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Abstract— While multicast has been studied extensively in many 
domains such as content streaming and file sharing, there is little 
research applying it to synchronous collaborations involving 
shared access to a distributed object. Based on several cases of 
real-world collaborations involving instant messaging, 
distributed lectures, and computationally-intensive collaborative 
game playing, we show that compared to traditional centralized 
and replicated collaboration architectures, a new bi-architecture 
collaboration system model with multicasting support can 
improve response, feedthrough, and task completion times. In 
addition, we show that to optimize performance, the set of 
traditionally considered factors, consisting of network delays and 
transmission costs, must be expanded to include several new 
factors, such as processing costs, scheduling policies, and think 
times. In one or more of the real-world collaborations we 
consider, we show that multicast (a) can increase feedthrough 
times if processing costs and scheduling policies are not 
considered and (b) may degrade or improve task completion 
times depending on the cost of computing the multicast overlay. 

Keywords- Multicast; Response, Feedthrough, and Task 
Completion Times 

I.  INTRODUCTION 

Multicasting has long been advocated as a more efficient 
data distribution scheme than unicasting – and justifiably so. In 
particular, it can better utilize network resources, such as 
routers and physical links, by reducing the degree of packet 
duplication. However, there has been little work done in 
applying this idea to distributed collaboration, by which we 
mean synchronous collaboration involving shared access to a 
distributed object (as opposed to audio/video conferencing). 
The T 120 protocol [4] advocated the use of a multicast tree to 
reduce the amount of data (audio, video, bitmaps) transmitted 
on the network.  How such a tree was built or the improvement 
in network usage in different kinds of collaboration scenarios 
was not studied. RMX [2] and SRM [7] have studied the use of 
multicast to improve the packet loss handling and fault 
tolerance of shared whiteboards. 

In this paper, we extend this research by focusing on 
performance of the collaborative application rather than 
reliability or network usage. Like T 120, RMX, and SRM, we 
assume application-level multicast, that is, we assume that only 
end-host machines can participate in the multicast; in 
particular, network-level routers, firewalls, and all other non-
end-host devices are abstracted away. The idea of multicast 
requires the construction, for each source of messages, a 

multicast overlay that defines the paths a message takes to 
reach the destinations. Intuitively, such multicast overlays can 
degrade performance. They can increase feedthrough times (the 
time it takes for users’ actions to be seen by others) as data 
must pass through additional nodes to reach the collaborators. 
In addition, the cost of dynamically building the multicast 
overlay can increase task completion times. 

However, we  show that because of the cost of transmitting 
messages to the network, it is possible to build a new multicast 
collaboration architecture that can actually improve response 
times, feedthrough times, and task completion times in several 
real-world collaborations involving instant 
messaging, distributed lectures, and computationally-intensive 
collaborative game playing. We also show that in many 
realistic cases, the multicast architecture can degrade one or 
more performance metrics, and identify several factors (such as 
processing costs and scheduling policies) that determine if 
unicast or multicast architectures should be used. The multicast 
architecture uses an existing algorithm to arrange the 
collaborators’ computers into a multicast tree – it does not 
assume the existence of other hosts for communicating. Like 
other works on multicasting, we use simulations to compare the 
two kinds of architectures. Our simulations are different from 
previous multicast simulations in two fundamental ways 
because they are focused on distributed collaboration. First, 
they consider several new parameters such as processing costs, 
scheduling policies, and think times. Second, all of the 
parameter values are based on actual collaboration logs we 
gathered. 

The rest of this paper is organized as follows. In the next 
section, we derive our multicast collaboration architecture by 
extending existing unicast architectures. Next, we present our 
experimental setup and results. Finally, we discuss the 
implications of these results on future multicast schemes in the 
collaboration domain and present brief conclusions and 
directions for future work. 

II. COLLABORATION ARCHITECTURES 

As mentioned above, our work focuses on the collaboration 
domain. In order to understand the role multicast can play in 
improving the performance of collaborative applications, we 
need to identify the distributed architectures of these 
applications and the performance metrics influenced by 
multicasting. 

This research was funded in part by NSF grants ANI 0229998, EIA 03-
03590, IIS 0312328, and IIS 0712794. 



A. Unicast Collaboration Architectures 
In general, a collaborative application is logically broken up 

into a program and a user-interface component. The program 
component manages an object that is shared by all of the users. 
The user-interface component allows interaction with the 
shared object using state that is not shared with others. In other 
words, how an application is broken into a program and user-
interface component depends on what is shared among the 
applications. For example, in the NetMeeting 
application/window sharing system, the set of windows created 
by the shared window clients forms the shared state. Therefore, 
the shared window clients form the program components, and 
the window server forms the user-interface component. On the 
other hand, in the NetMeeting whiteboard application, the 
shape objects, such as circles and squares, form the shared 
state. The module that defines these objects forms the program 
component, and the one that supports the display and editing of 
these objects forms the user-interface component. We will refer 
to messages sent by the user-interface component to the 
program component as input commands, and those sent by the 
program component to the user-interface component as output 
commands. 

As the state of the user-interface component is not shared, it 
executes on each user’s machine. The program component, 
which is logically shared, may be physically replicated or 
centralized on the users’ machines. In the centralized 
architecture, the program component executes on a computer 
belonging to one of the collaborators, receiving input from and 
sending output to all the (user-interface components of the) 
users. Because the computer running the program component 
acts as a computation server for the other computers in the 
session, the centralized architecture is sometimes called a 
client-server architecture. We refer to the computer which is 
(not) running the program component as master (slave) 
computer, and the corresponding user a master (slave) user. In 
the replicated architecture, a separate replica of the program 
component executes on the computer of each user, receiving 
input commands from all users and sending outputs to only the 
local user. As each computer is a master, this architecture is 
also known as a peer-to-peer architecture. The hybrid 
architecture, as its name implies, shares aspects with both 
centralized and replicated architectures. In this architecture, 
more than one but not all computers are masters. As in the 
replicated case, a master computer receives input commands 
from all master users and sends outputs to its local user, and as 
in the centralized case, it receives input commands from and 
sends outputs to (possibly) one or more slave users. In this 
paper, we do not directly evaluate the impact of multicasting on 
hybrid architectures; instead, we infer it from the results for 
centralized and replicated architectures. 

B. Bi-Architecture Collaboration Model 
As shown above, centralized and replicated architectures 

couple the input command processing and data distribution 
tasks. In other words, computers that process input commands 
must also perform all data distribution. For example, in the 
centralized architecture, the master computer must unicast 
output commands to all slave computers, while in the replicated 
architecture, a master computer must unicast all input 

commands it receives from its local user to all other master 
computers. It is not possible for more than one computer to be 
involved in distributing data, which is inconsistent with the 
notion of multicast. 

To support multicast, we define a new bi-architecture 
collaborative systems model that decouples the processing and 
distribution tasks. The processing architecture governs the 
master-slave relationships and the communication architecture 
dictates how input (output) commands are distributed from one 
master computer to other master (slave) computers. By 
definition, when a unicast communication architecture is used, 
the bi-architecture model degenerates to that of traditional 
collaboration architectures. The main question of this work was 
whether a unicast or a multicast communication architecture 
should be used to optimize the performance of a given 
processing architecture. In particular, we consider multicasting 
of the input and output commands from the inputting master 
computer. 

To answer the question, we must first define all 
implementation aspects of the bi-architecture model. There are 
three important implementation-dependent aspects of unicast 
collaboration architectures that have carried over into the bi-
architecture model. The first is whether or not a user-interface 
component can directly interact with files that represent some 
or all of the shared state. We do not place any restrictions on 
such accesses. For example, we allow a user interface on a 
master computer to directly interact with shared files on the 
local file system. The idea of different user-interface 
components implementing different algorithms is not new; for 
instance, it has been advocated to create different users of 
mobile and desktop computers [3]. A related question is 
whether each replicated program component in a replicated 
architecture has access to files needed to support the 
collaboration before the collaborative session begins. We do 
not make this assumption in order to accommodate realistic 
situations, such as a PowerPoint presentation that is 
continuously updated until the start of the lecture. Instead, we 
assume that the necessary files are sent from the master 
computer of the first inputting user to all other master 
computers as part of the first input command. 

The second important implementation-depended aspect of 
the bi-architecture model is the order in which a master 
computer carries out processing and transmission tasks. One 
issue is whether these tasks are carried out in a single thread or 
in separate threads. We assume that both processing and data 
distribution tasks are carried out by a single thread mainly 
because it is difficult to model multiple threads, especially 
without making some platform-specific assumptions about the 
scheduling of the threads. Multi-threaded implementations of 
program components, of course, have the potential of 
improving performance, especially on a multicore or a 
multiprocessor computer. We leave the nature and impact on 
performance of such implementations as future work. 

When all operations are carried out by a single thread, one 
must determine the order in which they are carried out. Two 
scheduling policies are 1) process-first, which favors response 
times by postponing the transmission task until the processing 
task completes and the output is displayed to the local user, and 



2) transmit-first, which favors feedthrough times by first 
transmitting and then processing. In the unicast architectures, 
the scheduling policies are relevant only to master computers. 
The reason is that the slave computers do not participate in the 
data distribution task. When multicast is used, this is no longer 
true; in particular, a slave computer may be responsible for 
forwarding output commands that it receives to other 
computers. Therefore, the scheduling policies must distinguish 
between masters and slaves. Figure 1 shows multicast versions 
of these policies. The key difference between the unicast 
architecture and the bi-architecture model scheduling policies 
is as follows. In the unicast case, a master computer transmits 
an input (output) command to all other computers in the 
replicated (centralized) architecture, respectively. In the 
multicast case, on the other hand, the set of destinations to 
which the inputting user’s master computer transmits a 
command is determined by the multicast overlay. There must 
be at least one destination in the set; otherwise the system 
cannot be collaborative. Moreover, the multicast overlay 
determines the set of destinations to which a non-inputting 
user’s computer forwards received commands. Depending on 
the multicast overlay, the destination set is empty for some 
computers and non-empty for others. Hence, the scheduling 
policies allow a computer to forward to zero or more 
destinations. 

Another issue is handling of conflicting user actions. In 
general, to resolve conflicting operations, extra processing, 
extra communication, or both may be required. For each 
consistency  management algorithm, it may be necessary to 
define a new scheduling policy. We leave this as important 
future work. Our model is consistent with operation 
transformations as they only add to the processing time of 
commands; in particular, no extra communication between 
computers is required. Therefore, by grouping the 
transformation task for a command together with the 
processing of the command, process-first and transmit-first 
scheduling policies explained above support operation 
transformations. However, in our applications and experiments, 
no consistency management was implemented, and social 
control was used to prevent inconsistency. 

C. Choice of Multicast Algorithm 
In this first-cut effort at investigating the bi-architecture 

model, we did not want to develop a new algorithm for creating 
a multicast tree. Instead, we wanted to analyze the performance 
of an existing algorithm. There are two classes of such 
algorithms, namely, IP layer multicast and application layer 
multicast. IP layer multicast assumes that network level routers 
support multicast and can be organized into multicasting 

overlays. Hence, the source host sends only a single copy of a 
message and the routers make sure that the message reaches the 
desired destinations. In other words, the routers perform the 
actual packet duplication and forwarding of messages. In 
contrast, application layer multicast assumes no multicast 
support at the network layer and instead organizes the end-user 
hosts into multicast overlays. In such overlays, the hosts are 
connected by logical links, which map to physical paths in the 
underlying network. Unfortunately, even though multicasting is 
a mature field, because of a lack of a practical approach to 
upgrading legacy backbone routers to include multicast 
functionality, a lack of a scalable inter-domain routing 
protocol, and other deployment issues [6], IP layer multicast is 
not widely available.  For this reason, we analyze an existing 
application layer multicast scheme. 

In general, there are many approaches to create application 
layer multicast overlays. Most of these approaches model the 
network as a graph in which the hosts are the vertices and the 
logical links between these hosts are the edges. Each host is 
assigned a set of constraints, which acts as knobs for 
controlling resource usage. For example, the degree constraints 
can specify the available bandwidth of each host. Each link is 
assigned a cost, which is incurred each time the link is 
traversed. For instance, these costs can specify the latency of a 
link. Using this network model, traditional multicast schemes 
focus on minimizing the diameter of the multicast overlay 
while satisfying the host constraints. The implicit assumption 
in this approach is that the diameter of the overlay determines 
the largest end-to-end delay. 

Recently, Brosh and Shavitt [1] argued that this assumption 
is valid for network-layer but not application-layer overlays 
because the cost of the transmitting data to multiple 
destinations can be significant at the application layer. In other 
words, the approach of optimizing diameters of application-
layer overlays assumes network-layer data distribution 
capabilities at the application layer, even though the data 
distribution capabilities at the two layers are fundamentally 
different. As a result, Brosh and Shavitt define a new algorithm 
for creating application-layer multicast trees, which explicitly 
considers application-layer transmission times (What we call 
transmission times, they called processing times. We use a 
more specific term as there are other kinds of processing tasks 
in our domain, as we see below). As they showed that the 
optimal multicast problem is NP-Complete for their network 
model, Brosh and Shavitt developed a heuristic multicast 
algorithm, called HMDM. They compared its end-to-end 
delays with the end-to-end delays produced by Dijkstra’s 
Shortest Path Tree algorithm, which does not consider 
transmission times. Their simulations of these two algorithms 

Centralized Processing Architecture Replicated Processing Architecture 
Process First Transmit First Process First Transmit First 

If (master computer) 
   Wait for next input cmd 
   Process input cmd 
Else 
   Wait for next output cmd 
Process output cmd 
Unicast output cmd to (zero  
   or more) slave users 
Repeat  

If (master computer) 
   Wait for next input cmd 
   Process input command 
Else 
   Wait for next output cmd 
Unicast output cmd to (zero  
   or more) slave users 
Process output cmd 
Repeat 

Wait for next input cmd 
Process input cmd 
Process output cmd 
Unicast input cmd to (one  
   or more) master users 
Repeat 

Wait for next input cmd 
Unicast input cmd to (zero  
   or more) master users 
Process input cmd 
Process output cmd 
Repeat 

Figure 1. The order in which a computer carries out operations when process first or transmit first scheduling policies are used for the centralized and 
replicated processing architectures 



show that the HMDM scheme provides better end-to-end 
delays than Dijsktra’s scheme. 

In summary, HMDM is the only approach that considers 
the time end-hosts require for duplicating and transmitting 
messages on the network in the building of such a tree. As our 
motivation for applying multicast to collaboration was based on 
the assumption that transmission costs are significant, we 
decided to use HMDM as the basis for our multicast 
architecture. 

III. EVALUATION 

Three important performance metrics for collaborative 
applications are response, feedthrough, and task-completion 
times. The response time for an input command entered by 
useri is defined as the time that elapses from the moment the 
command is entered by useri to the moment useri sees the 
output. The feedthrough time to userj  of an input command 
entered by useri is defined as the time that elapses from the 
moment the command is entered by useri to the moment userj 
sees the output. It is similar to the end-to-end delay metric 
mentioned earlier. Both include network latencies along the 
path from a source computer to a destination computer. They 
are not exactly the same because the feedthrough time also 
contains the time the destination computer requires to process 
the input and/or output command once it arrives. Finally, the 
task-completion time for useri is the time that elapses from the 
moment the collaboration starts to the moment useri sees the 
output for the last input command in the session. It is a function 
of both response and feedthrough times. 

A. Why Multicast is an Issue 
As mentioned above, multicast can degrade performance. In 

particular, it can increase feedthrough time as data must pass 
through intermediate nodes to reach the collaborators. In 
addition, the cost of dynamically building a multicast tree can 
increase task completion times. So why consider multicast? 
The main reason is that the transmission costs incurred by 
master computers to deliver messages to the network can be 
substantial if the computer is slow and/or the number of 
messages is large. To illustrate, consider a scenario in which a 
company team of four people is at an airport waiting for their 
flight home. When they return, they will be giving a company-
wide PowerPoint presentation on whether or not to buy out a 
small firm they just visited. While they are waiting at the 
airport, the presenter is practicing the talk and the remaining 
users are providing feedback. To make sure all the team-

members can follow the presentation, the presenter starts 
talking only once they can all see the first slide on their screens. 

The speaker, user1, and one of the team-members, user2, 
have PDAs while the remaining two team-members, user3 and 
user4, have powerful P4 laptops. They have created an ad-hoc 
network with their devices using a replicated processing 
architecture. As the devices are collocated, the network 
latencies between them are low (i.e. 0ms) and do not affect 
performance. Suppose that the users can choose either a unicast 
(Figure 2 left) or a multicast (Figure 2 right) communication 
architecture. In the unicast case, user1 sends commands to each 
of the three users, while in the multicast case, user1’s PDA 
sends commands only to user3’s laptop, and user3’s laptop 
forwards these commands to the remaining users’ devices. 
Suppose that in the unicast case, user1 sends commands to user4 
last. Also, suppose that in the multicast case, user3 forwards to 
user4 last. Suppose that the transmit-first scheduling policy is 
used. At last, recall our assumption that, in the replicated 
processing architecture, the necessary files are sent from the 
master computer of the first inputting user to all master 
computers as part of the first input command. 

In the unicast case (Figure 2 left), when the presenter, user1, 
enters an input command to start the presentation, the PDA 
transmits the entire presentation file to user2’s, then user3’s, and 
finally user4’s device. User4’s laptop then processes first the 
input command, which includes saving the presentation file 
locally, and then the corresponding output command, which 
includes displaying the first slide to user4. Suppose that the 
time the PDA requires to transmit a single copy of the file is 
3T, the time the laptop requires to process the input command 
containing the presentation file is 2T, and the time the laptop 
requires to process the output command is T. Therefore, the 
amount of time that elapses from the moment user1 starts the 
presentation to the moment user4 sees the first slide is 
9T+2T+T=12T. 

In the multicast case (Figure 2 right), when user1 enters an 
input command to start the presentation, the PDA transmits a 
single copy of the file to user3’s laptop, which then forwards 
the command to the remaining users, first to user2 and then to 
user4. User4’s device then processes the input command and the 
corresponding output command. Suppose that the time the 
laptop requires to transmit the start presentation input 
command to a single destination is T. In this case, the amount 
of time that elapses from the moment user1 enters the start 
presentation command to the moment user4 sees the first slide 
is 3T+T+2T+T=7T. Hence, the multicast communication 

 
Figure 2. Illustrating the response and feedthrough time improvements of multicast (right) compared to unicast (left) 



architecture reduces the feedthrough time of the start 
presentation input command to user4 from 12T to 7T. For the 
same reason, the task completion time is reduced; in particular, 
because user4 sees the first slide earlier in the multicast case 
than in the unicast case, the presenter could start the 
presentation earlier in the multicast case. Finally, regardless of 
whether unicast or multicast is used, once the presenter’s PDA 
completes transmitting the start presentation input command, 
the PDA processes the input command and the corresponding 
output command locally. Because the PDA’s total transmission 
time of the command is 9T in the unicast case and 3T in the 
multicast case, the response time of the command is also 
improved by multicast. 

To summarize, based on the qualitative analysis, there exist 
scenarios, at least in theory, in which the multicast based 
communication architecture provides better response, 
feedthrough, and task completion times than the unicast 
communication architecture. Of course, experiments are 
needed to determine if, in realistic situations, offloading the 
communication task to another node offsets the cost of 
transmitting the message through another link. In particular, the 
HMDM-scheme we use in our bi-architecture model was 
evaluated using random values for its parameters. More 
importantly, the evaluation was not targeted at collaboration. 
Therefore, it is important to evaluate the use of our HMDM-
based multicast architecture in different collaboration 
scenarios. 

B. Experimental Results 
In general, to evaluate the performance of a system, one 

must first identify the parameters relevant to performance. 
Thus, to compare unicast and HMDM-based multicast, we 
must determine the factors that influence the comparison. We 
refer to these as performance parameters. We must also 
consider a second set of parameters. These are the parameters 
needed by HMDM to construct the multicast overlay. We refer 
to these as overlay parameters. The overlay parameters must 
first be assigned values to construct the multicast tree, and then 
the performance parameters must be assigned values to 
evaluate the overlay under various conditions. Ideally, the 
parameters must be assigned values that reflect reality. Next, 
we explain how we followed this procedure to evaluate the 
impact of our HMDM-based bi-architecture model on 
feedthrough, response, and task-completion times, respectively. 

1) Performance and Overlay Parameters 
From the qualitative arguments in the above example, we 

can extract the parameters relevant to the performance of the 
bi-architecture model. The parameters are the number of 
collaborators, the network latencies between the collaborators’ 
computers, the processing and transmission times for a 
command of each user’s computer, and scheduling policy. Two 
of these factors, namely, the number of collaborators and 
network latencies are self-defining. Moreover, scheduling 
policies have already been defined earlier. Finally, the 
processing and transmission times of a command for a 
computer are defined as the amount of time the computer 
required to process the command and transmit it to a single 
destination, respectively. 

It turns out that Brosh and Shavitt use number of 
collaborators, network latencies, and the transmission times as 
parameters for constructing the overlay. Therefore, all of the 
HMDM-scheme overlay parameters are covered by the 
performance parameters. 

2) Gathering Values of HMDM Parameters 
There are a number of ways of assigning values to these 

parameters. One approach is to generate values using some 
mathematical distribution, which is the approach Brosh and 
Shavitt took. The danger with random assignment of parameter 
values is that they may not necessarily reflect reality. 
Therefore, we tried to be more realistic in choosing parameter 
values. 

Based on pings done to remote computers, we use 0ms and 
72ms to simulate half the round-trip time from a U.S. East 
Coast LAN-connected computer to another computer 
connected on this LAN and a German LAN, respectively. 
These two values defined the minimum and maximum network 
latencies in our evaluation. 

Determining realistic values of transmission times was 
more complicated. Recall that the transmission time of a 
command for a computer is defined as the amount of time the 
computer requires to transmit the command to a single 
destination. Therefore, to obtain realistic transmission times, 
we need realistic computers and commands. Ideally, we should 
be able to use publicly available sequences of input commands 
representative of one or more collaborative applications 
involving shared access to a distributed object, but our search 
revealed no such data. An alternative approach, which is the 
one we used, is to extract parameter values from actual 
collaboration logs. We recorded logs of actual collaborations 
and then extracted the values of all performance factors from 
these logs. One issue with this approach is that the parameter 
values obtained from the recorded collaborations may not be 
representative of the values of these parameters in other 
collaborations. In general, applications used in synchronous 
collaborations involving shared access to a distributed object 
can be divided into four categories: 1) logic-centric, which 
process computationally expensive input commands; 2) data-
centric, which distribute large amounts of data; 3) logic-and-
data-centric, which both process computationally expensive 
input commands and distribute large amounts of data; and 4) 
stateless, which do neither. 

We reduce the problem of log generality by analyzing 
collaborations involving applications belonging to three of 
these categories: a Checkers game, which is logic-centric; 
PowerPoint, which is data-centric; and a chat application, 
which is stateless. The checkers game fostered collaboration 
rather the competition: multiple users formed a team that 
played against the application, which used a computationally 
expensive algorithm to calculate its next move. The algorithm 
optimized the computer’s move by analyzing scenarios five 
moves ahead. The users used an audio channel and a 
telepointer to determine their next move. Any of the users 
could then make the actual move. This application was created 
by extending an existing single-user checkers program. 

We analyzed recordings of two PowerPoint presentations 
that were given by one presenter to thirty and sixty audience 



members, respectively. In addition, we recorded two chat-room 
sessions consisting of eighty participants of which as many as 
eight posted messages. Finally, we recorded a collaborative 
checkers game in which the team consisted of two users. Thus, 
in these applications, not only did the nature of the application 
engine vary (logic-centric, data-centric, stateless) but also the 
number of actors and observers. None of the applications had 
concurrency control – the PowerPoint and chat applications did 
not require such control and users of the checker’s program 
used social protocol to decide who made a move. 

These recordings contain actual data and users’ actions – 
PowerPoint commands and slides, checkers moves, and chat 
messages. The checkers engine used in the actual tasks was 
transformed into a collaborative program using an 
infrastructure that has facilities for logging and replaying 
commands. Therefore, extracting input and output commands 
from the generated checker logs was relatively simple. The chat 
programs we logged were the ones implemented by the chat 
rooms we observed. We ran them under Microsoft Live 
Meeting 2005 and used its screen-recording capabilities. As a 
result, we had to use a tedious manual process to extract the 
input command messages in the sessions – analyzing one ten-
minute recording required two hours of work! In addition to 
being three qualitatively different applications, IM, Checkers, 
and PowerPoint turned out to be a good choice of applications 
for which to analyze actual logs for two reasons: 1) the 
parameters values we measured in these logs were fairly wide 
spread, and 2) they represent the kind of tasks users do on a 
daily basis. 

To obtain the transmission time parameter values, we 
replayed these logs using a Java-based infrastructure that has 
facilities for logging and replaying commands. The checkers 
program used in the actual tasks was already transformed into a 
collaborative program using this infrastructure. Hence, the 
checker logs were replayed directly to the program used in the 
actual task. To replay the chat commands, we used the replay-
supporting infrastructure to create our own version of the chat 
application. To replay the PowerPoint commands, we had to 
bridge the gap between our Java-based replay-supporting 
infrastructure and the PowerPoint application. We used the J-
Integra library to create this bridge and relay the replayed 
commands to the PowerPoint application. This library required 
us to assume that slave computers could directly access file 
systems because the information about a slide contained in an 
output command from the master had to be saved in a file 
before it could be displayed by the slave. 

We measured the transmission times for a P2 266MHz 
laptop, a P3 866MHz desktop, and a P4 2.4 GHz desktop. All 
the computers were running Windows XP except the laptop, 
which was running Windows 98. The P2 laptop and the P3 
desktop are used to simulate next generation cell-phones and 
PDAs, respectively. We recorded the average amortized input 
and output command transmission times of each machine for 
checkers, PowerPoint, and chat applications. We removed any 
“outlier” entries from the average calculation, caused for 
instance, by operating system process scheduling issues. To 
reduce these issues, we removed as many active processes on 
each system as possible. Ideally, while we replay the 
recordings, we should run a set of applications users typically 

execute on their systems. However, the typical working set of 
applications is not publicly available so we would have to 
guess which applications to run. For fear of incorrectly 
affecting transmission times by running random applications, 
we used a working set of size zero, a common assumption in 
experiments comparing alternatives. In order to control 
network-related variability, we ran our experiments on our 
local 100Mbit LAN. In addition, we assumed that the data and 
users’ actions in the logs are independent of the number of 
collaborators, the processing powers of the collaborators’ 
computers, and network latencies. 

While the process of obtaining transmission times was 
fairly complicated, it did have a nice side effect that it provided 
the values of the processing parameters. In particular, during 
the experiments, we measured not only the transmission times 
of the input and output commands for each computer, but also 
the processing times of these commands. As for transmission 
times, we recorded the average amortized input and output 
command processing times of each computer for checkers, 
PowerPoint, and chat applications. 

Finally, we had to assign the values of the number of 
collaborators and the processing powers of their machines. As 
mentioned above, in the collaboration recordings that we 
analyzed, the number of users ranged from as few as two in 
Checkers, between thirty and sixty in PowerPoint, and as many 
as eighty in the chat application. Unfortunately, this is not a 
wide enough range of values; in particular, the maximum value 
of the parameter needs to be much bigger to be representative 
of large collaborations, such as a company-wide PowerPoint 
presentation. We used the following as the number of 
collaborators in a session: 5, 10, 15, 20, 25, 30, 40, 50, 100, 
250, 500, 750, 1000, 1500, and 2000. The maximum value of 
2000 is much larger than the maximum value we observed in 
any of the recordings. To cover the values we did observe, we 
use many values less than 100. We are not unaware of any 
public data about and our logs did not record the distribution of 
processing powers of the collaborators’ computers during a 
collaborative session. Therefore, we randomly assigned the 
type of computer of each user to be a P2 laptop, P3 desktop, or 
a P4 desktop. 

3) Simulating the Performance 
Using these values of the transmission time, network 

latency, and number of users parameters, we can use the 
HMDM algorithm to build a multicast overlay for any 
collaboration session in which the users are using P2 laptops, 
P3 desktops, and P4 desktops like the ones for which we 
measured transmission times. In our simulations, we consider 
only scenarios in which all computers can (logically) 
communicate directly. Recall from above that by using 
application layer overlays, we abstracted away firewalls 
between the computers. We include any firewall-related delays 
a message suffers as it travels between two users in the network 
latency assigned to the logical link between the two users. 
Once the overlay is created for a particular scenario, there are 
two ways to compare the performances of unicast and multicast 
communication architectures: experiments and simulation. 

Using the experimental approach, we could replay the same 
collaboration log for both the unicast and multicast 



communication architectures. During each experiment, we 
could measure the response, feedthrough, and task completion 
times. One issue with such experiments is that the performance 
of a distributed system is affected by extraneous factors such as 
operating system process scheduling. As these noise factors are 
not accounted for in either collaboration systems or the HMDM 
scheme, they can skew the measurements. 

The alternative to performing experiments is running 
simulations. In the networking field, NS has made this a 
popular choice mainly because it allows an experimenter to 
control all the extraneous factors. The simulation is done purely 
by mathematical analysis, so noise factors can be assigned a 
zero value. In our case, the benefit of this approach comes at a 
cost – we must now assign suitable values to all parameters 
affecting performance, in particular, processing costs.  

Each simulation was defined by the set of computers used 
in the collaboration, application (which sets the processing and 
transmission times of these computers), network latencies 
between these computers, processing and communication 
architectures, scheduling policy, and source computer type. 
Given this information, as the analysis of Figure 2 showed, we 
can mathematically calculate the response and feedthrough 
times, and therefore the task completion time difference, for the 
unicast and multicast communication architecture cases. 

The above discussion identifies the steps we need to take to 
compare the traditional centralized/replicated architectures with 
the bi-architecture model. For each scenario, we ran 40 
simulations, for which we report the average results along with 
a 95% confidence interval. In most cases, it is difficult to see 
the interval in the graph because the interval is two or three 
orders of magnitudes less than the average, in which case we 
did not graph the interval. 

C. Feedthrough Time Results 
As mentioned above, from a performance perspective, 

multicast has been used to reduce end-to-end delays. Also as 
mentioned above, in collaboration systems, end-to-end delays 
are related to feedthrough times; therefore, we expect that in at 
least some scenarios, the feedthrough times are lower for the 
multicast communication architecture case than for the unicast 
case. To see how much multicast can improve feedthrough 
times compared to unicast, we simulated the feedthrough times 
in realistic collaboration scenarios involving all three 
applications whose recordings we analyzed. For each 
application, we compare the feedthrough times when unicast 
and multicast communication architectures are used alongside 
the centralized and replicated processing architectures. 

Figure 3 contains the results for the transmit-first policy. It 
shows only three of the eighteen simulations because of limited 
space and the fact that the remaining results are similar. Figure 
3 (top-left) shows the replicated architecture IM results 
assuming LAN (i.e. 0ms) network latencies and the P2 laptop 
as the inputting computer. Figure 3 (top-right) shows the 
centralized architecture results for the Next Slide PowerPoint 
command assuming random network latencies between 0ms 
and 72ms and a P4 desktop as the inputting computer. Finally, 
Figure 3 (bottom) shows the replicated architecture results for 
the Next Slide PowerPoint command assuming uniform 

network latencies of 72ms and a P3 desktop as the inputting 
computer. The figure shows that when the transmit-first 
scheduling policy is used, maximum feedthrough times can 
indeed be lower with multicast than with unicast for both 
centralized and replicated processing architectures. In fact, as 
shown by Figure 3 (top-right), when there are 100 users in a 
centralized PPT scenario, the improvement can be as high as 
650ms for the Next Slide commands, and when there are 1000 
users, it can be as high as 6.8 seconds. In the replicated PPT 
scenario, the improvement is much smaller: with 1000 users in 
the session, the feedthrough is only 180ms better with multicast 
than with unicast. 

The reason the feedthrough improvement is much greater 
for the centralized case compared to the replicated case is 
because the PowerPoint transmission times of the P4 desktop in 
the centralized architecture for the Next Slide command are 
higher than those of the P3 desktop in the replicated 
architecture. As mentioned above, we assume that in the 
replicated case, the presenter’s computer sends the entire 
PowerPoint file (7.6Mb in our scenario) to all other users when 
the presenter enters the Start Presentation command, while in 
the centralized case, we assume that the presenter’s computer 
sends only the first slide to all other computers. Therefore, 
when the presenter enters a Next Slide command, the input 
command transmitted to other users in the replicated case 
contains only the number of the next slide to show, while in the 
centralized case, the output to the input command is sent and 
contains the actual binary representation of the next slide, 
which the slave computer must load and display. 

Interesting, these results did not generalize to the process-
first scheduling policy case. Figure 4 contains the results of 
repeating the above experiments using the process-first 
scheduling policy instead of the transmit-first scheduling 
policy. In particular, the feedthrough times provided by the 
unicast communication architecture can be as much as 2 
seconds better (Figure 4 top-right). The reason is that with the 
process-first scheduling policy, every additional end-host on 

 

 
Figure 3. unicast and multicast feedthrough times assuming transmit-first 
scheduling: (top-left) replicated IM results with LAN (i.e. 0ms) network 

latencies and the P2 laptop as the source; (top-right) centralized Next Slide 
PowerPoint command results with random latencies between 0ms and 72ms 
and a P4 desktop as the source; (bottom) replicated Next Slide PowerPoint 

command results with 72ms network latencies and a P3 desktop as the source. 



the path from the source to a destination contributes its 
processing cost to the feedthrough time to the destination. 
Since the length of the path from the source to any destination 
in the traditional collaboration architectures is one, this cost is 
incurred only once. With multicasting, the paths can be longer 
than length one, in which case this cost is incurred multiple 
times. Nevertheless, as the number of users increases, 
eventually it pays to use the multicast scheme as the increasing 
transmission time of the source begins to dominate the constant 
processing costs. In some cases, the number of users has to be 
quite high (1000 in Figure 4 bottom). 

In traditional collaboration architectures, the process-first 
policy degrades feedthrough times (in comparison to the 
transmit-first policy) as remote users must wait for the master 
to process the input. As shown by the above results, in the bi-
architecture model, this policy can further degrade feedthrough 
times because a destination must wait for each computer on the 
path to it from the source to finish processing input. 

D. Response Time Results 
Intuitively, multicast can improve feedthrough times 

because it distributes the data transmission task among multiple 
computers. In other words, it relieves the source computer from 
the task of sending data to all destinations. Because of this, 
multicast also improves response times for both transmit-first 
and process-first scheduling policies. 

Consider first the transmit-first scheduling policy. Recall 
that when this is the case, an end-host must first complete the 
transmit task before starting the process task. Therefore, the 
quicker the end-host can complete the transmit task, the quicker 
it will be able to show the output to its local user, thereby 
improving the response time. To verify this prediction, we 
measured the total transmission times of the source computer in 
the above feedthrough time simulations of the transmit-first 
scheduling policy scenarios. Figure 5 (left), which shows how 
much multicast reduces the total transmission times of the 
source computer compared to unicast, confirms our prediction. 

Consider now the case in which the process-first scheduling 
policy is used. Somewhat counter intuitively, it can also 
improve response times, only not for the first input command 
after the system reaches a quiescent state (i.e. state in which all 
computers are up-to-date and no user has entered another input 
command), but the one after. When the first command out of 
the quiescent state is entered, it is first processed by the 
inputting user’s computer and then transmitted to other 
machines. Thus, the transmission time does not affect the 
response time of this command. However, if the user’s think 
time before the next input command is small, that is, less than 
the source computer’s total transmission time, then when the 
user enters the next input command, the user’s computer will 
still be busy transmitting the previous input command (or its 
corresponding output command). 

In this case, the processing of the previous command delays 
the time at which the computer begins to process the next input 
command, which in turn, increases the response time of the 
command. Thus, by reducing the source computer’s 
transmission time, multicasting increases the chances that when 
the user at the source computer enters consecutive input 
commands, the user’s computer can begin processing each one 
as soon as it is entered. Figure 5 (right) shows that the response 
time of the second input command out of a quiescent state can 
be improved by as much as 6.8 seconds.  

The reason the two graphs in Figure 5 look very similar is 
because other than the scheduling policy setting, the parameters 
used in their simulations were identical. As HMDM does not 
take into account scheduling policies, the results of the two 
simulations must be similar. 

We also have results that show that by reducing the source 
computer’s total transmission time, multicast also improves 
response and feedthrough time degradation. In particular, when 
think times are low (i.e. zero), such as when a user is 
telepointing, multicast reduces the increase in response and 
feedthrough times of each consecutive telepointer command. 
Due to lack of space, we do not present these results here. 

E. Task Completion Time Results 
The discussion so far has outlined two benefits of using 

multicast, namely, improved response and feedthrough times. 
However, these benefits do not come for free; in particular, 
processing time must be spent building the multicast tree (we 
assume that cost of arranging end-hosts into the tree is low). 
Table 1 gives the cost of building the multicast tree for 
different number of collaborators. It shows that when the 
number of collaborators is less than fifty, this cost is negligible. 
On the other hand, for collaborations with more than 1000 

 
Figure 5. Response time improvements with multicast for transmit-first (left) 

and process-first scheduling policy (right). 

 

 
Figure 4. unicast and multicast feedthrough times assuming process-first 
scheduling: (top-left) replicated IM results with LAN (i.e. 0ms) network 

latencies and the P2 laptop as the source; (top-right) centralized Next Slide 
PowerPoint command results with random latencies between 0ms and 72ms 
and a P4 desktop as the source; (bottom) replicated Next Slide PowerPoint 

command results with 72ms network latencies and a P3 desktop as the source. 



participants such as presentations to a company division, the 
cost can be very high. Can it make sense to use multicasting 
when the cost of creating a multicast tree is high? To answer 
this question, consider a PPT scenario in which the source 
computer is a P4 desktop and the network latencies are set to 
0ms between all computers. Assume that all computers are 
running the transmit-first scheduling policy and the lecturer 
does not begin talking about a slide until all observers can see 
the slide. In order to reduce the feedthrough times of 
PowerPoint input commands, the lecturer chooses to wait for 
the multicast tree to complete before starting the lecture. 

One issue is selecting for which PowerPoint command to 
create the multicast overlay, Start Presentation or Next Slide. 
Whichever command the tree is not created for may not 
experience as good of performance as when a tree specifically 
built for it is used. Suppose that because the transmission cost 
of the Start Presentation command dominates that of the Next 
Slide command in the replicated case, while they are similar in 
the centralized case, the tree for the Start Presentation 
command is used. Figure 6 shows the maximum feedthrough 
time improvement when multicast is used instead of unicast for 
Start Presentation (top-left) and Next Slide (top-right) 
commands. Table 1 contains the multicast overlay build times 
for select numbers of users. Given these results, we can 
calculate the least number of slides the lecturer must present in 

order for the task completion time to be improved by using the 
multicast communication architecture. 

Regardless of whether or not multicast is used, the task 
completion time is at least the amount of “talk time” the 
lecturer has. Because it is the same in all cases, we ignore it 
from now on. Instead, we focus on the component of the task 
completion time caused by the lecturer waiting for all the 
observers to see outputs for the lecturer’s input commands. 
Consider the unicast case first. The task completion time equals 
the Start Presentation feedthrough time, start (unicast), plus the 
Next Slide feedthrough time, slide(unicast), multiplied by the 
number of slides, Z(unicast). Therefore, the unicast task 
completion time is 

taskCompTime(unicast) = start(unicast) + 
Z(unicast)*slide(unicast) 

Now consider multicast case. The task completion time 
consists of the time required to build the multicast overlay, 
build(multicast), plus the Start Presentation feedthrough time, 
start(multicast), plus the Next Slide feedthrough time, 
slide(multicast) multiplied by the number of slides, 
Z(multicast). Therefore, the multicast task completion time is 

taskCompTime(multicast) = build(multicast) + 
start(multicast) +  Z(multicast)*slide(multicast) 

To find the number of slides at which it pays to wait for the 
multicast tree to build, we set Z(unicast) = Z(multicast) = Z. 
Then, solving the equations, we get 

Z = (build(multicast) + start(multicast) – 
start(unicast))/(slide(unicast) - 

slide(multicast)) 

Using data from Table 2, we can calculate the number of 
slides the lecturer needs to present in order for the task 
completion time to be reduced by using multicast (Table 3). 
Figure 6 (bottom) illustrates the task completion times for the 
centralized processing architecture when there are 2000 
collaborators. As Figure 6 (bottom) shows, the initial wait of 
573.1 seconds to build the multicast overlay reduces the task 
completion time for presentations with 42 or more slides. 

Interestingly, we have found that in the replicated 
processing architecture case, it pays off to wait for the 
multicast tree to be created and deployed even when there are 
2000 collaborators. Using the same mathematical setup used to 
show the centralized processing architecture results, it turns out 
that unless the presentation has more than 10514 slides, it pays 
wait for the multicast tree to be built. The reason is that when a 
user enters the Start Presentation command and the source 
computer must transmit copies of the PowerPoint file (7.6Mb) 
to the 1999 observers. In this case, we can calculate using data 
in Table 1 and Table 2 that the feedthrough time is over 17 
minutes longer than the total time required to build the 
multicast overlay and transmit the Start Presentation command 
using it. Nevertheless, the maximum feedthrough time function 
is linear with respect to the number of users while the HMDM 
runtime is cubic. Thus, as the number of users increases, 
eventually, it is better to use the unicast for the Start 
Presentation command, even though the feedthrough times of 
the Next Slide may not be optimized. The question of whether 
the users will prefer to wait to start the presentation to obtain 
feedthrough benefits is a user study issue. 

Table 1. HMDM build time in seconds 

# Users 50 100 500 1000 1500 2000 
Build Time (s) 0 0.03 3.32 30.61 178.9 573.1 

 

 

 
Figure 6. (top-left) “Start Presentation,” (top-right) “Next Slide” 

feedthrough improvement for multicast compared to unicast communication 
architectures, and (bottom) task completion times for the centralized 

processing architecture as the number of PPT slides increases. 

Table 2. Selected absolute values from Figure 6 (seconds) 
# Users 50 100 500 1000 1500 2000 

Cent “Start” 0.14 0.29 1.59 3.22 4.85 6.48 
Rep “Start” 35.2 75.6 403.3 814.5 1226 1638 
Cent “Slide” 0.28 0.61 3.35 6.78 10.2 13.63 
Rep “Slide” 0 0 0.02 0.05 0.07 0.1 

Table 3. The number of PPT slides that must be presented in order to gain 
an advantage in the task completion time 

# Users 50 100 500 1000 1500 2000 
# Slides 0 0 1 5 18 42 



IV. DISCUSSION AND CONCLUSIONS 

The contributions of our work can be described at various 
levels of detail. The most abstract message is that multicast 
must be considered as an alternative to unicast in distributed 
synchronous collaborations as it can significantly improve the 
performance of such collaborations. This is important because 
lack of tolerable performance in a given scenario may result in 
users turning to the more expensive alternative of face-to-face 
collaboration. Even worse, it may result in first-time users 
never trying collaboration technology again. We show that 
multicast can improve feedthrough and response times by 
multiple seconds and task completion times by multiple 
minutes. Results by Shneiderman [9] show that users can 
notice 50ms response times, which seems to imply that they 
can also notice 50ms increments (or conversely, decrements) in 
response and feedthrough times. Hence the improvement of 
response and feedthrough times is important. Though less 
crucial, task completion times are also important, especially in 
tightly-scheduled meetings. One of the PowerPoint 
presentations whose log we recorded was allocated a five 
minute time-slot. Therefore, a one-minute delay in the task 
completion time in this scenario forces the presenter to skip 
over a significant portion of the talk. 

Our next-level message is that the traditional set of 
multicast performance factors, consisting of network latencies 
and transmission times, is insufficient for providing optimal 
multicast overlays in our domain. In particular, the set of 
parameters must be expanded to include processing times, 
scheduling policies, and think times. Finally, we introduce the 
bi-architecture collaboration systems model which augments 
traditional collaboration architectures by adding to them 
support for multicast. 

Our work also presents two implementation guidelines for 
future collaboration systems. The first guideline stems from the 
result that the time required to build a multicast tree, regardless 
of whether or not it degrades task completion times, delays the 
start of the collaboration session. It would be useful to support 
dynamic creation and deployment of the multicast overlay. In 
particular, collaborations can begin with a unicast 
communication architecture when multicast overlay build times 
are large. Then, once the overlay is created, it can be deployed 
dynamically to improve the feedthrough times of commands 
from that point on. In this case, however, the feedthrough times 
of the commands entered before the overlay is deployed can be 
(significantly) higher than if they were entered after the overlay 
is deployed. 

The second guideline is regarding scheduling policies. We 
have seen above that multicast overlays created by HMDM can 
improve feedthrough times when a transmit-first scheduling 
policy is used and can degrade them when the process-first 
scheduling policy is used. Therefore, transmit-first should be 
used with the current implementation of the HMDM algorithm. 
On the other hand, process-first scheduling policies favor 
response times. There may be occasions where it is necessary 
to optimize response times. In this case, a mix of the process-
first and transmit-first scheduling policies can be used. The 

source computer can use the process-first policy, which 
optimizes response times, and others can use the transmit-first 
policy, which enables HMDM to create multicast overlays that 
significantly improve feedthrough times. 

The logs we used had limited interactivity. The PowerPoint 
log had unidirectional data flow, and the checkers and chat logs 
had very low bandwidth requirements. It would be useful to 
determine if these results apply to collaboration such as multi-
player online games [8] that have more interactivity and 
symmetric participation. The response and feedthrough time 
benefits of multicast should be particularly relevant to 
architectures used by these games. For instance, in some such 
centralized architectures, the server must both process the input 
commands of all users and distribute the shared state it 
computes. In this case, server performance is critical to the 
interactivity of the game. A multicast overlay built using the 
server and the players’ computers can reduce the server’s 
transmission burden, and hence, allow more processor time to 
be scheduled for the computation of shared state. Experiments 
are needed to evaluate if the feedthrough times will be 
improved, as extra computers on the path from the server to a 
destination can degrade them, as shown above. An issue that 
must be addressed is overlay maintenance, as players 
dynamically join and leave. Another issue is our assumption 
about single-threading, as implementations of these games use 
different threads for processing and transmitting. 

As mentioned above, we did not directly evaluate the 
hybrid version of the bi-architecture model. However, the 
results for replicated and centralized architectures can be 
applied to the replicated and centralized aspects of hybrid 
architectures. For example, the centralized architecture results 
apply when a master computer and its slaves are organized into 
a multicast tree in which output commands from the master 
computer are transmitted. Similarly, the replicated architecture 
results apply when master computers are organized in a 
multicast tree along which input commands are transmitted. 
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