
Demand-Driven Compositional

Symbolic Execution

Saswat Anand⋆1, Patrice Godefroid2, and Nikolai Tillmann2

1 Georgia Institute of Technology saswat@cc.gatech.edu
2 Microsoft Research {pg,nikolait}@microsoft.com

Abstract. We discuss how to perform symbolic execution of large pro-
grams in a manner that is both compositional (hence more scalable) and
demand-driven. Compositional symbolic execution means finding feasi-
ble interprocedural program paths by composing symbolic executions
of feasible intraprocedural paths. By demand-driven, we mean that as
few intraprocedural paths as possible are symbolically executed in order
to form an interprocedural path leading to a specific target branch or
statement of interest (like an assertion). A key originality of this work is
that our demand-driven compositional interprocedural symbolic execu-
tion is performed entirely using first-order logic formulas solved with an
off-the-shelf SMT (Satisfiability-Modulo-Theories) solver – no procedure
in-lining or custom algorithm is required for the interprocedural part.
This allows a uniform and elegant way of summarizing procedures at
various levels of detail and of composing those using logic formulas.
This novel symbolic execution technique has been implemented for auto-
matic test input generation in conjunction with Pex, a general automatic
testing framework for .NET applications. Preliminary experimental re-
sults are enouraging. For instance, our tool was able to generate tests
triggering assertion violations in programs with large numbers of pro-
gram paths that were beyond the scope of non-compositional test gen-
eration.

1 Introduction

Given a sequential program P with input parameters
−→
I , the test generation

problem consists of generating automatically a set of input values to exercise as
many program statements as possible. There are essentially two approaches to
solve this problem. Static test generation [17, 24, 8] consists in analyzing the pro-
gram P statically, using symbolic execution techniques to attempt to compute
inputs to drive P along specific paths or branches, but without ever executing the
program. In contrast, dynamic test generation [18, 13, 6] consists in executing the
program, typically starting with some random inputs, while simultaneously per-
forming a symbolic execution to collect symbolic constraints on inputs obtained
from predicates in branch statements along the execution, and then using a con-
straint solver to infer variants of the previous inputs in order to steer program

⋆ The work of this author was done mostly while visiting Microsoft Research.

executions along alternative program paths. Since dynamic test generation ex-
tends static test generation with additional runtime information, it can be more
powerful [13, 12], and is therefore used as the basis of this work.

As recently pointed out [12], automatic test generation (whether static or dy-
namic) does not scale to large programs with many feasible program paths, unless
test generation is performed compositionally. Inspired by interprocedural static
analysis, compositional test generation consists in encoding test results of lower-
level functions with test summaries, expressed using function-input precondi-
tions and function-output postconditions, and then re-using those summaries
when testing higher-level functions. In contrast with traditional interprocedural
static analysis, the framework introduced in [12] involves detailed summaries
where arbitrary function preconditions and postconditions are represented using
logic formulas, and the interprocedural analysis (test generation) is performed
using an automated theorem prover. A key component of this approach is thus
compositional symbolic execution: how to find feasible interprocedural program
paths by composing symbolic executions of feasible intraprocedural paths, rep-
resented as logic “summaries”.

In this paper, we develop compositional symbolic execution further. We
present a detailed formalization of how to generate first-order logic formulas
with uninterpreted functions in order to represent arbitrary function summaries
and allow compositional symbolic execution using a SMT (Satisfiability-Modulo-
Theories) solver. Our formalization generalizes the one of [12] as it allows in-
complete summaries to be expanded lazily on a demand-driven basis, instead
of being expanded in the fixed “innermost-first” order described in [12]. With
demand-driven symbolic execution, as few intraprocedural paths as possible are
symbolically executed in order to form an interprocedural path leading to a spe-
cific target branch or statement of interest (like an assertion). This increased
flexibility also allows test generation to adapt dynamically, as more statements
get covered, in order to focus on those program statements that are still uncov-
ered. In practice, real-life software applications are very complex, and allowing
the search to be demand-driven is often the key to reach a specific target in a rea-
sonable time. It is also useful for selective regression testing aimed at generating
tests targeted to cover new code embedded in old one.

We have implemented demand-driven compositional symbolic execution for
automatic test input generation in conjunction with Pex [22], a general automatic
testing framework for .NET applications. Preliminary experimental results are
enouraging. For instance, our prototype implementation was able to generate
tests triggering assertion violations in programs with large numbers of program
paths that were beyond the scope of non-compositional test generation.

2 Background

We assume we are given a sequential program P with input parameters
−→
I . Sym-

bolic execution of P means symbolically exploring the tree T of all computations
the program exhibits when all possible value assignments to input parameters

are considered. For each control path ρ, that is, a sequence of control locations
of the program, a path constraint φρ is constructed that characterizes the input
assignments for which the program executes along ρ. Each variable appearing
in φρ is thus a program input, while each constraint is expressed in some the-
ory T that can be decided by a theorem prover (for instance, including linear
arithmetic, bit-vector operations, etc.). All the paths can be enumerated by a
search algorithm that explores all possible branches at conditional statements.
The paths ρ for which φρ is satisfiable are feasible and are the only ones that can
be executed by the actual program. The solutions to φρ exactly characterize the
inputs that drive the program through ρ. Assuming that the automated theorem
prover3 used to check the satisfiability of all formulas φρ is sound and complete,
this use of symbolic execution for programs with finitely many paths amounts
to program verification.

In practice, symbolic execution of large programs is bound to be imprecise
due to complex program statements (pointer manipulations, arithmetic opera-
tions, etc.) and calls to operating-system and library functions that are hard or
impossible to reason about symbolically with good enough precision at a reason-
able cost. Whenever precise symbolic execution is not possible during dynamic
test generation, concrete values can be used to simplify constraints and carry on
with a simplified, partial symbolic execution [13].

Systematically executing symbolically all feasible program paths does not
scale to large programs. Indeed, the number of feasible paths can be exponential
in the program size, or even infinite in presence of loops with unbounded num-
ber of iterations. This path explosion can be alleviated by performing symbolic
execution compositionally [12].

Let us assume the program P consists of a set of functions. In what follows,
we use the generic term of function to denote any part of the program P whose
observed behaviors are summarized; obviously, any other kinds of program frag-
ments such as arbitrary program blocks or object methods can be treated as
“functions” as done in this paper. To simplify the presentation, we assume that
the functions in P do not perform recursive calls, and that all the executions
of P terminate. (These assumptions do not prevent P from possibly having in-
finitely many executions paths, as is the case if P contains a loop whose number
of iterations may depend on some unbounded input.)

In compositional symbolic execution [12], a function summary φf for a func-
tion f is defined as a formula of propositional logic whose propositions are con-
straints expressed in the given theory T . φf can be computed by successive itera-
tions and defined as a disjunction of formulas φw of the form φw = prew ∧postw,
where prew is a conjunction of constraints on the inputs of f while postw is a
conjunction of constraints on the outputs of f . φw can be computed from the
path constraint corresponding to the execution path w as described later. An

3 In this paper, we use the terms “automated theorem prover” and “constraint solver”
interchangeably. Recently developed SMT solvers such as Z3 [9] do not only decide
satisfiability of a formula, but can also compute a model, i.e., a satisfying assigment,
which effectively turns such theorem provers into constraint solvers.

input to a function f is any value that can be read by f in some of its execu-
tions, while an output of f is any value written by f in some of its executions
and later read by P after f returns. To simplify the presentation and without
loss of generality, we assume in what follows that each function takes a fixed
number of arguments as inputs and returns a single value. Each value returned
by a function is treated as a fresh symbolic input to the calling context.

3 Motivating Example and Overview

In this paper, we develop compositional symbolic execution further. We present
a detailed formalization of how to generate first-order logic formulas with unin-
terpreted functions in order to represent arbitrary function summaries and allow
compositional symbolic execution using a SMT (Satisfiability-Modulo-Theories)
solver. Our formalization generalizes the one of [12] as it allows incomplete sum-
maries to be expanded lazily on a demand-driven basis. With demand-driven
symbolic execution, as few intraprocedural paths as possible are symbolically
executed in order to form an interprocedural path leading to a specific target
branch or statement of interest (like an assertion). This increased flexibility also
allows test generation to adapt dynamically, as more statements get covered, in
order to focus on those program statements that are still uncovered. It is also
useful for selective regression testing aimed at generating tests targeted to cover
new code embedded in old one.

To illustrate the motivation for demand-driven compositional symbolic ex-
ecution, consider the simple program in Fig. 1, which consists of a top-level
function testAbs which calls another function abs. The intraprocedural execu-
tion tree of each function is shown in Fig. 2. Each node in the execution tree
represents the execution of a program statement such that a path from the root
of the tree to a leaf corresponds to an intraprocedural path. Each path can be
identified by its leaf node. Edges in executions trees are labeled with constraints
expressed in terms of the function inputs. The conjunction of constraints la-
beling the edges of a path represents its associated path constraint as defined
earlier. For example, Fig. 2(a) shows the execution tree of function abs, shown
in Fig. 1, after execution of abs with input x=1. In what follows, we call a node
dangling if it represents a path that has not been exercised yet. For example,
after executing the abs with input x=1, any path on which input is less than or
equal to 0 is not exercised. In Fig. 2(a), the sole dangling node is denoted by a
circle.

The demand-driven compositional symbolic execution we develop in this work
has two key properties: given a specific target to cover, it tries to (1) explore
as few paths as possible (called lazy exploration) and (2) avoid exploring paths
that can be guaranteed not to cover the target (called relevant exploration). We
now illustrate these two features.

Lazy Exploration Assume that we first run the program of Figure 1 by
executing the function testAbs with p=1 and q=1. This first execution will
exercise the then branch of the first conditional statement in abs (node 3), as

int abs (int x){ int testAbs (int p , int q){
i f (x > 0) return x ; int m = abs (p) ;
else i f (x == 0) int n = abs (q) ;

return 100 ; i f (m > n && p > 0)
else return −x ; a s s e r t f a l s e ; // t a r g e t

} }

Fig. 1. Example program

(a) abs, {<1>}

9

10 11

(c) testAbs, {<1,1>}

4

65

8

return 100

if(x == 0)

return −x

7

(b) abs, {<1>, <0>,<−1>}

return x

1

3
return x

if(x > 0)

if(x > 0)

2

abs(p)>abs(q)∧
p>0

abs(p)≤abs(q)∨
p≤0

x > 0x ≤ 0

x = 0 x 6= 0

x > 0x ≤ 0

Fig. 2. Execution-trees of abs and testAbs functions from Fig. 1. Each execution tree
represents paths exercised by a set of test-inputs, each of which is shown as a vector
inside the curly braces.

well as the else branch of the conditional statement in testAbs (node 10). The
execution trees of abs and testAbs resulting from this execution are shown in
Fig. 2(a) and (c), respectively. Suppose we want to to generate a test input to
cover node 11, corresponding to the assertion in testAbs. The search ordering
described in [12] is not target-driven and would attempt to next exercise the
unexplored paths in the innermost, lower-level function abs. In contrast, the
more flexible formalization introduced in the next section allows us to check
whether a combination of currently-known fully-explored intraprocedural paths
are sufficient to generate a new test input covering the target node. In this
example, this is the case as the assertion can be reached in testAbs without
exploring new paths in abs, for instance with values p=2 and q=1.

Relevant Exploration Now, assume we first execute the program with
inputs p=0 and q=1. Suppose our target is again node 11 corresponding to the
assert statement. From the condition guarding the assert statement, observe that
any combination of input values for p and q, where p has a non-positive value,
has no chance to cover the target. As we will see, our proposed algorithm is
able to infer such information automatically from the previous execution with
inputs p=0 and q=1, and will thus prune automatically the entire sub-search
tree where p is not greater than 0.

input : Program P

output: A set of test inputs

exTrees ← emptyExTree ;
input ← RandomInput();
repeat

if input 6= emptyModel then
exTrees ← Execute(P, input, exTrees);
OutputTest(input);

else
RemoveDanglingNode(n);

end

n ← ChooseDanglingNode(exTrees);
if n 6= nil then

input ← FindTestInput(exTrees, n);
end

until n = nil ;
return exTrees ;

Algorithm 1: Test-input Generation algorithm

4 Demand-Driven Compositional Symbolic Execution

4.1 Main Algorithm

Algorithm 1 outlines our test-generation framework. Given a program P, Algo-
rithm 1 iteratively computes a set of test inputs to cover all reachable statements
in the program. The algorithm starts with an empty set of intraprocedural execu-
tion trees, and a random program input. It performs two steps in sequence until
all reachable nodes in the program have been explored. (1) Function Execute

executes the program with some test input, both normally and symbolically.
During symbolic execution of the specific path exercised by the test input, new
nodes and edges with constraint labels are added to the intraprocedural execu-
tion trees of the individual program functions being executed, while dangling
nodes, used as place-holders along this specific path in previous executions, be-
come regular nodes. (2) ChooseDanglingNode chooses a dangling node as the
next target to be covered, using any heuristic (search strategy). If there is no
dangling node remaining, the algorithm terminates. Otherwise, FindTestInput
computes a test input to cover the target, as will be described next.

4.2 Compositional Symbolic Execution

In compositional symbolic execution, the condition under which a node in the
execution tree can be reached from the program’s entry point is the conjunction
of (1) the condition under which the node’s function can be reached, referred to
as calling context ; and (2) the condition under which the node can be reached
within its function, referred to as the local (intraprocedural) path constraint.

Local (Intraprocedural) Path Constraint. The local path constraint
of a node n in the intraprocedural execution tree Tf of function f is defined
as the path constraint of the path w from the entry node of f to the statement
represented by n. The local path constraint of node n, represented by localpc(n),

is expressed in terms of the input parameter symbols
−→
Pf of f and represents a

precondition pre(w) for execution of the path w [12]. It is defined as follows.

localpc(n) := lpcn ∧
∧

for each g(−→a) appearing in lpcn

Dg(
−→a)

where lpcn is the conjunction of constraints appearing on the edges of the path
w from the root of Tf to n, and each definition predicate Dg(

−→a) represents the
(possibly partial) summary currently available for function g called from f, with
−→a as arguments. Definition predicates are formally defined as follows.

Definition predicate. When function f calls function g during symbolic
execution, we treat the result of the function call to g as a (fresh) symbolic input
to f. We represent the result by the expression g(−→a), where −→a are the arguments
expressed in terms of Pf . If the result of the call is directly or indirectly used
in a conditional statement of f, then g(−→a) will appear in the path constraint.
The function symbol g will be treated as an uninterpreted function symbol by
the SMT solver, and we restrict possible interpretations by an axiom of the form
∀x. g(x) = E[x], where E[x] is an expression that may involve the bound variable
x, or if g has a boolean type, ∀x. g(x) ⇔ P [x], where P [x] is a predicate over
x. As an example, for the abs function in Fig. 1, abs can be defined as follows.
ITE denotes the If-Then-Else construct.

∀x. abs(x) ⇔ ITE(x > 0, x, ITE(x = 0, 100,−x))

However, return values of a function on some paths may be unknown since
paths are explored on-demand. In those cases, we cannot use the above encoding
directly. We could employ special undefined value that represents the result of
an unexercised path, and lift all operations accordingly. Instead, our solution
to this problem is use a definition-predicate Dg for each function symbol that
represents the result of a method call. We define this predicate with the axiom
δg as follows.

δg := ∀
−→
Pg. Dg(

−→
Pg) ⇔

∨

leaf l in Tg

localpc(l) ∧ ret(l)

where

ret(l) :=

{

Gl if l is a dangling node

g(
−→
Pg) = Retg(l) otherwise

In the above definition, Retg(l) represents the return-value of g, which is an

expression in terms of
−→
Pg, on the fully-explored intraprocedural path represented

by l. For each dangling node d, Gd represents an auxiliary boolean variable that
uniquely corresponds to d; we use these boolean variables in Sec. 4.3 to control

the search by specifying whether the exploration of a new execution path through
a dangling node is permissible.

For the example shown in Figure 1, suppose we execute testAbs with p =
1 and q = 1. Then the execution-trees for abs and testAbs built based on the
path exercised by this input are shown in Fig. 2(a) and (c) respectively. Now, the
local path-constraint of the node n, labeled 11 in the figure, will be as follows.

localpc(n) := abs(p) > abs(q) ∧ p > 0 ∧ Dabs(p) ∧ Dabs(q)

With the above input, since only the path where x > 0 has been explored in
abs, there is a dangling node d , labeled 2, which represents the (unexplored)
else branch of the conditional statement. The definition predicate Dabs is then
defined by the following axiom.

δabs := ∀x. Dabs(x) ⇔ ITE(x > 0, abs(x) = x,Gd)

If all the paths of abs had been explored (as shown in Fig. 2(b)), its definition-
predicate axiom would instead be as follows.

δabs := ∀x. Dabs(x) ⇔ (x ≤ 0 ∧ x = 0 ∧ abs(x) = 100)
∨(x ≤ 0 ∧ x 6= 0 ∧ abs(x) = −x)
∨(x > 0 ∧ abs(x) = x)

= ∀x. Dabs(x) ⇔ ITE(x ≤ 0, ITE(x = 0, abs(x) = 100, abs(x) = −x), abs(x) = x)

Note that, with the specific innermost-first search order advocated in [12]
for incrementally computing summaries, dangling and target nodes are always
in the current innermost function in the call stack and the above formalization
of partial summaries can therefore be simplified. In contrast, the formalization
presented here is more general as it allows dangling nodes and target nodes to
be located anywhere in the program.

Calling-context Predicate. The calling-context predicate associated with
a function f describes under which conditions, and with which arguments, f
can be reached. The calling-context predicate of function f , written as Cf (−→a),
evaluates to true iff on some program path f can be called with arguments −→a .
Cf (−→a) is defined by the calling-context axiom γf as follows.

γf :=







∀−→a . Cf (−→a) ⇔ −→a =
−→
I if f is the entry function of program P

∀−→a . Cf (−→a) ⇔
∨

for each function g in P

C
g
f (−→a) otherwise

with
C

g
f (−→a) := ∃

−→
Pg. Cg(

−→
Pg) ∧ (knownC

g
f (−→a) ∨ unknownCg)

where

knownC
g
f (−→a) :=

∨

m∈callsites(Tg,f)

−→a = args(m) ∧ localpc(m)

unknownCg :=
∨

dangling node d in Tg

localpc(d) ∧ Gd

We distinguish two cases in γf . First, if f is the entry function of the program

P , then the arguments of f are the program inputs
−→
I 4. Otherwise, Cf (−→a) is true

iff f can be called from some function g (which may be f itself) with arguments
−→a ; C

g
f (−→a) represents the condition under which g may call f with arguments

−→a . C
g
f (−→a) in turn evaluates to true iff (1) g itself can be called with arguments

−→
Pg; and either (2.a) f can be called from g in a known call site denoted by
m ∈ callsites(Tg, f) with arguments −→a = args(m), where args(m) denote the

arguments (in terms of
−→
Pg) passed to call at m; or (2.b) f may be called (with

unknown arguments) on a path in g, represented by a dangling node d, that
has not been explored so far. For each of these known or possible call sites, the
local path constraint localpc(m) leading to the known call site m or localpc(d)
leading to a possible call site d, respectively, is appended as a condition necessary
to reach the respective call site.

Consider again the program shown in Fig. 1 with testAbs as the top-level
entry function. The calling-context predicate for testAbs is then defined by the
following axiom.

γtestAbs := ∀p, q. CtestAbs(p, q) ⇔ p =
−→
I (0) ∧ q =

−→
I (1).

For the function abs, the definition of the calling-context predicate is more com-
plicated because abs can be called twice in testAbs. Suppose the execution
trees of abs and testAbs are as shown in Fig. 2(b) and (c) respectively. For
both known call-sites of abs in testAbs, where p and q are passed as arguments,
localpc evaluates to true. And, there is one unknown call-site, which is repre-
sented by the dangling node d (labeled 11). For d, we have localpc(d) := abs(p) >

abs(q)∧ p > 0∧Dabs(p)∧Dabs(q). Now, Cabs(a) is defined by the axiom γabs as
follows.

γabs := ∀a. Cabs(a) ⇔ CtestAbs
abs (a)

CtestAbs
abs (a) := ∃p, q. CtestAbs(p, q) ∧ (a = p ∨ a = q

∨(abs(p) > abs(q) ∧ p > 0 ∧ Dabs(p) ∧ Dabs(q) ∧ Gd))

Note that an existential quantification is used in C
g
f to limit the scope of pa-

rameter symbols Pg to specific call-sites. However, this existential quantification
can be eliminated by skolemization since it always appears within the scope of
the universal quantifier in the definition of γf .

Also note that the formulation proposed in [12], does not include the notion of
calling-context predicate because it dictates a fixed bottom-up ordering in which
paths are explored. In this work, since we relax the restriction on the order so
that paths can be explored in arbitrary order (e.g., on-demand), calling-context
predicates become necessary.

Interprocedural path constraint. Given a node n in the intraprocedural
execution tree Tf of a function f , the path constraints of multiple interproce-
dural paths to n are Ψn, which is defined as follows. Γbase represents the set of

4 W.l.o.g., we assume that the top-level entry function is not recursive (since one can
always define a non-recursive higher-level wrapper function to call the original entry
function).

basic axioms, e.g. length of an array is always non-negative or an axiom that
encodes the transitivity property of sub-typing relation.

Ψn := localpc(n) ∧ Cf (
−→
Pf) ∧ Γbase ∧

∧

Cf (−→a) appears in Ψn

γf ∧
∧

f(−→a) appears in Ψn

δf

Ψn represents the disjunction of path-constraints of all interprocedural paths
to target n that can be formed by joining intraprocedural paths, represented
by execution-trees of different functions. An intraprocedural path p in Tf can
be joined with an intraprocedural path q in Tg, if (1) p ends at a leaf node
(possibly a dangling node) in Tf , and q starts at the target-node of an edge in
Tg corresponding to a call-site of f in g; or, (2) p ends at the source-node of an
edge representing a call-site of g in f and q starts at the entry-node of Tg; or,
(3) p ends at a dangling node, and q starts from the entry-node of Tg, where g

is any arbitrary function.
With compositional symbolic execution, the size of the path-constraints are

linear in the sum of the sizes of the execution trees Tf [12].
Examples. As our first example, suppose the execution trees for abs and

testAbs are as shown in Fig. 2(b) and (c), respectively. If the target is the node
labeled 11, then the interprocedural path-constraint is as follows.

abs(p) > abs(q) ∧ p > 0 ∧ Dabs(p) ∧ Dabs(q) ∧ p > 0 ∧ CtestAbs(p, q)
∧

∀x. Dabs(x) ⇔ ITE(x ≤ 0, ITE(x = 0, abs(x) = 100, abs(x) = −x), abs(x) = x)
∧

∀p, q. CtestAbs(p, q) ⇔ p =
−→
I (0) ∧ q =

−→
I (1)

As another example, suppose the execution tree for abs and testAbs are as
shown in Fig. 2(b) and (c), respectively. Now if the target is node labeled 2,
the path-constraint is as follows. G11 represents the unique boolean variable
corresponding to the dangling node labeled 11.

x ≤ 0 ∧ Cabs(x)
∧

∀x. Dabs(x) ⇔ ITE(x ≤ 0, ITE(x = 0, abs(x) = 100, abs(x) = −x), abs(x) = x)
∧

∀a. Cabs(a) ⇔ ∃p, q. CtestAbs(p, q) ∧ (a = p ∨ a = q

∨(abs(p) > abs(q) ∧ p > 0 ∧ Dabs(p) ∧ Dabs(q) ∧ G11))
∧

∀p, q. CtestAbs(p, q) ⇔ p =
−→
I (0) ∧ q =

−→
I (1)

4.3 Demand-Driven Symbolic Execution

In compositional symbolic execution, interprocedural paths are formed by com-
bining intraprocedural paths. To allow compositional symbolic execution to be
demand-driven, we allow in this work (unlike [12]) interprocedural paths to be
formed by combining intraprocedural paths that end in dangling nodes. We call
partially-explored an interprocedural path that goes through one or more dan-
gling nodes; otherwise the path is called fully-explored. Note that a fully-explored
path may end at, but not go through, a dangling node.

Algorithm 2 is used to find a feasible, fully-explored, interprocedural path
form entry of the program to the target node using demand-driven compositional

symbolic execution. The algorithm corresponds to the subroutine FindTestInput
function in Algorithm 1. The algorithm takes in a set of intraprocedural execu-
tion trees exTrees, and a dangling node n in one of these execution trees, which
is the target to cover. It returns either (1) a designated value emptyModel rep-

resenting the fact that the target node is unreachable, or (2) program inputs
−→
I

that exercises a path that may cover the target. The algorithm uses an auxil-
iary function FindTestInput(Ψ), which returns a model for path constraint Ψ

if it is satisfiable, or returns emptyModel otherwise. G(Ψ) represents the set of
all boolean flags that appear in the path constraint Ψ , each of which uniquely
corresponds to a dangling node in exTrees. The algorithm first computes the
interprocedural path constraint for the target node n in exTrees as presented in
Sec. 4.2. Then it performs two steps, referred to as lazy exploration and relevant
exploration in what follows.

Lazy Exploration In this step, the algorithm checks if it is possible to form
a feasible, fully-explored, interprocedural path to n by combining only (fully-
explored) intraprocedural paths in exTrees. To do so, it computes a constraint
that represents the disjunction of path constraints of all such paths and checks its
satisfiability. The new constraint is formed by conjoining Ψn with equations that
set all variables but Gn in G(Ψn) to false so that all intraprocedural paths that
end at a dangling node other than n are made infeasible. If the augmented con-
straint is satisfiable, FindModel returns a program test input that is guaranteed
to cover the target (provided symbolic execution has perfect precision). Other-
wise, we need to explore new partially-explored intraprocedural paths, which is
done in the next step.

Relevant Exploration We say that a partially-explored, interprocedural
path is relevant if it ends at the target. In other words, such a path starts
at the program entry, goes through one or more dangling nodes, finally taking
the path from the root node of Tf to the target node n, where Tf represents the
execution tree of function f where n is located. In this second step, the algorithm
checks if a feasible relevant path can be formed by combining all (both fully-
explored and partially-explored) intraprocedural paths in exTrees. To do so, the
algorithm checks satisfiability of Ψn with a second call to FindModel. If Ψn is
unsatisfiable, the algorithm returns emptyModel representing unreachability of
the target. Otherwise, it returns a program input that may exercise a path to
the target. This time, the boolean variables in G(Ψn) are not constrained to any
specific value as is done in the previous step. As a result, the constraint solver
assigns true to a boolean variable if the path to the corresponding dangling node
is used to form the interprocedural path to the target. Such a relevant path is
not guaranteed to reach the target, since the program’s behavior at dangling
nodes, which may appear on a relevant path, is currently unknown.

The following theorems define the correctness of the above algorithms. These
theorems hold assuming symbolic execution has perfect precision. (Proof sketches
are included in the appendix.)

Theorem (Relative Completeness) If Algorithm 2 returns emptyModel, then

input : Set of execution-trees exTrees, target node n to be covered
output: Program inputs that may cover n, or emptyModel if the target is

unreachable

Ψn ← InterprocPC(n,exTrees);

input ← FindModel(Ψn ∧
^

Gd∈G(Ψn)∧d 6=n

Gd = false);

if input = emptyModel then
input ← FindModel(Ψn);

end

return input ;

Algorithm 2: Demand-driven, compositional FindTestInput algorithm

the target n is unreachable.

Theorem (Progress) If Algorithm 2 returns a program input
−→
I (different

from emptyModel), then the execution of the program with
−→
I exercises a new

path (i.e., at least one dangling node is removed from exTrees).

Theorem (Termination) If the program has a finite number of paths, Al-
gorithm 1 terminates.

5 Pex

We implemented a prototype of the proposed technique in Pex [22], a general
automatic testing framework for .NET programs. Pex generates test inputs for
parameterized unit tests [23] using a variation of dynamic[13] test generation
with Z3[9] as its constraint solver.

Background. Pex’ goal is to analyze as many feasible execution paths of
a given .NET program as possible in a given amount of time. Since dynamic
symbolic execution discovers reachable statements of the program incrementally
by diverting from already discovered execution paths, we want to reach par-
ticular target statements which are located just beyond the already explored
frontier. Dynamic symbolic execution instead of static symbolic execution was
implemented in Pex since the dynamic variant can be applied on real-world pro-
grams that interact with an external environment. In such cases, Pex simply
does not see conditional branches performed in code not written in .NET, e.g.
native code. The resulting constraint systems may no longer accurately charac-
terize the program’s behavior, and Pex prunes such paths. As a consequence,
Pex always maintains an under-approximation of the program’s behavior, which
is appropriate for testing.

Choosing dangling nodes as targets. From the execution tree that has
been explored at any point in time, Pex picks a dangling node as the next target.
Pex implements a fair choice between all dangling nodes. Pex includes various
fair strategies which partition all dangling nodes into equivalence classes, and

then pick a representative of the least often chosen class. The equivalence classes
cluster nodes by mapping them (1) to the branch statement in the program of
which the node is an instance, or (2) the stack trace at the time the node
was created, or (3) the depths of the node in the execution tree. All such fair
strategies are combined in a meta-strategy that performs a fair choice between
the strategies.

Constraint solving. Pex performs various preprocessing steps to reduce
the size of the formula before handing it over to the constraint solver, similar to
constraint caching, and independent constraint optimization, as described in [6].
Pex employs Z3 [9] as its constraint solver. Except floating point arithmetic, Pex
faithfully encodes all constraints arising in safe .NET programs such that Z3 can
decide them with its built-in decision procedures for propositional logic, fixed
sized bit-vectors, tuples, maps, and quantifiers. Besides the axioms presented in
this paper, Pex also builds a background axiom that encodes the constraints
of the .NET type system and virtual method dispatch as universally quantified
formulas.

Applications. Pex has been applied within Microsoft to several .NET appli-
cations. In particular, it has found several known and unknown bugs, including
security critical bugs, in released and still developed portions of the .NET Base
Class Libraries.

6 Preliminary Experiments

We present experiments with three programs written in C# using both non-
compositional and demand-driven compositional symbolic execution. These ex-
periments were conducted on a 3.4 GHz machine with 2 GB memory.

HWM is program that takes a string as an argument, and an assertion
fails if the input string contains all of the four substrings: “Hello”, “world”,
“at”, “Microsoft!”. Although it is a simple program, it has hundreds of mil-
lions of feasible whole-program paths. The program has a main method that
calls contains(s,t) four times in succession. contains(s,t) checks if string s

contains substring t. contains(s,t) calls containsAt(s,i,t) that checks if s
contains t starting from index i in s.

Parser is a parser for a subset of a pascal-like language. The program takes
a string as argument, and successfully parses it if it represents a syntactically
valid program in the language. An assertion is violated if parsing is successful. A
valid program starts with the keyword “program” followed by an arbitrary string
representing program name. Furthermore, the body of the program starts with
keyword “begin” and end with keyword “end”. And the body may optionally
include function definitions.

IncDec is a program that takes an integer as argument. It increments it sev-
eral times and then decrements until a certain condition specified as an assertion
is satisfied.

The table in Fig. 3 presents the results of those experiments. The three first
columns represent the total number of executions, the total time taken over all

Benchmark No. of Executions Time in sec time per execution Exception found

new old new old new old new old

HWM 37 maxed 65 705 1.75 0.02 yes no
Parser 144 maxed 71 338 0.49 0.01 yes yes
IncDec 74 1207 14 43 0.18 0.03 yes yes

Fig. 3. Comparison between new (demand-driven, compositional) and old (non-
compositional) symbolic execution techniques

executions, and time taken per execution, respectively. The last column shows
whether the respective technique was able to generate an input that violates the
assert statement contained in each program. In the column showing the number
of executions, “maxed” denotes that non-compositional symbolic execution hits
the upper bound on the number of execution of 20,000; in those cases, total
execution time time represents the time taken to reach the upper bound.

We make the following observations from the table in Fig. 3. (1) The number
of executions required with demand-driven compositional symbolic execution
is at least several orders of magnitude smaller compared to non-compositional
symbolic execution. (2) The improvement in total time cannot be measured
as non-compositional symbolic execution technique hits the upper bound on
the number of execution in two of the three cases. However, comparing the
number of execution required for the two techniques, it will be safe to claim
that the proposed technique can be many orders of magnitude faster than the
other technique (if at all it finishes). (3) The time taken for each execution
increases when the symbolic execution is demand-driven and compositional, as
the formulas generated are more complicated and the constraint solver needs
more time to solve those, although most can be solved in seconds. (4) In HWM,
only the search with demand-driven compositional symbolic execution is able
to find the assertion violation, whereas the non-compositional search is lost in
search-space due to path explosion. The other two examples have fewer execution
paths, and the search heuristics implemented in Pex are able to find the assertion
violations, even with non-compositional searches.

7 Other Related Work

Interprocedural static analysis always involves some form of summarization [21].
Summaries are usually defined either at some fixed-level of abstraction, e.g., for
points-to analysis [19], or as abstractions of intraprocedural pre and postcondi-
tions, e.g., projections onto a set of predicates [3, 25]. Even when a SAT solver is
used for a precise intraprocedural analysis [7, 25, 2], the interprocedural part of
the analysis itself is carried out either using some custom fixpoint computation
algorithm [5, 25] or by (eagerly) in-lining functions [7, 2], the latter leading to
combinatorial explosion.

In contrast with prior work on interprocedural static analysis, we represent
function summaries as uninterpreted functions with arbitrary pre/postcondi-
tions represented as logic formulas, and we use an SMT solver to carry out the
interprocedural part of the analysis. Of course, the SMT solver may need to
in-line summaries during its search for a model satisfying a whole-program path
constraint, but it will do so lazily, only if necessary, and while memoizing new in-
duced facts in order to avoid re-inferring those later, hence simulating the effect
of caching previously-considered calling contexts and new summaries inferred by
transitivity, as in compositional algorithms for hierarchical finite-state machine
verification [1].

How to perform abstract symbolic execution with simplified summary rep-
resentations [16, 2, 14] in static program analysis is orthogonal to the demand-
driven and compositionality issues addressed in our paper.

The use of automatically-generated software stubs [13] for abstracting (over-
approximating) lower-level functions during dynamic test generation [20, 10] is
also mostly orthogonal to our approach. However, the practicality of this idea
is questionable because anticipating side-effects of stubbed functions accurately
is problematic. In contrast, our approach is compositional while being grounded
in testing and concrete execution,, thus without ever generating false alarms.

Demand-driven dynamic test generation for single procedures has previously
been discussed in [18, 15]. This prior work is based on dataflow analysis, does not
use logic and automated theorem proving, and does not discuss interprocedural
analysis. As discussed earlier, our work extends the compositional test generation
framework introduced in [12] by precisely formalizing how to implement it using
first-order logic formulas with uninterpreted functions and a SMT solver, and
by allowing it to be demand-driven.

8 Conclusion

This paper presents an automatic and efficient technique for test-input gener-
ation, which is both demand-driven and compositional. By demand-driven, we
mean, given a target to cover, the technique aims to explore as few paths as
possible (called lazy exploration), and avoid exploring paths that can be guar-
anteed not to cover the target (called relevant exploration). By compositional,
we mean, instead of exploring each interprocedural path in isolation, the tech-
nique finds feasible, interprocedural paths by combining intraprocedural paths.
Because the technique is demand-driven it is very efficient when the goal is to
cover a particular location in the program (e.g., assertions). And, due to its com-
positional feature, it can alleviate the path-explosion problem, which severely
limits the scalability of automatic test-input generation techniques. We have a
prototype implementation of the proposed technique in Microsoft’s Pex test-
generation tool. Preliminary experimental results are promising. Currently, we
are extending our prototype to handle implementation issues such as summariz-
ing side-effects through the heap. Future work includes applying the technique
to a larger set of programs to further assess its effectiveness.

9 Acknowledgments

We would like to thank Jonathan ’Peli’ de Halleux, one of the main developers of
Pex, for his help. We would also like to thank Nikolaj Bjorner and Leonardo de
Moura for the Z3 theorem prover, and their support while we were using early
versions of Z3.

References

1. R. Alur and M. Yannakakis. Model Checking of Hierarchical State Machines. In
Proceedings of FSE’98, pages 175–188, 1998.

2. D. Babic and A. J. Hu. Structural Abstraction of Software Verification Conditions.
In CAV’2007, Berlin, July 2007.

3. T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic Predicate Ab-
straction of C Programs. In Proceedings of PLDI’2001, 2001.

4. K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a bdd
package. In DAC ’90: Proceedings of the 27th ACM/IEEE conference on Design
automation, pages 40–45, New York, NY, USA, 1990. ACM Press.

5. W.R. Bush, J.D. Pincus, and D.J. Sielaff. A static analyzer for finding dynamic
programming errors. Software Practice and Experience, 30(7):775–802, 2000.

6. C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE:
Automatically Generating Inputs of Death. In ACM CCS, 2006.

7. E. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-C Programs. In
Proceedings of TACAS’2004, 2004.

8. C. Csallner and Y. Smaragdakis. Check’n Crash: Combining Static Checking and
Testing. In ICSE’2005. ACM, May 2005.

9. L. de Moura and N. Bjorner. Z3, 2007. Web page: http://research.microsoft.
com/projects/Z3.

10. D. Engler and D. Dunbar. Under-constrained execution: making automatic code
destruction easy and scalable. In Proceedings of ISSTA’2007, 2007.

11. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In PLDI’2002, volume 37-5, pages 234–245,
June 2002.

12. P. Godefroid. Compositional Dynamic Test Generation. In POPL’2007, pages
47–54, Nice, January 2007.

13. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Random
Testing. In PLDI’2005, pages 213–223, Chicago, June 2005.

14. D. Gopan and T. Reps. Low-level Library Analysis and Summarization. In
CAV’2007, Berlin, July 2007.

15. N. Gupta, A. P. Mathur, and M. L. Soffa. Generating Test Data for Branch
Coverage. In Proceedings of ASE’2000, pages 219–227, September 2000.

16. S. Khurshid and Y. L. Suen. Generalizing Symbolic Execution to Library Classes.
In PASTE’2005, Lisbon, September 2005.

17. J. C. King. Symbolic Execution and Program Testing. Journal of the ACM,
19(7):385–394, 1976.

18. B. Korel. A Dynamic Approach of Test Data Generation. In ICSM, pages 311–317,
San Diego, November 1990.

19. V. B. Livshits and M. Lam. Tracking Pointers with Path and Context Sensitivity
for Bug Detection in C Programs. In Proceedings of FSE’2003, 2003.

20. R. Majumdar and K. Sen. Latest: Lazy dynamic test input generation. Technical
report, UC Berkeley, 2007.

21. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In Proceedings of POPL’95, pages 49–61, 1995.

22. N. Tillmann and J. de Halleux. Pex, 2007. Web page: http://research.

microsoft.com/Pex.
23. N. Tillmann and W. Schulte. Parameterized unit tests. In ESEC-FSE,, pages

253–262. ACM, 2005.
24. W. Visser, C. Pasareanu, and S. Khurshid. Test Input Generation with Java

PathFinder. In ISSTA’04, Boston, July 2004.
25. Y. Xie and A. Aiken. Scalable Error Detection Using Boolean Satisfiability. In

Proceedings of POPL’2005, 2005.

A Proofs of Theorems

Theorem (Relative Completeness) If Algorithm 2 returns emptyModel, then
the target n is unreachable.

Proof by contradiction: Assume n is reachable, i.e., there is feasible, inter-
procedural path p to the target n. We can split p into a set of intraprocedural
subpaths SP := {p1, . . ., pn}. Let SP ′ be the subset SP ′ of SP containing all the
subpaths in p that have already been fully-explored in the current set of execu-
tion trees exTrees available during the search. If SP = SP ′, each subpath in SP

is in one of the execution trees exTrees, and therefore the lazy-exploration step
will find an input to cover the target (assuming symbolic execution has perfect
precision). Otherwise, consider the first subpath w along p that is not in SP ′.
There must be a dangling node in exTrees representing a path that matches a
prefix of the subpath w. By construction, this partially-explored matching path
can be combined with other subpaths in SP ′ to form a partially-explored, in-
terprocedural path q to the target. Furthermore, since p extends q, the path
constraint of q is logically implied by that of p. Since p is feasible (hence its
path constraint is satisfiable), q must also be feasible, thus a non-empty model
will be returned in the relevant-exploration step of the algorithm.

Theorem (Progress) If Algorithm 2 returns a program input
−→
I (different

from emptyModel), then the execution of the program with
−→
I exercises a new

path (i.e., at least one dangling node is removed from exTrees).

Proof sketch. Two cases are possible: either
−→
I is computed during the lazy-

exploration step, or during the relevant-exploration step. If
−→
I is found during

the lazy-exploration step, then the path taken by
−→
I is guaranteed to take a

path through the target node (assuming symbolic execution has perfect preci-
sion), which is a dangling node. For the second case, let us assume the contrary:
−→
I exercises a path that does not go through any dangling node. In that case, by
construction of the formula Ψn, the path must end at the target node n (assum-
ing again symbolic execution has perfect precision). Since it does not go through

any dangling node, it must have been discovered in the lazy-exploration step. A
contradiction.

Theorem (Termination) If the program has a finite number of paths, Al-
gorithm 1 terminates.

Proof. Immediate since every call to FindTestInput (Algorithm 2) from Al-
gorithm 1 results in the exploration of at least one new intraprocedural path
(see previous theorem), and the number of such paths is assumed to be finite.

B Details of the Pex Test-Generation Tool

Monitoring. Pex monitors the execution of a .NET program through code in-
strumentation. Pex plugs into the .NET profiling API and rewrites the instruc-
tion sequence of a method just before the intermediate language is translated
into machine code. The instrumented code drives a “shadow interpreter” in par-
allel to the actual program execution. Basically, there is one callback to per
instruction. The “shadow interpreter”

– constructs symbolic representations of the executed operations over logical
variables instead of the concrete program inputs;

– maintains and evolves a symbolic representation of the entire program’s state
at any point in time;

– records the conditions over which the program branches.

Pex’ interpreter models the behavior of all verifiable .NET instructions pre-
cisely, and models most unverifiable (involving unsafe memory accesses) instruc-
tions as well.

Symbolic state representation. A symbolic program state is a predicate
over logical variables together with an assignment of expressions over logical
variables to locations, just as a concrete program state is an assignment of values
to locations. The locations of a state may be static fields, instance fields, method
arguments, locals, and positions on the operand stack.

Pex’ expression constructors include primitive constants for all basic .NET
data types (integers, floating point numbers, object references), and functions
over those basic types representing particular machine instructions, e.g. addition
and multiplication. Pex uses tuples to repesent .NET value types (“structs”),
and map data types to represent instance fields and arrays, similar to the heap
encoding of ESC/Java [11].

Pex implements various techniques to reduce the enormous overhead of the
symbolic state representation. Before building a new expression, Pex always ap-
plies a set of reduction rules which compute a normal form. A simple example
of a reduction rule is constant folding, e.g. 1 + 1 is reduced to 2. All logical con-
nectives are transformed into a BDD representation with if-then-else expressions
[4]. All expressions are hash-consed, i.e. only one instance is ever allocated in
memory for all structurally equivalent expressions.

Based on the already accumulated path condition, expressions are further
simplified. For example, if the path condition already established that x > 0,
then x < 0 simplifies to false.

