures, i. e., summing up over all words arduihknown class
given any history returns one. That is a useful propertyinfstance, for computing

perplexity, and also for linearlinterpolating language modelsThis is achieved
by computing exact backoff weights. We typically build,rstoand serve language
models on a single high end machine. We use this tool roytinernally to build
gigaword and web language models for machine translatimhwee are confident
that it will fit the needs of most users in that respect.

We have found the tools to be usually about six times fastan the publicly
available CMU toolkit. They also exhibit fewer problems lwiiigh vocabulary
sizes and may scale to large texts.

1.1 Introduction

Language model building usingsrRLM follows a well-known pattern: it consists
of collecting the vocabulary, counting up n-grams occuiimgome text, and build-
ing a large trie. Our implementation follows typical implemations, save for a
couple of critical twists, and parallelization points aimitar with other LM toolk-
its. We were careful to use the simplest and more scalabteitdms whenever
possible.

For historical reasons, our language model toolkit comeawmparts: Imapp
and Imbld. Each part implements radically different datacttires. Imapp is used
for vocabulary and ngram collection, and modified absoligealinting. Imbld is
used for Kneser-Ney smoothing.

1.2 Basic functionality

We provide a small set of core functionality listed below. t<hat these tools
were used to build language models on 40 billion words of waia,dwvith almost
no modification. Up to that amount of data, you should not repeoblem with
scalability of the tools. To achieve scalability, all of dapls operate on streams of
data and output streams of data to the extent possible, andtdequire random
access to large memory buffers. of data whenever possilble,tdols may be
extended to larger data sets.

Vocabulary and word frequency: Given a text stream of space delimited words,
we provide a list of words and corresponding frequenciekerstream. We ignore
words longer than a given threshold. This was implementdd amnaive hash table
and scales well up to several millions of words. We do not jgiyarallelization
tools. The word frequency file may be used to truncate thebwdasy by selecting
the top most occuring entries, or entries which occur moaa th certain cutoff
count. We recommend that you sort the vocabulary file by decreasingrence
count.

Counting n-grams: Given a text stream, we collect joint occurrence counts of
word sequences?. To that end, we use a memory buffer and temporary disk space
when the buffer overflows. The resulting n-gram file is sart@the text stream
may be arbitrarily long. We provide the option of using coagsed files when
processing power exceeds disk speed overwhelmingly; shidiei case on many-
core hardware. When the vocabulary is sorted in lexicodgcapbrder, these count
files will be compatible with the CMU SLM toolkit.

Merging n-gram count files: When collected separately, sorted count files may
be merged. We use a hierarchical binary merge-sort whidesaathelog of the
number of input count files. We use multiple threads. We renend using on-
the-fly merging on compressed n-gram files on multi-coreuard while building
language models. A separate merging step is required wieeanttount of open
file handles allowed by the operating system is exceeded.

Building n-grams: Building n-grams requires a vocabulary file, cutoff counts,
and a single sorted n-gram count stream. (Lower order n-g@mt streams are
computed on the fly.)

TCP serving protocol: The best way to interact with our language models from
a computer farm is to serve up a central language model antkecoto it with the
distributed applications. In our current configuration, tyeically use one quad-
core server which can serve 80 first-pass machine translataresses, at roughly
40% of the CPU capacity on the server.

Smoothing: We provide two smoothing methods: modified absolute distiogn
(MAD), and Kneser-Ney (KN). KN typically gives superior téts, but MAD nor-

mally converges to the same performance on large amounttaf MAD is more
scalable.

Perplexity computation: We provide sample code to compute perplexity.

IO format: We made no attempt to optimize the data structure on disk, e.g
gquantize counts. Our language models are larger than theg be. There should
be no coding artifacts, however.

| input 1 || input 2 || input3|| input4|| input5|

[z

Figure 1: Multi-threaded hierarchical mergesort

2 Technical description

In this section, we give a technical description of the kegrdes that were imple-
mented in our model.

2.1 Algorithms

Most of our algorithms typically scale up linearly in the ambof data and n-gram
order.

Multithread hierarchical mergesort: The architecture of the mergesort is shown
on Figure 1. We found this specific emobdiment to work wells #specially suited
when disk 1/O is fast. In practice one thread is spawn for ¢ade levels (8-way
merge). Multi-threading has not been ported to GCC.

Backsorted trie: Used in Modified Absolute Discounting, the use of a back-
sorted trie allows us to have maximum scalability at minicwdt. The backsorted
trie is shown on Figure 2. We read from a stream of n-grams aitd sequentially
ton — 1 output tapes. This includes backoff calculation, whichyiobsly, is the
tricky part.

n-grams are in so-called backsorted order, that isufpy the first sort key
is w,_1, thenw,_», etc untilw,, and lastlyw,_. Therefore, alkw,, which have
a givenw{“1 will appear contiguously in the file. Moreover, it is trivigd get

Figure 2: Backsorted trie organization: the last predietedd is at the leaf, other-
wise the history is in reverse order

the marginalized counts(w}™') = >, c(wi). Going backwards in the n-
gram order, we may marglnallze both on conditional of a wehleaoryc(wk)

> ., c(wp_;), and on a the history itset{w] 1) = Dy, Wi ~1). Consider
the backoff formula at a levdl away from the leaf ordet:

C(wn)
1 — Z EQ(n—1) %
B Wn, wy, clwy ™)
pr &)
wnEQ(wg7) c(w;le)

Numerators, which count up to,, are collected up in memory and accumulated
backwards from the farthest node away from the root. Denatais, which count
up tow,_1, are accumulated from the n-gram stream. Therefore, thenmuax
memory required is of the order of bigrams.

Lookup cost in the backsorted trie: Let us now compare worst case lookup
costs in the backsorted structure vs the forward sortedtsiel Let us expand the
Katz formula for lookup:

plwp|w™) if wf isin the trie, else
ﬁ(wn]w" D) if wy isin the trie, else
Blwy™) Bt){ﬁ(wnmg—l) if w? is in the trie, else

(2)
and:

. B(wk) if wk isin the trie, else
1. ®)

Let us define: andh, the highest ordek for which there exists a(wy|wy) and
ﬁ(w?‘l) respectively. The conditional probability is:

n—1
ptot) = (TL ot otk ™), @
k=h

Note that we are guaranteed that(@(to} ') exist fork > h. Also, we know that
h+k <n.

The cost of looking up entries is dominated by how many timeshave to
find a conditional word entry given a history. This is tpylgadone with a binary
search. We use a slightly different variation. Instead, we the fact that word
IDs are sorted in decreasing order of unigram frequency. $8arae that this is
correlated with conditional probability given any histoirst, we start reading a
few entries and search linearly for a few entries. If fouinds will bypass random
access to successors, and will also make it faster for woiltllow word 1Ds, and
slower for all others. Then, we use a biased binary searcliemve do not cut
each interval in half, but rather, make the lower half (agted to lower word IDs)
smaller than high half. This will make looking for words witiwer IDs faster, and
finding higher word IDs slower. In addition, when given a edrii-gram array, we
share the common prefix or suffix to avoid lookup twice.

Let us describe how looking up probabilities naively in tbevard trie struc-
ture. First, we start looking fow?, performingn — 1 binary lookups in the worst
case, the last one of which falils to find,. (In practice, unigrams are indexed
directly.) After the search, we would have collect@du’f‘l) if present. Then,
we weaken the history tm;“l, and perforrm — 2 searches, starting from, on-
wards. So, in the worst case, we have collected the backadihige and performed
=1)0=2) "or O(n?).

In the backsorted trie, we pursue two search branches. Lfestiassume that
we have built a backsorted trie of ordert 1. This may be done with the same
code and setting infinite cutoffs for order+ 1. We start withw,,_; and perform
exactlyn — k searches, by successively strengthening the history. Weheh
have coIIected:(wn\wg). Then, we must find:(wg‘l). This is guaranteed to be

in the trie, and it is found with — k — 1 searches. Up to now, we have performed
exactlyn — 2k — 1 searches. At that stage, we are at the node associated with
wg. We need to find the backoff historgtarting from that poinupwards in the

trie. There are at mogt because we have backed éftimes. In other words, in
the second branch of searches endingzat;, we may not go down more than
n — 1 times. Therefore, in the worst case, we have perfor@mézh). Therefore,

searching in the backsorted trie becoris) faster than in the forward trie in the

7

worst case. Fon = 5 they should be roughly equal. In practice, we found the
backsorted version to be significantly faster.

Why the forward sorted trie is not feasible: Building language models using
a forward trie is done by induction, by building the unigratrusture, then the
bigram structure, then trigram, etc. Consider the probléroudding an ngram
level n when then — 1 structure was built. Again, the problem lies in backoff
calculation. The problem is that the numerator and dendimina eq. (1) may not
be both available at the same time. Note that the summatisrichiae done over
the seen mass mﬂ“l. While building all histories under the; branch, A pointer
on thew, starts in the beginning of th@ — 1)-gram structure and is incremented.
At the end of processing, this pointer will be at the end of the lower order
structure. If there ar& words in the vocabulary, th@: — 1)-gram structure must
be traversed sequentially times, that is, every time we get a new. To fix ideas,

V is typically of the order ofl0* to 107. For large texts, if the n-gram structure
does not fit entirely into memory, this becomes quickly phihiely slow.

2.2 Network protocol

Language models are typically large. To ensure best pedioce for first pass
decoding, it is best to offload them on a machine differeninftbe ones which
runs the decoding processes. In practice, during NIST atiahs, we use a single
server machine for our Gigaword language models.

To that end, we use a TCP/IP network layer to access languagelsire-
motely. To minimize network traffic, the server supportsttgem and downstream
compression. The protocol is depicted on Figure 3. Eachtdgtieepares a bulk of
ngram entries for which it needs conditional probabilitiEsach ngram has a length
(number of words in the history plus one), and the list of veardthe history fol-
lowed by the word for which the conditional probability isjteested. Then, the
client:

1. Sorts in appropriate order (forward order for KN, backiveor MAD), to
enable server optimizations and improve compression.ratio

2. Decides if it wants to compress its request. If not, it jgshds an int32
indicating the size in bytes of the bulk request, then segtissbimmediately
thereafter. If it decides to compress:

(a) It sends the negated uncompressed byte length, annguoainpres-
sion and how many bytes need to be allocated in the srever.

Client

Collect n-grams
n = 5wy, wa, ...wy
n = 4lwh, w), ...wq

Entries: K | Buffer len: B

send buffer

Server

[%2]

Compress into buffer

of lengthZ

sendZ
send z-buffer

waiting for K logprob

[ReceiveZ, thenZ byte
decompress

—

Query LM
|

)

compress?

Receive 1 floaff

negative?

T

ReceiveK —|

Receive compressed
buffer of lengthf

1 flpats

Compress
end compress len as|float
send buffer

Figure 3: Flow of the network protocol

(b) It compresses its bulk request as one batch. It then semdst32
indicating the length of the compressed buffer, then thepessed
buffer follows.

3. The server is expected to return as many probabilitiebexe tvere ngrams
present in the bulk request. Both client and server know whsanumber is
and it needs not be transmitted.

4. The server may decide to compress its output. If not cossprg, it will just
send log probabilities in IEEE single precision (float) fatm

5. If compressing, it will compress its reply, and send thegth of its output
in bytes, as a single precision float number. A positive flaahber ¢ 1)
therefore announces compressed output, since log prileshihay not be
greater than one

Another simpler protocol was implemented. In that casecade strings are
sent. The number of ngram is sent as a 32bit integer. Thenwaichis sent as
a 32bit integer representing its length including zero teator, then the string
including the zero terminator. It is the responsibility betclient and servers to
agreea priori which protocol should be used.

3 Tool reference

3.1 Imapp: generic options

Imapp welcomes generic options listed in Table 1. Thesmoptare available by
prefixing a double-dash, for instance:

| mpp --printcfg true

will print some compilation configuration information anxitehe program. Stan-
dard 1/O is turned off by default to facilitate debugging muit For best perfor-
mance while piping, for instance an ngram counting to a cesgon program,
it is better to turn that option off. Binary stdio is turned bfy default. While
piping text containing end of line characters, the opegasiystem might decide to
translate them and prepend a carriage return at each oceuréimis would cor-
rupt binary files. Also, the operating system might declareead of stream if it
encounters either "Z or "D. This special processing may pkaitky turned off by
setting this to true. All options are found immapp/ ngcor e/ cf ggen. xm .

10

Option Type default Description

task Task | LMCOUNT | What to do, cf Table 2

printcfg bool false Print configuration info and exit.

crtdbgbrk | bool false (In VS debug builds only) Raise exception to inter debugger
bufstdio bool false Allow default buffering of standard input and output

binstdio bool false Change mode of stdio to binary, e.g., turns off "M and "Z pssisgy.
include string " include a configuration file

Table 1: Imapp: generic options

Include files. For common configuration options to be shared across malltipl
commands, it is sometimes convenient to set options in aafilé include that file
as a configuration. For instance, the previous example magtieved by creating

a file, saya. cf g, and calling:

| mpp --include a.cfg
The filea. cf g would contain:

printcfg true

Specifying arrays. Imapp sometimes allows arrays to be specified from the com-
mand line. For instance, cutoff frequencies are expectée &n array of integers.
The name of the option is- app. | nbui | d. cof f. There are three was of spec-
ifying cuttoffs of, say, “0 2 4”. The first would be to specifyspace delimited
string as asingleargument, as:

| mpp --app. ! nbuild. coff "0 2 4"
The second way would be to specify each as an option:

| mpp --app. !l nmbuild.coffO O --app.!Inbuild.coffl 2 --app.|nbuild.coff2 4
The last way is to create a file, sayof f . t xt , and call:

| mpp --app. | nmbuild. coff @off.txt
The filecof f . t xt would contain:

0
2
4

11

Value Description

LMWFREQ Collect word frequencies
LMWFREQMERGE| Rarely used. Merge word freqs

LMCOUNT Collecting n-gram counts
LMCOUNTMERGE | Merging multiple count files

LMBUILD Build backsorted MAD LM

LMSERVER Serving backsorted MAD LM

LMEVAL Eval probabilities and perplexity

Table 2: Task types for Imapp’s- t ask option.

Option Type | Default | Description
text string - filename of text or ’-’ for stdin
maxwlen | sizet 80 maximum word length

Table 3: Options prefixed by- app. W r eq.

Special filenames. There is a special filename defined as the dash charadter (
When used in a write context, it means standard output, arshwbked in a read
context, it means standard input.

3.2 Imapp: vocabulary collection

The first step in building language models consists of voeapicollection. The
vocabulary is the finite length list of words which may preeitby the language
model. That is done by applying some strategy to a word frecpudile. The
strategy is to either take the firgt words which have highest frequencies, or to
take all words which we have seen more tliatimes. We do not provide tools to
implement this policy. The word frequency is collected wittapp, as follows:

echo Some training text text here | \
| mpp --task LMAWFREQ --app. Il mMfreq. wfreq - --bufstdio true > wireq.txt

The vocabulary may be recovered as:
cat wfreq.txt | sort -nr -k2 | head -10 > vocab. t xt

For reasons highlighted beforee recommend that the words in the vocabulary be
sorted in reverse frequenc®ptions are shown in Table 3.

12

Option Type | Default | Description

vocab string filename of vocabulary file

text string - filename of text or ’-’ for stdin

order int 5 order of count)

bufsiz int 50 buffer memory size

backsort bool false backsorted (for MAD)

countfile string | full.Lngc | output filename or -’ for stdout

padunk bool false pad the input text with unk tokens (for small file
temp string . temp directory

tempbase string | tmpcount| temp basename for tmp files (for parallel runs)
compressmp | bool false compress the temp count files

final_Lmerge bool true merge temp files before exiting

Table 4: Options prefixed by- app. | nrcount .

3.3 ngram count collection

Once we have decided what the vocabulary is going to be, wealiect n-gram
counts. Options are shown in Table 4. The most useful arebyadezt, order, buf-
siz, backsort, and couriile. The vocabulary was produced in the last subsection.
The text is the same text as before. The bufsiz specifies, inid® much tempo-
rary memory should be used to sort the ngram entries. It dimiset to the largest
available quantity available on the machine.

The option padunk is used to ensure that all lower-ordermggatries will
be present by marginalizing, by inserting a number of tokeitls UNK id at the
end of the word stream. While collecting ngrams on the samehime, be sure
to change either temp or tempbase to make sure that temp filesoivget the

identity.

The example command line is:

echo Sonme training text text here | \
| mpp --task LMCOUNT \

--app. | ntcount
--app. | ncount .
--app. | ncount .
--app. | ncount .
--app. | ntount.
--app. | ntcount
--app. | ntount .
--binstdio

. vocab

or der
buf si z
backsort
t ext

padunk

vocab. t xt \
5\

128 \

true \

-\

.count _file ngc.bin\

true \
true \

13

Option Type Default | Description

incount string backsorted count file

order sizet 5 order of the ngram

Im string output Im (output)

disc string binary discount parameters (output)

vocab string vocabulary file

coff vector(int) vector of cutoff counts for all orders. First must be zero.
dischin sizet 4 bins of counts for discount

Table 5: Options prefixed by- app. | mbui | d.

--bufstdio true
It will produce a file calledhgc. bi n. Once this is done, we no longer need the
input text.
3.4 Imapp: modified absolute discounting

The madified absolute discouting code is the more scalabjeofvauilding lan-
guage models. Invoking LM building is done as follows:

| mpp --task LMBUI LD \

--app. | nbui | d. order 5\

--app. | nbui I d. vocab vocab. t xt \
--app. | nbui I d. i ncount ngc. bin \
--app.Inbuild. Im [m\

--app. | mbui I d. di sc I mdisc \
--app. | nbuil d. coff "01122"

It will produce filesl mandl m di sc. Notice that the count cutoffs are specified
for all orders including unigrams, but for unigrams it mustays be zero.

3.5 Imapp: serving the language model

The binary language model is now ready to be used by clients.set up the
language model on a server port, the following command kne prototypical
example:

| mpp --task LMSERVER \
--app. | nserver. order 5 \
--app. | nserver.Im eg. bl m \

14

--app. | nserver. disc eg. bl mdisc \

--app. | nserver.vocab eg. vocab \
--app. | nserver.binipc true \
--app. | nserver. bul ki pc true \
--app. | nserver. port 9350

3.6 Imbld: creating count files

Because of its complex structure, Kneser-Ney requiresipheiitypes of informa-

tion, and backsorting will not help. Therefore, multiplevier-order count files, in
forward and backward order, must be created before effiaigthiscalable creation
of language models may be performed. First, a forward colanidficreated by
Imapp:

echo Some training text text text here | \
| mpp --task LMCOUNT \

--app. | ncount. vocab vocab. t xt \
--app. | ncount . order 5\

--app. | ncount . bufsi z 128 \
--app. | ntcount . backsort fal se \
--app. | ntount . t ext -\

--app. I ncount.count _file - \

--app. | ncount . padunk true \
--binstdio true \
--bufstdio true > n.id

This count file must be first sorted in backwards order (sobgdv,,, then
w1, €tc up towq). This is done with:

Inmbld --bsid -idngmn.id -bs_idnmgmn.bs.id -n 5 -m5\
-tenp n.tnp. -buffer 128

Then, we produce a foward and backward count for each lowdsrarounts by
marginalizing:

J=5
for i in54321,; do
| bl d --ngnm2nmgm -ngramn. bs. $J.id -ngramn.bs. $i.id -n $J \
-m $i -vocab vocab.txt -u;
Inbld --bsid -idngmn.bs.$i.id -bs_idmgmn.fs.bs.$i.id -n $$i \
-m$i -tenp n.tnp. -buffer 128;
J=8i;
done

15

Note that filenames follow a convention which is required tmpld. The first
command in the loop marginalizes down, and counts typesddsof tokens (i.e.
unique histories). The second command resorts in backwalet.oThis step is
the dominating step for language model building with Knddey. In general,
KN LMs may not be built as efficiently as MAD language model$iey exhibit
significantly superior performance when the size of theningj text is reduced.

3.7 Imbld: Knesery-Ney
Finally, the KN language model may be built:

Inmbld --bld -idngmn.5.id -ImImbin -voc vocab.txt -n 5 -tenp n. -ex

We also provide a simpler, faster method available for snaizes of training
data. We can describe it upon request, otherwise, pleadetheacode, when the
option “-ex” is removed. Imbld does not support cutoffs.

4 Running the tools

4.1 Compiling the code

Under Visual Studio There is one solution file for each of Imapp and Imbld.
Compiling the code from each of these solution files will proel binaries located
in the bin directory, in a subdirectory called either Reéeas Debug, and in that
directory another subdirectory called x64 or win32, defremavhether a 32bit ver-
sion or 64bit version was requested. 32bit language modelgited to a file size
of 2GB, memory limits (e.g. counting) of 2GB, and genera®pi counts. Chang-
ing the cfggen.xml will not rebuild the source files: in thakg calling cfggen.pl
must be done by hand.

Makefile and GCC Each source directory contains a Makefile. We have ported
the software to a recent version of GCC. Multi-threading waisported to GCC.
We have not tested the software thoroughly in that configuraglthough it passes
the regression test provided in the “recipe” directory.

4.2 Running the recipe

We have provided a simple regression test in the directollgccaecipe. Again,
a Makefile builds the language models, runs the server, atsl perplexity. The
source code is used as sample text.

16

Preamble The preamble contains definitions. Some are configurable.inFo
stance, it is possible to switch between 64bit and 32bit lmnging the “DARCH”
definition. Definitions may be overriden on the fly, for instan

make DMODE=Debug X TXT="cat essay.txt]|\
perl -wnle "print \"<s>$ </s>\"""

will instead use the debug version of the tools, and use ggkay the training text.

Mnemonic rules and xall To run the recipe end to end, please use the xall rule.
The dependency graph is explicitly described by the makefideas to assist the
user in understand what input and outputs are produced by ®aomand, and
to aid readability. Therefore making the eyaksent rule is equivalent. For ease
of understanding, however, we have provided mnemonicsdakbdown the pro-
cess into sub-steps described above. The mnemonics ark, \amant, Im, and
evalpresent. Vocabulary collection is the same for KN smoothangl MAD.
Counting in MAD is done in backsorted mode, whereas countir\ is done in
forward mode, and then all lower-order backsorted ngramtciiles are generated.
LM building and perplexity test are duplicated for each lotanFor instance, the
language model building is achieved by the “Im” rule, andulssin eg.blm, and
eg.Im being produced.

For convenience, we have provided read-text and readexisas examples.
Also, the “clean” rule will kill the server and delete filesdome back to the clean,
released state.

make xall. Running make xall in the recipe directory will produce ateirmedi-
ate eg.* files. It will launch the server and run the perpletéists as well. To detail
what each step would do, please use the make -n dry run ciypdbil instance,

meke -n eg.lm

will show what commands have to be launched to build a MAD legg model,
from the current state. If starting from the clean state, iit show what needs
to be built from scratch. If the command make eg.ngc was isgsieccessfully)
immediately preceding, then it will show a single command.

5 Conclusion

We are delighted to be able to make this tool available ancediy hope that it
will be useful to the scientific community. We have done ouwstlte document the

17

tool, but we are understand that this documentation may peowved. Such as it
is, the release is a “research” prototype, it is not intendedd may not — be used
in a production environment. If you become aware of defigenm this release,
or have any comment, please let us know. If there is a pressiag to extend the
toolkit expressed by the community, we will do our best toradsd it.

18

