
Read, Write, and Navigation Awareness in Realistic
Multi-View Collaborations

Sasa Junuzovic, Prasun Dewan
Department of Computer Science

University of North Carolina at Chapel Hill
Chapel Hill, NC, USA

{sasa, dewan}@cs.unc.edu

Yong Rui
Microsoft China R&D Group

Microsoft
Beijing, China

yongrui@microsoft.com

Abstract— Read, write, and navigation awareness allow users of a
multi-view collaborative editor to get fine-grained information
about whether others are reading what they are editing, where
others are editing, and to which areas of the document others
have navigated, respectively. We derive new high-level tools that
directly support the three kinds of awareness. The results of a
decision-making study involving the use of these tools revealed
that write awareness helps with fine-grained conflict prevention,
read awareness reduces unnecessary verbal communication, and
navigation awareness is most effective when coupled with read
and write awareness. Thus, the study identifies specific uses of
the three forms of awareness and motivates tools for supporting
them.

Keywords- Awareness; view divergence; multi-user editor

I. INTRODUCTION

Synchronous multi-user editors [5][7] are a practical reality
today. As workplace tasks increase in complexity, teams rather
than individuals are needed to accomplish them. These teams
are finding that traditional single-user editors are of limited use
for collaborative tasks and are beginning to use synchronous
multi-user editors. Driven by market demand, commercial
enterprises are implementing synchronous multi-user editing
capabilities in mainstream applications, such as Google’s Docs
& Spreadsheets, Microsoft’s OneNote, The Coding Monkeys’
SubEthaEdit, and Sun’s JSE8. Such editors can be classified by
whether they support view divergence [1][3][4][9][10][16] or
not. If view divergence is supported, the participants can work
on different areas of the document. We focus on those that
support view-divergence.

Based on usage of the OneNote multi-view editor, we have
found that view-divergence causes several specific problems.
In particular, situations arise in which users’ actions conflict,
leading to lost work or confusing the users when their changes
are applied in an unexpected way. Also, when a discussion of a
particular document area is taking place, the discussion leader
cannot determine that the discussion topic is stale when other
users stop viewing the topic. Moreover, a late-comer may have
to interrupt the current discussion to find out exactly what part
of the document is being discussed, which can seem
unprofessional and cause embarrassment to the late-comer.
These problems occur because the multi-view editor they used

creates the problem of discovering the co-workers’ locations in
the document and what they are doing [21].

The question for this paper was whether these problems can
be overcome using mechanisms that provide read, write, and
navigation awareness, which are not provided by OneNote.
These are variations of the previous concepts of gaze and
location awareness [12], which are defined as where co-
workers are looking and working, respectively. Write
awareness is a fine-grained version of location awareness that
allows users to determine the exact location of each co-
worker’s last change. Similarly, read awareness is a special
case of gaze awareness that allows users to determine who else
can see their last changes. Navigation awareness is a version of
both gaze and location awareness that allows users to
determine to which portion of a shared document others have
scrolled or navigated.

In general, there has been great interest in awareness as it is
expected to increase productivity [11] by contributing to the
feeling of “being there” [12]. Each of the three forms of
awareness schemes has the potential for individually improving
collaboration management. Write awareness can reduce the
problem of concurrent conflicting changes. Previous work has
shown that in WYSIWIS collaboration, where all users can see
each other’s activities, social protocol can reduce conflicts [6].
By showing the exact edit locations of all users, write
awareness has the potential to reduce conflicts in non-
WYSIWIS collaborations. Read awareness has the potential to
identify stale discussion issues. In addition, [4] found that
during a collaboration session, users frequently stop making
changes and simply observe changes being made by others.
Such information is helpful because when another user who is
changing a paragraph has a question about it, then knowing
who else is looking at the paragraph helps target the question at
the right co-worker. By showing who else is looking at the
local changes, read awareness seems like a natural lead-in for
ad-hoc collaboration. Navigation awareness could help users
synchronize their views. Without such awareness, late-comers
to a meeting may have to ask which topic is being discussed,
and meeting participants who multi-task may face a similar
problem if the discussion migrates to a new topic while they
are focused on issues not related to the meeting. In addition,
navigation awareness may help a consumer of some
information to monitor the progress of a producer of the

This research was funded in part by Microsoft and NSF grants ANI 0229998,
EIA 03-03590, IIS 0312328, and IIS 0712794.

information. For example, if one user is editing figures while
another is changing the figure data, the first user may use
navigation awareness to quickly view the other’s changes.

It is important to determine if the potential of each kind of
awareness can actually be realized in realistic collaborations,
that is, collaborations based on actual rather than hypothesized
uses of collaborative tools. However, previous studies have not
answered this question. The usefulness of a particular form of
awareness is a function of the tools used to support it. The
more effort required by the actor and observer to convey and
interpret certain awareness, respectively, the less likely it will
be that the awareness mechanisms are effective. To try and
separate the low-level details for conveying such awareness
from its usefulness, in our work, we derive new high-level or
lightweight tools for supporting the three kinds of awareness.
Using qualitative arguments, we show that our tools are at least
as high-level as previous tools. As a result, we do not
experimentally compare the various awareness tools with each
other to determine how effective they are in conveying the
various forms of awareness. Instead, we compare two versions
of the OneNote multi-user editor – the original one without any
awareness tools and a new one with our tools – to study if the
lowest-cost mechanism we have identified for each kind of
awareness can positively influence user tasks. This study, thus,
determines the usefulness of including tools for supporting
these three forms of awareness in a multi-view editor.

The rest of this paper is organized as follows. Based on the
above scenarios, we first propose a set of awareness hypotheses
that we evaluate in our work. Next, we derive the high-level
tools needed to test these hypotheses. We then describe the user
study designed to evaluate the effects of the three types of
awareness in a decision-making task. Following this, we
discuss previous studies of awareness mechanisms. We end
with conclusions and directions for future work.

II. HYPOTHESES

Ideally, we should hypothesize all of the potential uses of
the three forms of awareness, but it would be difficult to
construct and carry out a lab study in which all of these uses
are likely to occur. In this work, we hypothesize only one use
of each of write, read, and navigation awareness. As write
awareness has the potential to reduce the number of conflicting
operations, our first hypothesis is:

H1: In realistic multi-view collaborative tasks, write
awareness is useful for reducing concurrent nearby edits.

As described above, read awareness can inform a user if
any other users can see the user’s last edit position. Thus,
compared to having no read awareness, we expect that given
read awareness, users entering new information will less often
verbally inform others of these changes. Hence our second
hypothesis is:

H2: In realistic multi-view collaborative tasks, read
awareness is useful for reducing unnecessary verbal exchanges.

Finally, as navigation awareness has the potential to
improve the rate at which a user finds where other users are
looking, our third hypothesis is:

H3: In realistic multi-view collaborative tasks, navigation
awareness is useful for synchronizing views.

III. DERIVING THE SHADOW-BASED AWARENESS TOOLS

As mentioned above, whether these hypotheses are actually
true depends both on the cost of the tools and the benefits of
the awareness they provide. The main question of this work is
can read, write, and navigation awareness tools overcome the
problems of synchronous multi-user editing reported to us by
OneNote users. Existing work has developed a number of
awareness mechanisms that can be used to provide these three
kinds of awareness to various degrees. Comparing the
effectiveness of all (or most) of these tools to each other would
in itself be an important contribution. However, to provide
statistically significant results, the study sample size should be
eight or more. In addition, ideally no study participant should
participate in multiple experiments. Given the number of
existing tools that should be cross compared, the number of
participants and experiments that would need to be managed
and performed is beyond the scope of a single project.

Fortunately, such a study is not required if qualitative
arguments can be used to find mechanisms that are at least as
low-cost as other competing mechanisms. To prove the three
hypotheses, it is then sufficient to use these mechanisms in a
single study that compares a multi-view editor with and
without the mechanisms. This is the approach we have taken. It
requires us to use the most lightweight or high-level awareness
tools we could find or devise in our study. We define the notion
of a high-level awareness mechanism as follows: mechanism
A is more high-level than mechanism B if the overhead
imposed on the actor and the observer by A is lower than that
of B. Combining this definition with the awareness study by
[4], we state our first two principles that guide the selection of
the awareness tools for our study:

Principle 1: The awareness mechanism must automatically
gather information about the actor; in particular, the actor must
not be required to perform explicit actions to provide
awareness to the observer.

Principle 2: The awareness mechanism must minimize
interpretation difficulties compared to other competitive tools;
in particular, the observer must be able to obtain awareness of
the actor with the least effort.

These principles present the functionality criteria. Based on
the comments by our users, screen space is at a high premium.
In some cases, dual monitors or a single large display can
alleviate the problem [22]. The reality, however, is that users
usually do not have such resources available to them, especially
when they are using their laptops away from the office.
Therefore, awareness mechanisms must also satisfy the in-
place design requirement, that is, they cannot occupy additional
screen space. A similar requirement was proposed by [4] who
state that awareness and the object it is related to should be
presented in the same space to improve usefulness. Combining
these requirements, we state our third principle:

Principle 3: The awareness mechanism should be in-place;
that is, it should not occupy additional screen space.

Using these three principles and qualitative arguments, we
derive our shadow-based tools from existing mechanisms and
show that they are at least as high-level as previous tools. To
follow the in-place principle, our tools are superimposed on the
text-editing area and rendered transparently so that they hide no
text. Like many previous mechanisms [1][10][18], our tools
differentiate users by color. For illustration purposes, we use
dark gray, medium gray, and light gray colors to demonstrate
the concepts. In real systems, other colors can be used.

A. Write Awareness
As mentioned above, write awareness provides information

about each user’s exact last editing position. Previous work has
identified a number of tools that can be used to provide write
awareness to various degrees. One class of such tools present a
user with the edit history of all users. One synchronous edit
history mechanism color-codes the text by author [1] so that
users are aware of who edited which parts of the document. If
combined with a “fade-to-regular text color” effect, this
solution can also convey how recent the changes are [6].
Another extension of the previous solution is to implement the
cloudburst model [6], which hides the changes made by a co-
worker from the local user until the co-worker stops making
changes and the local user stops typing. When the changes are
hidden, the local user sees a cloud over the area the co-worker
is editing. This approach is designed to minimize disruptions to
the local user. These mechanisms provide some write
awareness, but they do not display the co-workers’ exact edit
positions, the key information needed for fine-grained conflict
prevention. As a result, it is difficult for an observer to tell
exactly where the actor is editing, which breaks our second
principle of minimizing interpretation difficulties.

Unlike edit history mechanisms, telepointers can be used to
provide awareness of the actors exact edit position, which
means that they satisfy the second principle. On the other hand,
to provide write awareness of text editing operations using a
telepointer, a user must manually adjust the telepointer with
each operation, which is extremely demanding on the actor.
Even worse, the actor may forget to make the adjustments in
which case telepointers provide no write awareness. Thus,
telepointers as write awareness mechanisms break the first
principle of automatically gathering awareness information
about the actor.

One way to address this issue is to modify the telepointer to
automatically follow the insertion point of the actor, that is,
effectively create a telepointer-size magnification of a user’s
caret position and make it public. The work presented in [22]
incorporates this idea in telecaret views, which show the
immediate area around an actor’s insertion point. The telecaret
is displayed in the view by highlighting the actor’s insertion
point. Each time the actor performs an edit operation, the
telecaret is positioned immediately after the character that was
last changed, and whenever the actor uses the arrow and page
up/down keys to move between lines, the telecaret also moves.

The former effect conveys precise write awareness of the
actor. The latter effect, on the other hand, can potentially
provide false write awareness. For example, when editing a
paragraph, the user may use the page up key to temporarily

scroll to an earlier part of the document, check that the current
changes do not break document flow, and then scroll back
down and continue editing the original paragraph. In addition,
in our experience, users often click and highlight document
areas they are reading, which updates the insertion position
even though the users have no intention of making any
changes. Hence, while the user is reading the previous parts of
the document, another user may look at the changes the first
user made, see that they are incomplete, and delete them, all
because the pointer has followed the first user’s insertion point.
To solve this problem, the pointer could be changed to follow
the insertion only when the user is editing; in particular, when
the user is using the page up/down keys or scrolling, the pointer
stays at the last edit position. Such an approach does not
attempt to (incorrectly) guess what the user is about to do;
instead, it relies only on the information it knows.

Another issue with telecaret windows is that they do not
provide information in-place, which violates our third principle
of reducing screen space. More subtly, it also violates our
second principle of minimizing interpretation difficulties. In
particular, to get write awareness, a user must map a location in
the telecaret view to a location in the actual workspace, which
can be tedious and time-consuming. This problem is solved by
showing the pointer in the actual workspace instead of a
separate window, thereby following the in-place principle
proposed in [4].

Such pointer functionality is provided by a new tool we
have created, which we call a write shadow. A “right-hand
holding a pencil” shadow follows the local user’s last edit
position, while a “left-hand holding a pencil” shadow follows a
co-worker’s last edit position as shown in Figure 1 (left). The
shadows are displayed in the workspace itself to minimize the
mapping difficulties with telecaret views explained above. As
Figure 1 (left) shows, the medium gray co-worker is editing the
left note. The local dark gray-user can use the write shadows to
avoid editing near or at the co-worker’s editing position.

The shape of our write shadow was inspired by the work on
shadow communications [15], which found that when people
interact with another person with a shadow, they felt
uncomfortable stepping on the shadow, and when the shadow
touched their own, they felt as if the other person physically
touched them. These results inspired us to transform physical
shadows into virtual shadows in the workspace awareness
domain. The effect of bodily communication, especially of
movement, on coordination in a shared physical workspace has
been recognized as a part of consequential communication
[12], which is the information available as a consequence of a
person’s activity in the environment. For example, if two
people seated at a table reach for the same tool on the table at
the same time, they notice each other’s motions, normally
causing one person to back off. Write shadows are a way of
conveying aspects of consequential communication that are
based on physical shadows. For instance, in our personal
experience, when a shadow crosses our workspace, we tend to
look up to see whose shadow it was.

One issue that all write awareness mechanisms must
consider is staleness of information. In particular, what happens
when a remote user stops editing for a long time, perhaps when

viewing a different location in the document or temporarily
switching to another application? One approach is to convey
how long ago the change of which a user has write awareness
was made. This can be done by fading out awareness
information or showing it in different colors. For example, our
write shadows could slowly fade out over time or turn to
different colors. The basic problem with any such solution
dates back to the problems of preemptively releasing locks –
just because a user has stopped modifying an object does not
mean the user has finished modifying the object. For fear of
conveying incorrect awareness information, our write shadows
simply always mark the position where a user made the last
change (which is known) instead of guessing what the user is
planning to do.

A recent study in single-display groupware [23] evaluated
the effect of showing the area of a window that overlaps with
another window transparently. This work was done
independently of and contemporaneously with our research.
The results of the study showed that this approach allowed the
users to effectively partition screen-space and avoid conflicts.
Our write shadows are a finer-grained version of this idea that
address intra-window rather than inter-window conflicts.

B. Read Awareness
The counterpart of a user knowing exactly where others are

editing is the user knowing when the co-workers can see the
user’s own changes, that is, having read awareness of the text
being edited locally. Telepointers can be used to provide some
read awareness. For example, whenever an actor is reading a
part of the document, the actor could use the telepointer to trace
the text being read much like one uses a pencil tip to follow
printed text. An observer who is editing the document will see
the actor’s telepointer move on the local screen whenever the
actor reads near the observer’s edit position, thereby getting
read awareness. But as in the write awareness case, the actor
must manually invoke and control the telepointer to provide
read awareness to an observer, which means that telepointers
break our first principle of automatically gathering information
about the actor. The view rectangles presented in [2] provide
more direct support for read awareness as follows. Whenever a
part of the local view-port of one user can be seen on the local
view-port of another user, this part of the local view-port of the
first user is overlayed with a transparent rectangle that
identifies the second user (by color). Thus, when the first user
is editing in the overlayed area, the user gets read awareness of
the second user. This solution is more high-level than
telepointers because it collects read awareness information
automatically. One minor issue occurs in the case when users
have different viewport sizes or are using different resolutions.
Suppose there are three users whose viewports are all of

different size. In this case, if the two of the largest viewports
completely overlap with the smallest viewport, then the user
with the smallest viewport will have to do color math to decide
which other users can see local changes. In addition,
overlapping view rectangles may make it difficult to read the
workspace, especially in text editors, where color contrast is
important for readability. Thus, view rectangles as read
awareness mechanisms break our second principle of
minimizing interpretation difficulties.

To solve these problems, we have replaced view rectangles
with read shadows, which work as follows. When a co-worker
can see the local user’s last edit position, and the local user’s
last edit position is within the local user’s view, a read shadow
for the co-worker appears in the local user’s view immediately
above the user’s last edit location. It is displayed above the last
edit position of a user instead of the current caret position for
the following reason. As discussed above, the current caret
position does not necessarily indicate the user’s current edit
position. As read awareness is defined with respect to edit
positions, it makes no sense to display it with respect to the
caret position. The read shadow is displayed immediately
above the local user’s last edit position in order to grab the
user’s attention. As shown in Figure 1 (center), the read
shadows provide awareness that the medium and light gray co-
workers can see the local user’s (dark gray) last edit position. A
user who has not modified the workspace, and hence has no
write shadow, can have a read shadow showing on one or more
collaborators’ screens. In keeping with the virtual shadow
theme, the read shadow is in the shape of an “over the
shoulder” silhouette to portray the fact that someone else can
see the local user’s last modification as if they were looking
over the shoulder of the local user. The co-workers need not be
editing near the local user. As Figure 1 (center) shows, there
are no co-workers’ write shadows.

Any read awareness mechanism, including telepointers,
view rectangles, and read shadows, that automatically collects
what users can see on their screens suffers from the same
problem: the fact that an item appears on a user’s screen does
not mean that the user is actually looking at it. For example, in
a co-editing scenario, if a user is editing a paragraph that
appears on the bottom of a co-worker’s screen, the co-worker
may not actually be following the changes and is instead
reading some other paragraph. Nevertheless, in some cases, the
session context can make read awareness information more
precise. For example, suppose two users are editing two far
apart sections of a document so that their views do not overlap.
At some point, one user makes some changes and asks the
other user to look at them. In this case, when read awareness
eventually informs the user that the co-worker’s view overlaps

Figure 1. (left) Local user’s and a co-worker’s write shadows, (center) local user knows that the local edit position can be seen on the two co-workers’
screens, and (right) local user sees that the local scrollbar elevator overlaps with two other elevators.

with the local view, the user knows that the co-worker is
looking at the changes. In our user study, we evaluate another
scenario in which read awareness is “contextually precise.”

So far, we have presented read and write awareness tools.
We next describe our tool for providing navigation awareness.

C. Navigation Awareness
As stated above, navigation awareness allows a user to

determine to which portion of a shared document another user
has scrolled or navigated. One approach to providing
navigation awareness is to display the participants’ positions in
a mini view of the document. Such a solution is known as a
radar view [19]. Aligning position markers in the radar view
achieves view synchronization. Radar views can also show
rectangles around the document areas that the users are viewing
[18], the user’s mouse-cursor position [9], color-code content
in the mini-view by author [1], and divide the workspace into
regions and display region-specific information [13]. Fish-eye
radar views allocate more space to document areas in which
users are currently in. Some fish-eye views magnify these areas
using mathematical functions [18], while others show only
these areas and ignore the rest [8].

One problem with radar and fish-eye views is that they
require devoted screen space, which means that they break our
third principle of not occupying additional screen space. The
head-up display presented in [9] addresses the problem by
transparently showing the radar-view on top of the workspace.
One issue with this approach is that it is possible that the
artifacts in the head-up display overlap with workspace
artifacts in such a manner that the user experiences double-
vision, which could be both confusing and disorientating. It is
perhaps for this reason that the authors in [9] note that the
display works best in workspaces in which artifacts are sparse.
In text based environments, however, there is very little space
that is not covered by artifacts (i.e. characters), and therefore,
the double-vision problem is particularly prominent.

Unlike the head-up display, which requires no dedicated
screen space, multi-user scrollbars occupy a small amount of
screen space but do not suffer from the double-vision problem.
A multi-user scrollbar shows the scrollbar positions of all the
participants in a co-editing session. Views are synchronized by
lining up the elevators. One type of multi-user scrollbar
displays each elevator in its own column [10]. A solution that
requires less screen space (SubEthaEdit) displays all the
elevators in a single vertical column. A third solution, which
requires a little more space than the second one, but allows an
easier comparison of the local user’s position with the co-
workers’ positions is to display the local user’s elevator in one
column and all the co-workers’ elevators in a single separate
column [1]. However, this solution does not clearly display
elevator overlap when multiple co-workers’ views overlap.

To resolve this issue, the remote scrollbar elevators can be
displayed in a single column but rendered semi-transparently.
When multiple remote elevators overlap, the overlapped region
is painted with a color that is a mix of all the overlapped
scrollbar elevator colors. To help distinguish overlapped
regions from non-overlapped ones, that is, help with color-
math, the overlapped regions can be rendered darker and more

opaque as the degree of overlap increases. Therefore, this is the
functionality provided by our version of the multi-user
scrollbar, which is called the shadowbar. A screenshot of the
shadowbar that illustrates the overlap is shown in Figure 1
(right). In Figure 1 (right), the local user can tell that the
medium and light gray co-workers can, in their remote views,
see everything in the local view since their elevator bars
encompass the local one. The local user also knows that the
two co-workers’ views display common information because
the dark gray area is showing the overlap of their elevators.
This effect is similar to what happens when shadows from
multiple light sources cross – hence the name, shadowbar.
Based on opaqueness and color darkness, the overlapping
regions pinpoint where most users are looking and can be used
to navigate to an area being viewed by a group of users.

The shadowbar, multi-user scrollbars, and the mini-view
tools provide some read and write awareness, but because
screen resolutions and text-editor window sizes vary between
users, these tools are not precise, and ultimately, the user must
decide if co-workers can actually see the local changes or if the
user is about to conflict with another user, which is error prone
and breaks our second principle of minimizing interpretation
effort. In addition, traditional radar-views do not differentiate
between where a user is viewing and where the user last edited
[22]. In fact, this is true of all miniature views and multi-user
scrollbars. As a solution, a radar-view that displays telecarets
was presented in [22] to explicitly provide awareness of both
viewing and working areas. However, the authors in [22]
recognize the resolution problem with radar views, so to
provide more precise awareness they couple the radar view
with the telecaret views and over-the-shoulder views, which
show more detailed viewing locations of remote users. Thus,
the principle of reducing screen space is triple violated in this
case. Finally, these tools and all other miniature views are
shown in a separate window or to the side of the text editing
window. When users are engrossed in typing, they may not
notice the scrollbars moving or the mini-views changing [21].

IV. USER STUDY

As mentioned earlier, the main goal of our work was to
evaluate the effectiveness of write, read, and navigation
awareness in realistic collaborations – to determine if the costs
of providing and interpreting such awareness can be made low
enough to use them to solve real problems of synchronous
editing. Such an evaluation is a function of both awareness
mechanisms and task type. By using our read and write
shadows and the shadowbar, which we have shown using
qualitative arguments in the previous section to be at least as
high-level as existing awareness tools, we minimize the tool
costs, thereby controlling the impact of the low-level details of
these mechanisms on the effectiveness of awareness they
provide. As mentioned above, our work was motivated by the
issues encountered by users of the synchronous multi-user
editor capabilities in OneNote in tasks that involved decision-
making. For our study task, we chose one that mimics this real-
world. We describe the study and the task next.

A. Participant Selection Process
To obtain a proper evaluation of our tools, the study

participants had to be representative of our target population:
daily document editor users. As a result, our participant criteria
were 1) between 18 and 55 years of age, and 2) mid-range
expertise with Microsoft Office. The age criterion includes
college students and office workers, two large text editor user
groups. The mid-range expertise level with Microsoft Office
criterion excludes participants whose potential difficulties with
OneNote usage could affect their evaluation of the awareness
tools. Also, to remove positive bias towards our mechanisms,
we preferred users from outside of our organization.

Some previous studies used undergraduate and graduate
students and academics as study participants. Such a selection
process may yield technically-savvy participants which could
bias the study results. To combat this, we offloaded the
participant selection task to an external company whose
domain-expertise is selecting usability participants. This firm
has a rigorous selection process which can evaluate participants
on a number of dimensions, including Microsoft Office
expertise level. We asked for twenty-four participants.
However, out of the twenty-four participants, eight cancelled
shortly before their session times. In a best effort to run
complete studies, which required participants in groups of
three, four OneNote novices from within our organization, who
did not know anything about this research, participated.

B. User Study Session
In our organization, we have access to a user study area in

which one room, the study room, is separated from the
observer-side room by a one-way mirror. Intercom speakers
and microphones enable communication between the rooms.
We used this area for our study. We provided the participants
with non-tablet PC laptops. We seated them at a single table in
a manner that did not allow them to see each others’ screens.

Since OneNote is relatively new, the participants first
received individual OneNote training. Then they participated in
a training co-editing session during which they learned about
our awareness tools. After the training period, the participants
performed the main tasks, one with and one without the
awareness tools. Each main task had three stages, which we
describe in the next section. In the final part of each session,
the participants completed a questionnaire and a short debrief
interview during which we delved into specific issues observed
during each session. A session ran for about 75 minutes.

C. User Study Scenario
We based our decision-making task on the war-room and

job-candidate ranking meetings, both of which typically have
three stages. In the first stage, users concurrently enter data:
progress reports in war-room and candidate pros and cons in
job-candidate meetings. In the second stage, participants
discuss this data to make sure everyone is aware of all of it. In
the third stage, one user summarizes the meeting. Meanwhile,
the co-workers may update previously entered data. For
example, interviewers may change their opinions of a
candidate. All users must ensure that the summary reflects the
newest information.

At the start of our task, the participants were informed that
they were acting as employees from a car-buying consulting
firm. They were asked to recommend a minivan and a sports
coupe for two different customers based on their own research
and the customers’ preferences. The participants were free to
behave as they would in a regular face-to-face meeting. We
chose a car-ranking task for two reasons. First, many people car
shop or give car advice to friends at some point in time, and
thus the task should be of interest to more participants than a
candidate-ranking task. Second, car-recommending is, unlike
the war-room meeting, not technical and hence should be fun
for the participants.

In the first stage of each task, the participants entered pros
and cons for the cars based on research data provided in paper
form. The participants had similar, but not identical,
information as they might during the war-room or candidate
ranking meetings. The participants were given eight minutes to
enter the data. In the second stage, the participants discussed
the top three pros and cons for each car, and were given five
minutes to complete this stage. This is similar to discussion
stage of the war-room meeting. In the third stage, one user
volunteered to rank the cars (for both user study tasks) based
on the pros and cons, just like one of the participants in war-
room and candidate-ranking meeting volunteers to summarize
the meeting. The remaining users updated the pros and cons
based on new (provided) research. All users were told that the
final ranking must reflect the newest information. This stage
lasted another eight minutes.

Figure 2 illustrates the third stage of the task, showing a
partial screenshot of one of the users, who was not the ranker.
This user’s right-handed write shadow is shown in dark grey.
In addition, the picture shows shadows for the ranker and one
other collaborator, in light and medium grey, respectively. The
local user is editing data for the Mercurion car at the location
indicated by the dark-grey write shadow. Concurrently, the
non-ranking collaborator is editing another pro of the same car,
at the location indicated by the medium grey left-handed write
shadow. Both collaborators can view the changes made by the
local user, as indicated by the two read shadows above the
right-handed write shadow. We also see two scrollbars in the
picture. The right one is the regular OneNote scrollbar while
the left one is the shadowbar. The shadowbar shows the scroll
positions of the two collaborators. It is divided into three
regions, showing the document portions visible to the medium-
grey, both, and light-grey collaborators, respectively.

Figure 2. Partial screenshot from one study showing the shadow

mechanisms in context.

We also see here how shadows are useful for this
collaboration task. Users are able to avoid conflicts by ensuring
that their write shadows do not cross. The shadowbar and write
shadows allow the ranker to poll for the changes made by other
users. In turn, a user can use the ranker’s read shadow, together
with the task context which implies that the ranker is polling, as
an indication that the ranker is looking at the local changes.

D. Data Collection
In total, twenty users participated in seven sessions: six

sessions with three people and one with two. To control for
ordering effects, in four (including the single two-user session),
the participants performed the first task (minivan) with and the
second task (sports car) without the awareness mechanisms. In
the remaining three sessions, the users performed the tasks in
the same order but did the first task without and the second task
with the awareness mechanisms. We collected study data
through a questionnaire, debrief sessions, and OneNote logs.

The questionnaire had three sets of questions that 1)
evaluated the users’ awareness mechanism experience, 2)
compared working with and without the awareness
mechanisms, and 3) measured the most and least favorite
mechanism. The first two sets of questions were answered on a
Likert scale of 1 (“strongly disagree”) to 5 (“strongly agree”)
and balanced positive and negative questions. Each question
also had an “N/A” option. The third section was multiple
choice. For each questions in the first two sections, we pose
(the standard notion of) a null hypothesis that an average value
of 3 or less (reversed for negatively stated questions) implies
that the users do not agree with the question. We chose 3 as the
value because if the average of the users’ answers is higher
than 3, then on average users had to agree or strongly agree
with the question. Using a one sample t-test, for each question
we test the average of the users’ answers against the null
hypothesis to see if it is significantly different. We used a
Bonferroni correction to reduce the potential of calculating a
significant effect by chance.

We used the debrief session to delve into any issues we
observed during the user tasks. For example, we asked users
who seemed confused when performing the tasks without the
tools to recall what caused their confusion. The debrief sessions
were videotaped for later review.

Finally, we recorded logs of the edit and view locations for
each user, one log for each main task. The log entries were
recorded whenever awareness information (a shadow or
shadowbar positions) changed. To reduce the size of the logs,
we recorded entries at one second intervals. Since a single user

cannot do many operations in one second, and since edit and
awareness updates were sent to other users every one and a half
second, recording at one-second intervals captured the
information required to retrace users’ exact edit and view
positions later. We excluded two users’ logs, because the users
did not follow the instructions. This left 10 logs for users who
did the first task with the tools and 8 logs for the other users.

E. User Study Results
1) Write Shadows: To test if write shadows, and hence,

write awareness, will be used for conflict avoidance, we
included questions Q1 “I felt uncomfortable when my write
shadow crossed a co-workers ‘hand with pencil’ shadow” and
Q2 “I tried to keep my write shadow away from a co-worker’s
‘hand with pencil’ shadow” (Table 1) in the questionnaire. The
users neither agreed nor disagreed when asked if they avoided
crossing write shadows, 2.7/5, or if they felt uncomfortable
when their write shadows crossed with those of the co-workers,
2.5/5, but these averages were not significantly different from
the null hypothesis. It appears that the write shadows were not
used for conflict avoidance. However, the debrief sessions
revealed that write shadows were used precisely for conflict
avoidance. One user expressed that “if there was a hand that
was near [my hand] typing something, I knew to press enter
and do [my own] entry, and then it wouldn’t interfere with [the
co-workers].” Another user commented that with the awareness
tools, he avoided conflicts because “if I saw that someone was
typing in the same area, I would go just up a little bit or down a
little bit … and start a new line.” The same user also said that
to avoid conflicts without awareness tools “I choose some very
far away section [from others].” Furthermore, the write
shadows allowed fine-grained conflict avoidance as users could
“go just up a little bit or down a little bit” from a co-worker’s
write shadow to make their own changes. When asked if they
felt more confident making changes to the document knowing
the co-workers’ positions in Q3 (Table 1), the mean response,
4.4, was significantly greater than the null hypothesis of 3
(t(19)=7.84,p<0.0001); thus, user responses indicate that this
was the case, which is consistent with the comments above.

Table 2. Percentage of time user’s edit positions were 0, 1, and 2 lines
apart when editing nearby

Lines Apart 0 1 2

1st With 23.3 20.8 21.4

2nd Without 15.9 16.4 30.1

1st Without 11.9 24.3 30.4

2nd With 6.9 11.7 21.0

Table 1. Questionnaire questions and answers (14 questions omitted due to space limits).

Questionnaire Question N Avg Std Err t DF p
1 I felt uncomfortable when my write shadow crossed a co-workers “hand with pencil” shadow. 20 2.65 0.3101 -1.13 19 5.462

2 I tried to keep my write shadow away from a co-worker’s “hand with pencil” shadow. 19 2.53 0.3852 -1.23 18 4.692

3 I felt more comfortable making changes to the document when I knew where my co-workers were. 19 4.37 0.1746 7.84 18 <.0001

4 It was easy to find my co-workers' positions in the document. 20 4.45 0.1141 12.7 19 <.0001

5 Awareness tools helped me coordinate my work with that of my co-workers. 20 4.15 0.15 7.67 19 <.0001

6 With awareness tools, I was interrupted more by my co-workers. * 20 3.85 0.2436 3.49 19 0.05

* the null hypothesis assumes positive questions so original value of 2.15 is interpreted as 3.85 since the question was negative

A careful log analysis revealed interesting findings. We
analyzed the recorded logs for the vertical distances between
edit positions when users were editing near each other, that is,
when users could see write shadows of other users, which
includes any conflicting edit operations. To measure the effect
of the write shadows, we measured the time users spent editing
at various vertical distances (in multiples of line heights) apart
as a percentage of the total time when they edited near each
other, that is, when one of the users could see one or more
other user’s write shadows. We defined the height of a line to
be the height of the 16 point Verdana font as this was the font
size used in the study. We calculated this data for the first task
with and without the tools, and similarly for the second task.

Table 2 shows the percentage of time when users were 0-2
lines apart from each other, where edit conflicts were most
likely to occur. Our first hypothesis is that the tools will
decrease the number of nearby line edits (conflicts). While the
tools may change the conflicts, familiarity of the OneNote
system may also change the conflicts. This is the well-known
ordering effect. We next analyze how these two factors explain
the data in Table 2. Let � be the conflict decrease caused by the
familiarity of the OneNote editor, that is, the ordering effect.
Let � be the conflict decrease caused by the awareness tools.
Our goal here is to data mine � out of the data in Table 2,
taking into account of the ordering effect �� After taking out
the ordering effect, ��� we have � = 12.0. A logarithmic
regression analysis revealed that the result is not statistically
significant. Nevertheless, the 12% reduction in concurrent edits
0-2 lines apart offers some support for the effectiveness of
write shadows as conflict avoidance tools. Thus, the log
analysis offers further support for our hypothesis and matches
the debrief interview comments. Interestingly, the users who
did the second task with our tools reduced edits 0 lines apart by
5.0% (Z = -2.29, p = 0.0219) and edits 1 line apart by 12.6%,
(Z = -2.99, p = 0.0028) in the second task. These users made a
transition much like the one real-world users of a multi-user
editor without awareness mechanisms would if our tools were
added to the editor. As a result, their performance is perhaps
more relevant than that of the other users.

During the interviews, some users expressed that conflicts
did not occur as much with the write shadows and that the write
shadows were “necessary.” In addition, one group of users
expressed that in absence of explicit conflict resolution tools
such as locks, they could avoid conflicts by “knowing where
someone was [with which] the hands helped the most.”

2) Read Shadows: Optimally, to test if the read shadows,
and hence read awareness, reduce verbal communication, the
conversation amount with and without the awareness
mechanisms should be compared. However, quantifying
“conversation” is difficult, so instead, we delved into
communication issues during debrief interviews. User
comments seem to indicate that the read shadows did decrease
unnecessary verbal communication. As one user expressed it,
with “[read] shadows, I saw that he was looking at what I was
typing, [so] I didn’t need to tell him.” Another user stated that
“I actually liked knowing where people were viewing things,
[…] and the [read] shadow was nice because I would know ‘oh
they saw that’ and that was helpful.” Both users were talking

about the ranker viewing their changes. The debrief session
comments also explain why the positive effect was not
stronger. Some users who made no use of read shadows
expressed that they would have used them in different
scenarios. One user was more specific and stated that “with
time constraints, you tended to rush more. If [in] a different
scenario, you could actually take time when you saw that
someone was looking, and allow them [to see],” the read
shadows would be useful. Users in one group who did not use
the read shadows described a scenario in which they would
have used them. According to them, the read shadows “would
help if you wanted to make sure someone was reading your
stuff.” They added that this could happen if one user said
“everyone go to paragraph two and [the user] would know that
everyone is there.” Thus the results offer further evidence for
our second hypothesis: read awareness reduces unnecessary
verbal communication.

3) Multi-user Shadowbar: To test if the shadowbar, and
hence navigation awareness, helped synchronization user find
where other users were looking, the questionnaire contained a
question about to the relative ease of locating co-workers in the
document. The mean value of the user responses to question
Q4 “It was easy to find my co-workers' positions in the
document” in Table 1, was significantly greater than the null
hypothesis (t(20)=12.7, p<0.0001); thus, the users responses
indicate that the users were able to find the co-workers’
positions easily with the awareness mechanisms.

During the debrief sessions, we investigated how the users
found their co-workers. For some users, the general document
location provided by the shadowbar was enough. In fact, some
of these users did not use the read shadows because they
obtained read awareness from the shadowbar. For example, one
user said that the read shadows were not useful because “I’ve
already got the scrollbars to tell me where they are on the
page.” However, for some users, the shadowbar was useful
only in conjuction with one or both of the other mechanisms.
One user stated that to find the co-workers, “the bar gives the
general area […] and then if there is a hand or the shoulder
[you would know more].” Other users expressed similar
opinions. To find out where a co-worker was editing, the multi-
user shadowbar was used to jump to a general area and then the
co-worker’s write shadow would be used to find the co-
worker’s exact position. If a user was interested in read
awareness of the local changes, the shadowbar was used in
conjunction with the read shadows. One user said that “if you
knew where [the co-workers] were scrollbar-wise and they
were looking over your shoulder, you knew where they were.”
Finally, while we did not specifically test for the shadowbar
usage when the elevators overlap, these situations did occur
during the study. During the ranking stage, the users entering
new data sometimes concurrently changed the same car. Thus,
on the ranker’s screen, their shadowbar elevators overlapped,
informing the ranker where to look for new changes.

4) Other Results: Apart from evaluating each mechanism
individually, it is also useful to compare the mechanisms with
one another. For example, investigating which mechanism was
the most or the least liked can offer insights into how to change
the mechanisms or to decide which mechanism to remove. In
the questionnaire, the users voted for their favorite and least

favorite awareness mechanisms were. The write shadows, the
shadowbar, and the read shadows received 11, 7, and 2 most
favorite, and 4, 2, and 2 least favorite votes, respectively. Thus,
the write shadows were liked the most. There could be multiple
reasons for this. First, as shown above, they were used by users
for fine-grained conflict resolution, and as such instilled
confidence in users when making changes. A second, more
interesting, reason could be that when searching for other users,
looking for write shadows can be as effective as using the
shadowbar, especially in short documents.

We also measured the effectiveness of our tools for
coordinating changes and reducing interruptions. Because the
mean values of the users response to questions Q5 “Awareness
tools helped me coordinate my work with that of my co-
workers” and Q6 “With awareness tools, I was interrupted
more by my co-workers” in Table 1, were significantly higher
than the null hypothesis (t(20)=7.67,p<0.0001;
t(20)=3.49,p=0.05), the users’ responses indicate that they did
not feel that they were interrupted more by their co-workers
with enabled awareness mechanisms. This was confirmed in
the debrief sessions. One user stated that “[without awareness
tools] I was like scroll, scroll, scroll. Where are they editing?
Come on guys tell me where you are editing!” Another user
even explicitly stated that “if you want minimal verbal
communication [the tools] are good!” Also, the users felt that
our awareness tools helped coordinate changes, which is
arguably the most important task of the awareness mechanisms.

Finally, user comments like “Get this on the market!” and
“How many years before we see these tools?” speak for
themselves.

V. RELATED WORK

Awareness mechanisms were studied in the context of
ShrEdit [4], a synchronous multi-user editor, which the users
used to design an automated post office. But instead of
evaluating awareness or defending or comparing specific tools,
they propose awareness tool design guidelines. As mentioned
before, we use these guidelines to define our principles for
selecting which awareness tools to use in our study. Another
study [1] compared the mechanisms of multi-user scrollbars
and text-specific radar-views, and reported that the users
preferred having them to not having them without explaining
the ways in which these tools were used. A later study [10]
extended these results by evaluating the usability of
telepointers, a number of radar view variations, and a multi-
user scrollbar. They found for collaborative newspaper layout
tasks, the users preferred the miniature and radar views over
the other widgets in terms of the type of and ease of
interpretation of the information they displayed. Again, the
focus was on the usability of the tools rather than kinds of uses
to which the tools were put. As the study found that the users
liked the tools, it can be concluded that some form of
awareness supported by them was useful. It is not clear from
this study which specific forms of awareness defined here were
used. In fact, based on qualitative arguments we presented in
Section 3, it is likely that neither read nor write awareness was
used. Moreover, it is not clear if the task required any view
synchronization, and if it did, if users actually used the studied
mechanisms to achieve it. In fact, the system used in the study

provided a special button to teleport to another user’s view.
The paper indicates that several users did not notice/remember
this feature and does not indicate if anyone actually used it. A
more recent study [22] compared a basic radar view with a
combination of radar, over-the-shoulder, and telecaret views.
The results revealed that users preferred the combination to the
simple radar view and that the users thought it was important to
distinguish where a user is viewing from where the user’s
insertion point is. Like the previous study, the focus was on the
tool usability rather than what exactly the tools were used for.
Another study [11] involved “electronic welding of a pipeline.”
In this task, a director asked a performer to execute certain
actions (determined by a script provided by the experimenters)
and checked that the actions were executed correctly. The
results showed that radar views reduced verbal communication
and task completion time, but did not indicate which kind of
awareness supported by these views contributed to these
improvements. An issue with this study is that if a director
knows what exactly is to be done, she could execute the tasks
alone – there is no need for the performer. If the idea is to train
the performer, then the computer could use the script to direct
and check the pupil, as is done in simulation programs – there
is no need for the director. To the best of our knowledge, this
task is not representative of any actual usage of a collaborative
editor to solve a real activity reported in the literature. A highly
scripted exercise such as this one is ideal when comparing
alternative awareness tools as the task steps are more or less the
same in different instances of the exercise using different tools.
However, it leaves open the question of what specific forms of
awareness are useful in actual multi-view collaborations.

In summary, none of the previous studies listed above and
others we are aware of [3][14] has either formulated any of our
hypotheses or reported any of our specific results.

As mentioned above, during a co-editing session, users’
actions may conflict. It is important therefore to provide both
“syntactic consistency,” that is, ensure consistency of users’
displays, and “semantic consistency,” that is, guarantee that the
results of concurrent actions are semantically meaningful. As
OneNote provides syntactic consistency, we studied only the
prevention of conflicts that lead to semantic inconsistency. One
way to handle semantically conflicting edits is to not let them
happen in the first place, which is the reasoning behind locking
approaches. However, locking schemes present several
difficulties one of which is selecting lock granularity [6]. Write
awareness addresses these issues by relying on social protocol
for prevention of semantically conflicting edits.

VI. CONCLUSIONS AND FUTURE WORK

Perhaps the earliest question in CSCW [20] is whether
users should see the same or different views. Sharing the same
view has the practical advantage that a generic application
sharing system can be used to support this interaction for an
arbitrary application. From the users’ point of view, it allows
users to know what their collaborators are seeing. However, it
requires constant synchronization of user views, which is
costly. Moreover, it does not support concurrent manipulation
of independent parts of the shared object. Therefore, there has
been much work in systems supporting view divergence. A
variety of tools have been created for such systems to provide

users with awareness of the views of others. Moreover, studies
have been done to evaluate these tools. However, no previous
work has answered the following question: What specific
problems are created by view divergence in realistic
collaboration tasks and which awareness solutions can
overcome some of these problems? The answer to this question
can increase our understanding of this domain, lead to more
targeted research, and influence commercial products. This
work has addressed this question.

Specifically, our contribution consists of the design of new
awareness tools and the evaluation of the awareness they
provide in a realistic decision-making task. To perform the
study of the effectiveness of awareness, we derived three new
awareness tools from existing mechanisms that directly provide
write, read, and navigation awareness, which are at least as
high-level as existing mechanisms. Our experiment with these
tools shows that 1) write awareness reduces nearby concurrent
edits, and hence conflicting user operations, 2) read awareness
reduces unnecessary verbal communication, and 3) navigation
awareness is most effective when coupled with read and write
awareness. Thus, the design and evaluation components of our
work had a symbiotic relationship in that the tools enabled the
study, which in turn, justified including them in a synchronous
multi-view editor.

In addition, we have identified three general phases of two
decision-making tasks in which views divergence is actually
used: war-room and candidate-ranking meetings. Moreover, we
have identified a lab task that includes these three phases and,
thus, can be used as a basis of other studies of awareness tools.
This task is perhaps our most important contribution it is both
realistic and allows specific benefits of awareness tools to be
studied. Furthermore, we have identified the new metric of
vertical line separation to evaluate collaborator adjacency.
Finally, we qualitatively evaluate how well existing
mechanisms can be used to convey write, read, and navigation
awareness. In fact, in many cases we point a number of subtle
but important issues with many of these tools regardless of
what kind of awareness information they are conveying. Future
versions of these mechanisms can become even more useful by
addressing these issues found in their predecessors.

There are a number of possible ways to extend our work.
Naturally, a whole range of additional user studies of
awareness is desirable. Our work does not imply that alternate
mechanisms that provide same or lower-level support for the
three kinds of awareness will not yield the benefits that resulted
from our mechanisms. This work should encourage studies that
determine if the cost of these mechanisms is also low-enough
compared the benefits. The task we have devised can be used
to conduct such studies. We have taken the in-place
requirement imposed on us by OneNote designers as an axiom.
It would be useful to experimentally determine how crucial this
requirement is to users. It is important to experiment with
potential uses of the three forms of awareness identified here
that were not covered by our study. In addition, exploring the
effectiveness of read and write awareness in graphical and
other text-based collaborations would be interesting. The main
future direction triggered by this paper is further research in

high-level tools for supporting the three forms of awareness.
The shadow-based tools we describe here are only a first-cut at
devising such tools and could be augmented/replaced with
mechanisms supporting, for example, other shadow
representations and sizes, or metaphors other than shadows.

REFERENCES
[1] R.M. Baecker, D. Nastos, I.R. Posner, and K.L. Mawby, “The user-

centred iterative design of collaborative writing software,” INTERCHI
1993.

[2] M. Beaudouin-Lafon and A. Karsenty, “Transparency and awareness in
a real-time groupware system,” UIST 1992.

[3] J. Begole, J., M.B. Rosson, and C.A. Shaffer, “Flexible collaboration
transparency: supporting worker independence in replicated application-
sharing systems,” TOCHI, June 99.

[4] P. Dourish and V. Bellotti, “Awareness and Coordination in Shared
Workspace,” CSCW 1992.

[5] C.A. Ellis, S.J. Gibbs, and G.L. Rein, “Design and use of a group
editor,” EHCI 1990.

[6] C.A. Ellis, S.J. Gibbs, and G.L. Rein, “Groupware: some issues and
experiences,” CACM 1991.

[7] G. Foster and M. Stefik, “Cognoter: theory and practice of a
collaborative tool,” CSCW 1986.

[8] S. Greenberg, C. Gutwin, and A. Cockburn, “Awareness through fisheye
views in relaxed-WYSIWIS groupware,” GI 1996.

[9] Gutwin, C., Greenberg, S., and Roseman, M., “Workspace awareness
support with radar views.” CHI 1996.

[10] C. Gutwin, M. Roseman, and S. Greenberg, “A usability study of
awareness widgets in a shared workspace groupware system,” CSCW
1996.

[11] C. Gutwin and S. Greenberg, “The effects of workspace awareness
support on the usability of real-time distributed groupware,” TOCHI
1999.

[12] C. Gutwin and S. Greenberg, “A descriptive framework of workspace
awareness for real-time groupware,” JCSCW 2002.

[13] D. Li and J. Lu, “A lightweight approach to transparent sharing of
familiar single-user editors,” CSCW 2006.

[14] I. Marsic and B. Dorohonceanu, “Flexible user interfaces for group
collaboration,” IJHCI 2003.

[15] Y. Miwa and C. Ishibiki, “Shadow communication: system for embodied
interaction with remote users,” CSCW 2004.

[16] J.S. Olson, G.M. Olson, M. Storrøsten, and M. Carter, “GroupWork
close up: a comparison of the group design process with and without a
simple group editor,” TOIS, 11(4), Oct 1993.

[17] G.K. Raikundalia and H.L. Zhang, “Newly-discovered group awareness
mechanism for supporting real-time collaborative authoring,” AUIC
2005.

[18] W.A. Schafer and D.A. Bowman, “A comparison of traditional and fish-
eye radar view techniques for spatial collaboration,” GI 2003.

[19] R.B. Smith, T. O’Shea, C. O’Malley, E. Scanlon, and J. Taylor,
“Preliminary experiments with a distributed, multi-media, problem
solving experiment,” ECSCW 1989.

[20] M. Stefik et al., “Beyond the chalkboard: computer support for
collaboration and problem solving in meetings,” CACM 1987.

[21] M. Stefik, D.G. Bobrow, G. Foster, S. Lanning, and D. Tatar,
“WYSIWIS revised: early experiences with multi-user interfaces,”
TOIS, 5(2), Apr 1987.

[22] M.H. Tran, Y. Yang, and G.K. Raikundalia, “Extended radar view and
modification director: awareness mechanisms for synchronous
collaborative authoring,” AUIC 2006.

[23] T. Tsandilas and R. Balakrishnan, “An evaluation of techniques for
reducing spatial interference in single display groupware,” ECSCW
2005.

