
Decentralized, Connectivity-Preserving, and
Cost-Effective Structured Overlay Maintenance

Yu Chen and Wei Chen

Microsoft Research Asia
{ychen,weic}@microsoft.com

Abstract. In this paper we present a rigorous treatment to structured
overlay maintenance in decentralized peer-to-peer (P2P) systems subject
to various system and network failures. We present a precise specifica-
tion that requires the overlay maintenance protocols to be decentralized,
preserve overlay connectivity, always converge to the desired structure
whenever possible, and only maintain a small local state independent of
the size of the system. We then provide a complete protocol with proof
showing that it satisfies the specification. The protocol solves a number of
subtle issues caused by decentralization and concurrency in the system.
Our specification and the protocol overcomes a number of limitations of
existing overlay maintenance protocols, such as the reliance on a cen-
tralized and continuously available bootstrap system, the assumption of
a known system stabilization time, and the need to maintain large local
membership lists.

Keywords: structured overlay maintenance, peer-to-peer, fault tolerance

1 Introduction

Since their introduction, structured overlays have been used as an important
substrate for many peer-to-peer applications. In a structured peer-to-peer over-
lay, each node maintains a partial list of other nodes in the system, and these
partial lists together form an overlay topology that satisfies certain structural
properties (e.g., a ring). Various system events, such as node joins, leaves and
crashes, message delays and network partitions, affect overlay topology. Thus,
an overlay topology should adjust itself appropriately to maintain its structural
properties. Topology maintenance is crucial to the correctness and the perfor-
mance of applications built on top of the overlay.

Most structured overlays are based on a logical key space, and they can
be conceptually divided into two components: leafset tables and finger tables.1

The leafset table of a node keeps its logical neighbors in a key space, while
the finger table keeps relatively faraway nodes in the key space to enable fast
routing along the overlay topology. The leafset tables are vital for maintaining
a correct overlay topology since finger tables can be constructed efficiently from
1 The term leafset is originally used in Pastry [19] while the term finger is originally

used in Chord [21].

the correct leafset tables. Therefore, our study focuses on leafset maintenance.
In particular, we focus on one-dimensional circular key space and the ring-like
leafset topology in this space, similar to many studies such as [19, 21].

Leafset maintenance is a continuously running protocol that needs to deal
with various system events. An important criterion for leafset maintenance is
convergence. That is, the leafset topology can always converge back to the de-
sired structure after the underlying system stabilizes (but without knowing about
system stabilization), no matter how adverse the system events were before sys-
tem stabilization.

In this paper, we provide a rigorous treatment to leafset convergence. Our
contributions are mainly twofold. First, we provide a precise specification for
leafset maintenance protocols with cost effectiveness requirements. All properties
of the specification are desired by applications, while together they prohibit
protocols with various limitations appeared in previous work. Second, we provide
a complete protocol that is proven to satisfy our specification.

There are several distinct features in our specification. First, our specification
explicitly emphasizes connectivity preservation: the connectivity of the leafset
topology may only be broken by adverse system events such as node crashes and
network failures, but it should not be broken by the maintenance protocol itself.
Some previous protocols such as Chord [14] and Pastry [19] allow runs in which
the topology is broken due to protocol logic itself. Specifying the Connectivity
Preservation property is not simple. We need to define a system stabilization time
after which no adverse system events occur and require that the maintenance
protocol no longer disconnect any nodes in the system afterwards. We dedicate
a section to show that defining such a system stabilization time is subtle in that
any time earlier will not guarantee connectivity preservation.

Second, we explicitly put requirements on cost effectiveness: the size of the
local state maintained by the protocol in the steady state only depends on the
size of its leafset table, but should not depend on the system’s size. To be cost-
effective, a protocol inevitably needs to remove some extra entries in the leafset
(as in many existing protocols), but such removals may jeopardize the connec-
tivity of the topology. Therefore, handling the apparent conflict between connec-
tivity preservation and cost effectiveness is the key in our protocol design. Some
existing protocols ([11, 15]) rely on the maintenance of a large membership list
to preserve connectivity, and thus is not cost-effective.

Third, we explicitly address how to heal topology partition by introducing an
interface function add(contacts). Although the overlay could be more resistant
to topology partition by maintaining more entries in the routing tables [14],
network partitions are still inevitable, especially when failures on major network
links happen. Therefore, we believe partition healing is an indispensable part of
the protocol. The interface add(contacts) and its specification cleanly separates
partition detection from partition healing: A separate mechanism may be used to
detect topology partition, and then to call the add(contacts) interface (only once)
to bridge the partitioned components, while afterwards the maintenance protocol
will automatically converge the topology. Our specification keeps the dependency

on an external mechanism such as a bootstrap system at the minimum, while
some previous protocols heavily rely on continuously available bootstrap systems
to keep connectivity [7, 20].

Moreover, we provide a complete protocol and prove that it satisfies our spec-
ification. As indicated already, the core of the protocol is to handle the conflict
between connectivity preservation and cost effectiveness: The protocol should
remove extra entries in the leafset while preserving the topology’s connectivity.
The protocol addresses a couple of subtle issues: one is how to nullify the effects
of adverse system events without knowing when the system stabilizes, and the
second is to avoid livelocks that may be caused by inopportune invocations of the
add(contacts) interface. The correctness proof is technically involved and long,
because our protocol needs to deal with system asynchrony and various system
failures and events.

The correctness of our protocol is based on the availability of a dynamic fail-
ure detector that eventually can correctly detect failures of neighbors of a node.
One may argue that in peer-to-peer environments, such failure detectors are un-
realistic. We justify our model with the following reasons. First, studying the
convergence behavior of a dynamic protocol under system failures is important
to understand the correctness and the efficiency of the protocol, and to compare
different protocols under the same condition. Such studies naturally assume a
model in which system failures eventually stop, for which the paradigm of self
stabilization is a direct example.2 Second, the theoretical assumption that the
system stabilizes after a certain time point means in practice a long enough sta-
ble period for the topology to converge. Based on our simulation study [4], we
show that with some optimizations the convergence speed of our protocol is fast
(O(log N) where N is the number of nodes in the system), so system stabiliza-
tion assumption may not seem so unreasonable in certain settings. Third, failure
detection accuracy can be greatly improved if we consider voluntary leaves, in
which a leaving node notifies its neighbors before leaving the system. Therefore,
the failure detection requirement in the model may be more easily achieved for
a sufficiently long time than considering only node crashes.

To our knowledge, our protocol is the first one that satisfies all the properties
required by the specification with a complete correctness proof. We believe that
our work could compensate many system-level studies on structured overlay
maintenance and provide a more formal approach to study the correctness of
overlay maintenance protocols.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 defines our system model with the failure detector specification. Sec-
tion 4 introduces the complete specification of convergent leafset maintenance
protocols. Section 5 presents the complete leafset maintenance protocol. We con-
clude the paper and discuss future work in Section 6. Our full technical report [4]
contains further results including complete proofs, a sample implementation of

2 In Section 4 we will elaborate the relationship between our specification and self
stabilization.

the failure detector in one partially synchronous model, and optimizations for
fast convergence of the protocol.

2 Related Work

Many existing structured P2P overlay proposals mention that each node should
have a leafset table. However, those such as Pastry [19], CAN [17], and Skip-
Net [10] only provide brief descriptions on what a correct leafset table looks
like and how to fix it when the leafset table becomes incorrect because of system
churns. These proposals assume that there is a correct leafset table on each node
to begin with, then give methods to repair the leafset tables in response to vari-
ous system events. Bamboo DHT [18], the latest Pastry improvements [2, 9], and
DKS [8] adopt practical mechanisms to improve overlay maintenance and rout-
ing correctness in a dynamic environment. These mechanisms are system-level
improvements, while there are no proofs or formal studies on protocol guaran-
tees, such as connectivity preservation and convergence.

In [14], Liben-Nowell et al. point out the topology maintenance issues of
the original Chord protocol [21] and propose an “idealize” process to adjust
the immediate successor of each node to improve topology maintenance. This
approach is essentially a method to guarantee convergence, but the maintenance
restricts itself to immediate successor data structure. Although each node stores
a successor list to handle successor failures, the node does not actively maintain
the list. Instead, it uses the successor list of its immediate successor to overwrite
its own one, and thus it could be disconnected from other nodes in its own
list. Therefore, it is only a special case of our protocol, is less robust, and is
difficult to accommodate partition healing, which requires maintaining multiple
links together to bridge partitioned components.

Some recent work uses the approach of self stabilization [5, 6] to study over-
lay maintenance. The T-Man [11] and TChord [15] protocols are self-stabilizing,
but they do not consider global membership changes from system churns. They
require to keep an essentially full membership list on each node, so the mainte-
nance cost increases significantly when the system is large or the membership
changes over time. Authors of [7] and [20] also propose self-stabilizing overlay
maintenance protocols. But their protocols and proofs depend on the existence
of a continuously available bootstrap system. In [7], the bootstrap system needs
to handle all join and repair requests, and needs to issue periodic broadcast
messages for self stabilization purpose, while in [20] each node must periodically
initiate look-ups to the bootstrap system. These protocols impose significant
load and availability requirements on the bootstrap system. In contrast, our
protocol only needs an external mechanism such as a bootstrap system when
the topology is partitioned, and it only needs the bootstrap system once after
system stabilization. Therefore, the load and availability requirements on the
bootstrap system are minimized.

The “Linearization” method in [16] describes a self-stabilizing algorithm to
transform any connected graph into a sorted list. Although a bootstrap sys-

tem is not required, the algorithm does not consider node churns and asyn-
chronous/concurrent effects in a distributed message passing environment.

Authors of Ranch [13] provide an overlay maintenance protocol with a formal
proof of correctness. However, they do not consider fault tolerance: all nodes
leaves are “active leave”, in which case all nodes invoke a special leave protocol
before getting offline. We believe silent failures must be considered in a wide area
environment, and dealing with them makes the model, the specification and the
protocol design significantly depart from those studied in [13].

In [1], Angluin et al. proposed a method for fast construction of an overlay
network by a tree-merging process. Their protocol is not a convergent overlay
maintenance protocol, because they assume that overlay construction is executed
when the underlying system is known to have stabilized and they do not consider
the adverse impacts of system conditions before system stabilization.

3 System Model

We consider a distributed peer-to-peer system consisting of nodes (peers) from
the set Σ = {x1, x2, . . .}. Each node has a unique numerical ID drawn from a
one-dimensional circular key space K. We use x to represent both a node x ∈ Σ
and its ID in K. For convenience, we set K = [0, 1), all real numbers between 0
and 1. We define the following distances in key space K: For all x, y ∈ K, (a) the
clockwise distance d+(x, y) is y − x when y ≥ x and 1 + y − x when y < x; (b)
the counter-clockwise distance d−(x, y) = d+(y, x), and (c) the circular distance
d(x, y) = min(d+(x, y), d−(x, y)).

Throughout the paper, we use continuous global time to describe system and
protocol behavior, but individual nodes do not have access to global time. Nodes
have local clocks, which are used to generate increasing timestamps and periodic
events on the nodes. Local clocks are not synchronized with one another. They
provide an interface function getClockValue(), which is only required to return
monotonically increasing time values on a node even if the node has failures
between the calls to the function.

Nodes may join and leave the system or crash at any time. We treat a node
leave and crash as the same type of event; that is, a node disappears from the
system without notifying other nodes in the system, and we refer to such an
event as a failure in the system. We define a membership pattern Π as a function
from time t to a finite and nonempty subset of Σ, such that Π(t) refers to all
of the online nodes at time t. Nodes not in Π(t) are considered offline. For the
purpose of studying overlay convergence, we assume that the set of online nodes
Π(t) eventually stabilizes. That is, there is an unknown time t such that for
all t′ ≥ t, Π(t′) remains the same, which we denote as sset(Π). Let GSTN (N
stands for nodes) be the global stabilization time of the nodes, which is the earliest
time after which Π(t) does not change any more. Henceforth, all specification
properties refer to an arbitrary membership pattern Π.

Nodes communicate with one another by sending and receiving messages
through asynchronous communication channels. We assume that there is a bidi-

rectional channel between any pair of nodes. The channels cannot create or dupli-
cate messages, but they might delay or drop messages. The channels are eventu-
ally reliable in the following sense: There exists an earliest time GSTM ≥ GSTN

such that for any message m sent by x ∈ sset(Π) to y ∈ sset(Π) after time
GSTM , m is eventually received by y.

To deal with failures in asynchronous environments, we assume the avail-
ability of a failure detector, which is a powerful abstraction that encapsulates
all timing assumptions on message delays, processing speed, and local clock
drifts [3]. Unlike the original model in [3], our failure detector is for dynamic
environments, and we do not assume that the failure detector knows a priori a
set of nodes to monitor. Instead, the failure detector provides an input interface
register(S) for a node to register a set of nodes S ⊂ Σ to be monitored by the
failure detector. A node may invoke register(S) many times with a different set S
to change the set to be monitored. The failure detector also provides an output
interface detected(x) to notify a node that it detects the failure of a node x ∈ Σ.

Informally, the failure detector should eventually detect all failures among
all registered nodes, and should eventually not make any wrong detections on
nodes still online. More rigorously, it satisfies the following properties:

– Strong Completeness: For all x ∈ sset(Π) and all y 6∈ sset(Π), if x invokes
register(S) with y ∈ S at some time t, then there is a time t′ > t at which
either the failure detector outputs detected(y) on x or x invokes register(S′)
with y 6∈ S′.

– Eventual Strong Accuracy: For all x, y ∈ sset(Π), there is a time t such that
for all t′ ≥ t, the failure detector will not output detected(y) on x at time t′.

Our failure detector differs from the eventually perfect failure detector 3P
in the static environment [3] in that our failure detector relies on application
inputs to learn the set of processes to monitor. We denote our failure detector
as 3PD (D stands for dynamic). In our protocol 3PD is only used for each
node to monitor its neighbors, so it is easier to achieve than 3P that requires
monitoring all nodes in the system.

Every node in the system executes protocols by taking steps triggered by
events, which include input events invoked by applications, message receipt
events, periodic events generated by the local clock, and failure detection events
detected(). In each step, a node may change its local state, register with the fail-
ure detector, and send out a finite number of messages. For simplicity we assume
that the time to execute a step is negligible, but a node might fail during the
execution of a step. We also assume that there are only a finite number of steps
taken during any finite time interval, and at each time point, there is at most
one step taken by one node.3

A run of a leafset maintenance protocol is an infinite sequence of steps to-
gether with the increasing time points indicating when the steps occur, such

3 Our results also work if each step is not instantaneous or there are multiple con-
current steps at the same time, but it would make our description and proof more
cumbersome to handle these situations.

that it conforms with the above assumptions on membership pattern, message
delivery, and failure detection.

4 The Specification for Leafset Maintenance

We now specify the desired properties for a leafset maintenance protocol. Our
specification always refers to an arbitrary execution of the protocol with an
arbitrary membership pattern Π.

First, we define the function leafset(x, set) as follows: We have a fixed con-
stant L ≥ 1, which informally means that the leafset of a node should have L
closest nodes on each side of it in the circular space. Given a finite subset set ⊆ Σ
and a node x, If |set \ {x}| < 2L, then leafset(x, set) = set \ {x}. Otherwise,
sort set \ {x} as (a) {x+1, x+2, . . .} such that d+(x, x+1) < d+(x, x+2) < . . .,
and (b) {x−1, x−2, . . .} such that d−(x, x−1) < d−(x, x−2) < . . . Then, we have
leafset(x, set) = {x+1, x+2, . . . , x+L} ∪ {x−1, x−2, . . . , x−L}.

In the leafset maintenance protocol, each node x maintains a variable
neighbors, the value of which is a finite subset of Σ. Informally, x.neighbors
should eventually converge onto the correct leafset, meaning x.neighbors =
leafset(x, sset(Π)), in which case the final topology resembles a ring structure.

Each node also has an interface function add(contacts), where contacts is a
finite subset of Σ. This function is used to bridge partitioned components. In
particular, it can be used in the following situations: (a) adding initial contacts
when the system is initially bootstrapped; (b) introducing contact nodes when
a new node joins the system; and (c) introducing nodes in other partitioned
components after the overlay is partitioned (perhaps due to transient network
partitions).

To formalize our requirements, we first need to address the connectivity of the
leafset topology. For any directed graph G, we say that 1) it is strongly connected
if there is a directed path between any pair of nodes in G, 2) it is weakly connected
(or simply connected) if there is an undirected path (when treating edges in
G as undirected) between any pair of nodes in G, and 3) it is disconnected if
it is not weakly connected. The leafset topology at time t is a directed graph
G(t) = 〈Π(t), E(t)〉, where E(t) = {〈x, y〉|x, y ∈ Π(t) ∧ y ∈ x.neighborst}.
For any node x ∈ Π(t), we denote Px(t) as the set of nodes in the connected
subgraph of G(t) that contains x; that is, Px(t) is the set of nodes that have
undirected paths to x.

A key property we require on leafset maintenance is that the protocol should
not break the connectivity of the topology. However, the topology might also
be broken by underlying system behaviors out of protocol control, such as node
failures and message delays. To factor out system-induced topology break-ups,
we only require that the topology is not broken once the underlying system is
stabilized. To do so, we first need to define the stabilization time of the system.

Let GSTD (D stands for detector) be the global stabilization time of the
failure detector 3PD, which is the earliest time t ≥ GSTN such that 3PD will
not output detected(y) on any x ∈ sset(Π) for any y ∈ sset(Π) after time t.

That is, GSTD is the earliest time after which the failure detector does not
make wrong detections on online nodes any more. After GSTD, both the nodes
and the failure detector stabilize, but nodes might still receive old messages sent
before GSTD that may adversely affect the convergence of the topology. Thus,
we define GSTS (S stands for system) to be the global stabilization time of the
system, which is the earliest time t ≥ max(GSTD,GSTM) such that all messages
sent before GSTD or GSTM have been delivered by time t or are lost. Since there
are only a finite number of messages that could have been sent before GSTD

or GSTM , we know GSTS must be a finite value. Note that these stabilization
times are defined for each run of the leafset maintenance protocol.

Our connectivity preservation property is defined based on GSTS as follows:

– Connectivity Preservation: For any t ≥ GSTS , for any directed path from
x to y in G(t), for any time t′ > t, there is a directed path from x to y in
G(t′).

Connectivity Preservation is a key property to guarantee leafset convergence,
but it is not explicitly addressed or enforced by previous protocols in a purely
peer-to-peer environment. The following theorem shows the necessity of GSTS ,
meaning that no algorithm can guarantee connectivity preservation starting from
a time earlier than GSTS . The proof of the theorem can be found in [4].

Theorem 1. For any convergent leafset maintenance protocol A and any small
real value ε > 0, there exists a run in which Gt is weakly connected for some
t such that GSTS − ε < t < GSTS, but at a later time t′ ≥ GSTS, Gt′ is not
weakly connected.

By the Connectivity Preservation property, we know that the connected com-
ponent Px(t) can only grow after time GSTS . Since Π(t) does not change after
GSTS and is finite, we know that Px(t) eventually stabilizes. The next prop-
erty requires that the leafset of x eventually contains the correct leafset in the
connected component of x:

– Eventual Inclusion: There is a time t such that for all t′ ≥ t and for all
x ∈ sset(Π), leafset(x, x.neighborst′) = leafset(x, Px(t′)).

If the topology becomes connected at some time after GSTS , then Even-
tual Inclusion together with Connectivity Preservation means that eventually
leafset(x, x.neighborst′) = leafset(x, sset(Π)) for all x ∈ sset(Π). The properties
also imply that the weakly connected component Px(t) will become strongly
connected eventually. Note that the Eventual Inclusion property should hold no
matter if there are invocations of add() after GSTS .

If the topology is partitioned, an application (or even a user) should be able
to use the add() interface to heal the partition. This is specified by the following
property:

– Partition Healing: For any x, y ∈ sset(Π), if there is an invocation of add(S)
on x at time t > GSTS with y ∈ S, then there is a time t′ > t such that x
and y are connected in G(t′) (i.e., Px(t′) = Py(t′)).

The Partition Healing property ensures that only one invocation of add() on
one node is necessary to bridge the partition, as long as we use an S that contains
a node from every component in add(S). Afterwards, Eventual Inclusion and
Connectivity Preservation properties guarantee the autonomous convergence of
the topology without any further help.

The following property requires that eventually the leafset maintenance pro-
tocol should only maintain the actual leafset entries, provided that the applica-
tion eventually stops invoking add().

– Eventual Cleanup: If there is a time t after which no add() is invoked at any
node in the system, then there is a time t′ such that for all time t′′ ≥ t′ and
all x ∈ sset(Π), leafset(x, x.neighborst′′) = x.neighborst′′ .

We call a leafset maintenance protocol convergent if it satisfies Connectivity
Preservation, Eventual Inclusion, Partition Healing, and Eventual Cleanup. If an
external mechanism guarantees to call add() as described in Partition Healing,
then the convergent protocol ensures that the topology is eventually connected
and the leafset of every node is correct, i.e., x.neighbors = leafset(x, sset(Π)).

One informative way to understand the specification is to see how it avoids
a trivial implementation that always splits every node into a singleton, i.e., sets
x.neighbors to ∅ on every node x. This implementation would correctly satisfy
the specification if there were no Partition Healing property. With Partition
Healing, however, after GSTS the protocol is forced to reconnect nodes after
add() invocations, and by Connectivity Preservation, the protocol has to keep
these connections, and then by Eventual Inclusion and Eventual Cleanup, the
protocol has to converge to a correct leafset structure. Thus trivially splitting
nodes is prohibited by the specification.

Besides convergence, the leafset maintenance protocol should also be cost-
effective in terms of the cost to maintain the neighbors set on the nodes. We
look at the maintenance cost when the protocol reaches its steady state: that is,
assuming that there is no more add() invoked at any node, the neighbors set of
each online node has already included the correct leafset entries in its stabilized
connected component and nothing more. The cost effectiveness is characterized
by the following property:

– Cost Effectiveness: If there is a time t after which no add() is invoked at any
node in the system, then in the steady state of the protocol, on each node
the size of the local state and the number of nodes registered to the failure
detector are both O(L).

When counting the size, we assume that each node ID and each clock value
take a constant number of bits to represent. The property specifies that in the
steady state the local state and the number of nodes monitored by the failure
detector on each node is linear to the size of the leafset and is not related to the
system’s size. The requirement of O(L) nodes registered to the failure detector
prevents a protocol from monitoring a large set of nodes in the steady state. The
property also implies that in the steady state each node can only send messages
to O(L) nodes and the size of each message is at most O(L).

Our specification of convergent overlay maintenance protocols is similar to
self stabilization [5, 6] in that we require the leafset topology to eventually con-
verge to the desired structure (each connected component is a ring structure)
no matter what the topology was before the underlying system stabilizes. Our
specification differs from self stabilization in the following aspects: First, we con-
sider an open system where applications may invoke add() to add new contact
nodes at any time, while self stabilization considers a closed system without
any application interference. Second, unlike in the self stabilization model, we
do not assume that all system states can be arbitrarily corrupted before system
stabilization (e.g., local clock values cannot go backwards).

5 Leafset Maintenance Protocol

Our leafset maintenance protocol consists of five sub-protocols: (a) the add()
protocol to add new contacts supplied by the application (Fig. 1, lines 3–8); (b)
the failure-handling protocol to remove the failed nodes from the leafset upon the
notification of failure detector (Fig. 1, lines 9–10); (c) the invite protocol to invite
closer nodes into leafset (Fig. 2); (d) the replacement protocol to replace faraway
nodes that should not be in the leafset with closer nodes (Fig. 3); 4 and (e) the
deloopy protocol to detect and resolve a special incorrect topology called loopy
topology (Fig. 5). The replacement protocol (Fig. 3) is our key contribution, so
we focus our attention on this sub-protocol while briefly explaining other sub-
protocols. Even though each sub-protocol has its own functionality, they have to
work together to provide the desired self-stabilizing and cost-effective features
specified in the previous section.

All of these sub-protocols (except the failure-handling one) use a periodic
ping-pong messaging structure. For ease of understanding, each type of ping-
pong message is sent independently. In actual implementations, one can unify
all periodic ping-pong messages together for efficiency.

5.1 Add new contacts and handle failures

On each node, the protocol maintains a neighbors set as required by the specifi-
cation. The protocol keeps an invariant that a node y is added into x.neighbors
only after x receives a pong message directly from y. This invariant verifies the
liveness of any nodes to be added into the neighbors set and prevents different
unwanted behaviors in different sub-protocols.

In the add() protocol, if the nodes were added directly into the neighbors set
without any verification, the property Eventual Inclusion would not be satisfied
because the application might keep inserting failed nodes via add(). To solve
this problem, the add(contacts) protocol (Fig. 1, lines 3–8) uses a ping-pong
message loop to check the liveness of the nodes being added. In this way, the
4 Technically, the faraway nodes for a node x are those in x.neighbors \

leafset(x, x.neighbors). Whenever necessary, we use x.var to denote the variable var
on x.

On node x:

1 Data structure:
2 neighbors: set of nodes intended for leafset entries, initially ∅.
3 add(contacts)
4 foreach y ∈ contacts, send ping-contact to y

5 Upon receipt of ping-contact from y:
6 send pong-contact to y

7 Upon receipt of pong-contact from y:
8 neighbors ← neighbors ∪ {y}; register(neighbors)

9 Upon detected(y):
10 neighbors ← neighbors \ {y}
Fig. 1. Leafset maintenance protocol, Part I: Add new contacts and handle failures.

add() invoked after GSTN will not add any failed nodes into the neighbors set of
any online nodes, since the failed nodes cannot respond to the ping-contact
messages.

5.2 Invite closer nodes

The invite protocol (Fig. 2) uses a variable cand to store candidate nodes to be
invited into the neighbors set. The candidate nodes are discovered by exchanging
local leafset views through the ping-ask-inv and pong-ask-inv messages. Once
a node x discovers some new candidates, it uses the periodic ping-invite and
pong-invite message loop to invite these candidates into x.neighbors. The invi-
tation is successful when the candidate y sends back the pong-invite message
to x and x verifies that y is indeed qualified to be in x’s leafset (lines 27).The
invite protocol is in principle similar to other leafset maintenance protocols (e.g.
[21, 18, 11, 20]), except that we use ping-invite and pong-invite messages to
prevent a phenomenon called ghost entry. A ghost entry is an entry of a failed
node that keeps bouncing among the neighbors sets of two or more online nodes,
as explained below.

In the above example, suppose y is a failed node with ID adjacent to x and
z. We also suppose y is still in z.neighbors. When x sends ping-ask-inv message
to z, z returns y. Without the message loop of ping-invite and pong-invite, x
would add y into x.neighbors directly. After z told x about y, its failure detector
reports y’s failure and y is removed from z.neighbors. Later z contacts x to find
some nodes to be invited, and x returns y. So y is added back to z.neighbors.
Then y could be removed from x.neighbors by a failure detector notification on
x, and added back again by the pong-ask-inv message from z.

This process can repeat forever, making y bouncing back and forth be-
tween x.neighbors and z.neighbors. The ghost entry phenomenon violates the
property of Eventual Inclusion. It could be eliminated by the ping-invite and
pong-invite message loop. With this message loop, a failed node will not be
added into the neighbors set by the invitation protocol since it cannot send any

On node x:

11 Data structure:
12 cand: candidate nodes for neighbors, initially ∅.
13 Repeat periodically:
14 foreach y ∈ neighbors, send ping-ask-inv to y

15 Upon receipt of ping-ask-inv from a node y:
16 view ← leafset(y,neighbors); send (pong-ask-inv, view) to y
17 cand ← cand ∪ {y}
18 Upon receipt of (pong-ask-inv, view) from y
19 cand ← cand ∪ view

20 Repeat periodically /* invite closer nodes */
21 foreach y ∈ cand \ neighbors
22 if y ∈ leafset(x, cand ∪ neighbors) then send ping-invite to y
23 cand ← ∅
24 Upon receipt of ping-invite from y:
25 send pong-invite to y

26 Upon receipt of pong-invite from y:
27 if y ∈ leafset(x,neighbors ∪ {y}) \ neighbors then
28 neighbors ← neighbors ∪ {y}; register(neighbors)

Fig. 2. Leafset maintenance protocol, Part II: Invite closer nodes in the key space.

pong-invite messages. Therefore, it will not be returned to other nodes as an
invitation candidate, either.

5.3 Replace faraway nodes

The replacement protocol (Fig. 3) is responsible for removing faraway nodes from
the neighbors sets to keep neighbors sets small. This protocol is our key contri-
bution to provide Cost Effectiveness, and the key differentiator from other pro-
tocols. When removing the faraway nodes, we need to ensure both safety (Con-
nectivity Preservation) and liveness (Eventual Inclusion and Eventual Cleanup),
in the presence of concurrent replacements and other system events.

To ensure safety, we use a closer node to replace a faraway node in-
stead of removing it directly. The basic replacement flow consists of two ping-
pong loops. Suppose a node x intends to remove a node z since z is not in
leafset(x, x.neighbors). Node x uses the ping-ask-repl and pong-ask-repl
loop (lines 33–39) with node z to obtain a replacement node y, which is recorded
by x in x.repl[z]. (If there does not exist a node v satisfy the condition at
line 36, y is set to ⊥ and returned to x.) Then x uses the ping-replace and
pong-replace message loop to verify with y about the replacement (lines 40–
52). If y finds z in y.neighbors at the time it receives the ping-replace message
from x, it acknowledges x with a pong-replace message. Only after receiving
the pong-replace message from y, x may replace z with y in x.neighbors. This
method tries to ensure that after the removal of edge 〈x, z〉 from the overlay,

On node x:

29 Data structure:
30 repl[]: for each z ∈ neighbors, repl[z] is a node to replace z, initially ⊥
31 commit[]: for each z ∈ neighbors, commit[z] is the time when x commits to z

in a replacement task, initially 0
/* repl[] and commit[] only maintains entries for nodes in neighbors */

32 : timestamp of the replacement task, initially 0

33 Repeat periodically:
34 foreach z ∈ neighbors \ leafset(x,neighbors), send ping-ask-repl to z

35 Upon receipt of ping-ask-repl from z:
36 y ← v such that v ∈ leafset(x,neighbors) and d(z, v) < d(z, x) and

d(z, v) = minu∈leafset(x,neighbors) d(z, u)
37 send (pong-ask-repl, y) to z

38 Upon receipt of (pong-ask-repl, y) from z
39 if z ∈ neighbors then repl[z] ← y

40 Repeat periodically:
41 ← getClockValue()
42 foreach z ∈ neighbors \ leafset(x,neighbors) and repl[z] 6= ⊥
43 send (ping-replace, z,) to repl[z]

44 Upon receipt of (ping-replace, z,) from y:
45 if z ∈ neighbors then
46 commit[z] ← getClockValue(); send (pong-replace, z,) to y

47 Upon receipt of (pong-replace, z,) from y:
48 if z ∈ neighbors \ leafset(x,neighbors) and y = repl[z] then
49 neighbors ← neighbors ∪ {y}
50 if commit[z] < then
51 neighbors ← neighbors \ {z}; commit[y] ← getClockValue()
52 register(neighbors)

Fig. 3. Leafset maintenance protocol, Part III: Replace faraway nodes.

there is still a path from x to z via y. The first ping-pong loop tries to find an
alternative path to replace 〈x, z〉. The second ping-pong loop tries to ensure y’s
liveness and the validity of the path.

The above basic flow alone, however, cannot nullify the indirect effects of ad-
verse system events before time GSTD when there are concurrent replacements,
and thus the topology connectivity could still be jeopardized. For example, in
Fig. 4, x replaces z with y after time GSTS when it receives the pong-replace
message sent by y after time GSTD. In the meantime, there is a concurrent task
in which y wants to replace z with u. After sending the pong-replace message
to x, y receives the pong-replace message from u and successfully replaces z
with u. However, the time that u sends the pong-replace message to y could be
before GSTD. So an erroneous “detected(z)” on u immediately after the sending
of the message could remove z from u.neighbors. As the result, x is relying on
the alternative path x → y → u → z to remove z from x.neighbors, but the path
is broken since u removed z from u.neighbors. However, x is not aware of these

x

y

u

z

GSTSGSTD

PONG-REPLACE

PONG-REPLACE

incorrect “detected(z)”

Fig. 4. Concurrent replacement tasks introduce indirect effects of adverse system events
before GSTD and break topology connectivity.

concurrent events, and it still removes z after GSTS , which breaks the connec-
tivity. This shows the indirect effect of adverse system events before GSTD. A
similar danger exists when x tries to replace z and y concurrently.

We introduce variables and commit[] to eliminate these dangerous concur-
rent replacements. Variable is a timestamp identifying the current replacement
task when a node sends out ping-replace messages (line 41), and its value
is piggybacked with the ping-replace and pong-replace messages. For each
z ∈ x.neighbors, variable x.commit[z] records the time when x commits to z in a
replacement task, either when x verifies the replacement of z for another node y
(line 46), or when x uses z to replace another node y (line 51). The key condition
is that x can only successfully replace z in a replacement task whose timestamp
is higher than commit[z] on x (line 50). The use of and commit[] variables avoids
any dangerous concurrent replacement tasks in the system. In the example of
Fig. 4, after y sends the pong-replace message to confirm the replacement
of z for x, y.commit[z] is updated to a new timestamp that is larger than the
timestamp of y’s own concurrent replacement task to z. So when y receives the
pong-replace from u, it will not remove z from y.neighbors. As shown by our
proof, it is the core mechanism to satisfy the Connectivity Preservation property.

Next, we restrict the selection of replacement node y to guarantee the Even-
tual Cleanup property. A node y can be a replacement of z for x only when y is
closer to x than z and is in z’s leafset (line 36). The distance constraint avoids cir-
cular replacement, while the leafset constraint guarantees that y can successfully
verify the replacement. The latter is true because our invite protocol guarantees
that eventually the leafsets are mutual, so z will be in y’s leafset. These two re-
placement selection constraints guarantee the progress of the replacement tasks,
and thus the Eventual Cleanup property.

The mechanisms introduced so far are not enough to guarantee the Even-
tual Inclusion property, however. During the proof of an earlier version of the
protocol, we uncovered the following subtle livelock scenario in which the add()
invocations interfere with leafset convergence. Whenever node x wants to re-
place z with y, the replacement is rejected because x just committed to z in a
replacement task that replaces another node u with z. The rejections can keep
happening if an application keeps invoking add({u}) on x at inopportune times
such that the edge from x to u is continually being added back to the topology.

On node x:

53 Data structure:
54 Â: a derived variable, Â= x if neighbors = ∅ else Â= y ∈ neighbors

such that d+(x, y) = min{d+(x, z) : z ∈ neighbors}
55 Repeat periodically:
56 if neighbors 6= ∅ and d+(x, 0) < d+(x,Â) then
57 send (ping-deloopy, x) to Â
58 Upon receipt of (ping-deloopy, u) from y:
59 if x = u then return
60 if neighbors = ∅ or d+(x, 0) < d+(x,Â) then
61 cand ← cand ∪ {u}; send pong-deloopy to u
62 else
63 send (ping-deloopy, u) to Â
64 Upon receipt of pong-deloopy from y:
65 cand ← cand ∪ {y}

Fig. 5. Leafset maintenance protocol, Part IV: Loopy detection.

The inability for x to replace z with y is not an issue by itself. However, it is
possible that there is a node v that should be in x’s leafset, and the only way
x learns about v is through z by the replacement protocol (the invite protocol
will not help if all nodes in z.neighbors are outside x’s leafset range). In this
case, x cannot replace z with y and thus will not learn about v, so the leafset
convergence will not occur.

To fix this problem, we break the replacement of z with y on node x into
two phases. First, x can add node y into x.neighbors (line 49), without checking
the constraint of z.commit < . Next, x can remove z only when the condition
z.commit < holds (lines 50–51). With this change, x can still find closer nodes
through z even if x cannot replace z.

We also find another similar livelock scenario if the replacement node is se-
lected from z’s neighbors set rather than its leafset (leafset(z, z.neighbors)) in
line 36. The discovery of these subtle and even counter-intuitive livelock sce-
narios shows that a rigorous and complete proof helps us in discovering subtle
concurrency issues that are otherwise difficult to discern.

5.4 Detect loopy structure

With the sub-protocols explained so far, the topology still might be incorrect,
because it can be in a special state called the loopy state as defined in [14]. A
node’s successor is the closest node in its neighbors set according to the clockwise
distance. A topology is in the loopy state if following the successor links one may
traverse the entire key space more than once before coming back to the starting
point. We use a deloopy protocol (Fig. 5) similar to the one in [14] to detect the
loopy state and resolve it. The protocol essentially initiates a ping-deloopy
message along the successor links to see if the message makes a complete traversal

of the logical space before coming back to the initiator. If so, a loopy state is
found, and the protocol puts the two end nodes of this traversal into each other’s
cand sets, so that the invite protocol is triggered to resolve the loopy state.

Our protocol is cost-effective because in the steady state each node only
maintains sets neighbors and cand, mappings repl[] and commit[], which con-
tain O(L) number of nodes, and only nodes in the neighbors set are eventually
registered with the failure detector.

Putting all sub-protocols together, we have a full protocol that satisfies all
properties in our specification, as summarized by the following theorem.

Theorem 2. The leafset maintenance protocol provided in Fig. 1, 2, 3, and 5
is both convergent and cost-effective, which means it satisfies the Connectivity
Preservation, Partition Healing, Eventual Cleanup, Eventual Inclusion, and Cost
Effectiveness properties.

6 Conclusions and Future Work

In this paper, we propose a formal specification of peer-to-peer structured overlay
maintenance, and introduce a complete protocol that matches the specification.
The protocol is able to preserve overlay connectivity in a purely peer-to-peer
manner while maintaining a small leafset, and it is able to converge any con-
nected topology to the correct configuration.

The primary focus of this paper is the formal treatment of ring-based overlay
maintenance. For a more practical implementation, a number of issues need to
be addressed, which can be regarded as the future directions of our work. First,
potential optimizations is possible to save the maintenance bandwidth of our
protocol. Second, we may be able to weaken our model assumptions such as
the availability of the dynamic failure detector 3PD and the existence of the
global stabilization time GSTS to match closer to the dynamic peer-to-peer
environments, by following the similar approach in [12] for example. Another
direction is to study the convergence speed of our protocol. On this front, we
have conducted simulation studies with some heuristics to achieve an O(log N)-
level convergence time where N is the total number of nodes in the system [4].
We are looking into theoretical analysis of the fast convergence protocols. Finally,
generalizing our results to other structured overlay topologies is also useful.

References

1. D. Angluin, J. Aspnes, and J. Chen. Fast construction of overlay networks. In
Proceedings of the 17th ACM Symposium on Parallelism in Algorithms and Archi-
tectures, 2005.

2. M. Castro, M. Costa, and A. Rowstron. Performance and dependability of struc-
tured peer-to-peer overlays. In Proceedings of the IEEE/IFIP International Con-
ference on Dependable Systems and Networks, 2004.

3. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, 1996.

4. Y. Chen and W. Chen. Decentralized, connectivity-preserving, and cost-effective
structured overlay maintenance. Technical Report MSR-TR-2007-84, Microsoft
Research, 2007.

5. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 17(11):643–644, 1974.

6. S. Dolev. Self-Stabilization. The MIT Press, 2000.
7. S. Dolev and R. I. Kat. Hypertree for self-stabilizing peer-to-peer systems. In

Proceedings of the 3rd IEEE International Symposium on Network Computing and
Applications, 2004.

8. A. Ghodsi, L. O. Alima, and S. Haridi. Low-bandwidth topology maintenance
for robustness in structured overlay networks. In Proceedings of the 38th Annual
Hawaii International Conference on System Sciences - Track 9, 2005.

9. A. Haeberlen, J. Hoye, A. Mislove, and P. Druschel. Consistent key mapping in
structured overlays. Technical Report TR05-456, Rice Computer Science Depart-
ment, 2005.

10. N. J. A. Harvey, M. B. Jones, S. Saroin, M. Theimer, and A. Wolman. Skipnet:
A scalable overlay network with practical locality properties. In Proceedings of the
4th USENIX Symposium on Internet Technologies and Systems, 2003.

11. M. Jelasity and O. Babaoglu. T-Man: Gossip-based overlay topology management.
In Proceedings of the 3rd International Workshop on Engineering Self-Organising
Applications, 2005.

12. I. Keidar and A. Shraer. How to choose a timing model? In Proceedings of the
37th IEEE/IFIP International Conference on Dependable Systems and Networks,
2007.

13. X. Li, J. Misra, and C. G. Plaxton. Active and concurrent topology maintenance.
In Proceedings of the 18th International Symposium on Distributed Computing,
2004.

14. D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the evolution of
peer-to-peer systems. In Proceedings of the 21st ACM Symposium on Principles of
Distributed Computing, 2002.

15. A. Montresor, M. Jelasity, and O. Babaoglu. Chord on demand. In Proceedings of
the 5th IEEE International Conference on Peer-to-Peer Computing, 2005.

16. M. Onus, A. Richa, and C. Scheideler. Linearization: Locally self-stabilizing sorting
in graphs. In Proceedings of the 9th Workshop on Algorithm Engineering and
Experiments, 2007.

17. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In Proceedings of the SIGCOMM’01 ACM Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communi-
cation, 2001.

18. S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a DHT. In
Proceedings of the USENIX Annual Technical Conference, 2004.

19. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In Proceedings of IFIP/ACM Middle-
ware, 2001.

20. A. Shaker and D. S. Reeves. Self-stabilizing structured ring topology p2p sys-
tems. In Proceedings of the 5th IEEE International Conference on Peer-to-Peer
Computing, 2005.

21. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In Proceedings of the
SIGCOMM’01 ACM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, 2001.

