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Abstract fully crafted by hand, seél[l] for a comparative study. Au-

thors have controlled the dimensionality of their descriptors

Invariant feature descriptors such as SIFT and GLOH by tuning parameters such as the size of the sampling grid
have been demonstrated to be very robust for image match-or the number of spatial pooling regions.
ing and visual recognition. However, such descriptors are An alternative, data-driven approach to local feature
generally parameterised in very high dimensional spaces matching was suggested by Lepetit and F8 [In this
e.g. 128 dimensions in the case of SIFT. This limits the work, the authors learn probability distributions for the key-
performance of feature matching techniques in terms of point class over a quantisation of the input space. The
speed and scalability. Furthermore, these descriptors havefeature space is hierarchically quantised by thresholding
traditionally been carefully hand crafted by manually tun- on randomly chosen pixel differences. Another approach
ing many parameters. In this paper, we tackle both of tg classification using simple features (boxlets rather than
these problems by formulating descriptor design as a non-pixel differences) was the Viola and Jones face detec-
parametric dimensionality reduction problem. In contrast tor [16]. Such techniques are attractive because of their sim-
to previous approaches that use only the global statistics pjicity, but have difficulty scaling to large multi-class prob-
of the inputs, we adopt a discriminative approach. Start- |ems because of the large number of simple features needed
ing from a large training set of labelled match/non-match to accurately represent each class. Nearest neighbour classi-
pairs, we pursue lower dimensional embeddings that are fiers are well suited to such applications, and thus are pop-
Optimised for their discriminative power. Extensive com- ular in indexing and recognition_ In this work, we adopt
parative experiments demonstrate that we can exceed thehjs paradigm, attempting to find an optimal data-driven di-

performance of the current state of the art techniques suchmension reduction before nearest-neighbour classification
as SIFT with far fewer dimensions, and with virtually no proceeds.

parameters to be tuned by hand. A first attempt at data-driven dimension reduction for lo-

cal features was PCA-SIFBJ. Instead of performing spa-
. tial pooling of the gradient vectors using fixed histogram
1. Introduction bins as in the original SIFT desigfi(], Ke performs a prin-
Oqipal component analysis on the gradient patches. Whilst

Recent years have seen great advances in the area of lo=* : e : X
this provides some benefits in reducing the high frequency

cal feature matching. Various combinations of region de- = "2 M. - ) i
tectors and local image descriptors have been employed ir'0IS€ in the descriptors, PCA is not tuned to obtain a sub-
many compelling applications, for example content based SPace that will be discriminative for matching.
image/video retrieval ][2, ]_4], Object Categorization and In contrast, discriminative teChniqueS such as Fisher
recognition [f] and 3D scene reconstructiohd). The lo- ~ analysis (LDA) directly pursue a set of projections that best
cal features used are typically of high dimensionality, e.g. Separate data of different classes. Such techniques have
128 dimensions in the case of SIFT. This can cause prob-Peen intensively studied in related areas such as face recog-
lems for matching in large collections of images in terms hition, for example “Fisher Faces1], Locality Preserving
of speed and scalability. For example, large-scale objectProjectionsif] and Local Discriminant Embedding]l
recognition [L2] and Photo Tourism15] can both involve Given recent advances in automatic multi-view match-
matching to millions of local features, requiring many dis- ing [15], it is now possible to generate large databases of
tance computations and large amounts of storage space. Aorresponding image patches, mimicking the large datasets
natural question is “can we reduce the dimensionality of the of face images used in the face recognition community. This
descriptors while maintaining their discriminative powers?” was exploited by the authors if{], who tuned the parame-
Until recently, most local descriptor designs were care- ters of highly structured local feature descriptors based on



wherep;, p; are the input image patches, algis a label
equal tol if p;, p; constitute a match pair, and 0 otherwise.
Following the approach irill/], we apply a set of non-linear
transformations to these input patches.

x; = T(pi) )

The actual transformations that we use are described in sec-
tion 3. We have used a range of lifted inputs includ-
2 , _ ing normalised image patches, filter bank outputs and even
(a) Train (b) Test other feature descriptors such as SIFT or GLOH.

We view the descriptor design problem as one of find-
Figure 1: Typical input patches from our (a) training and ing discriminative projections in the space of lifted image
(b) test datasets. The training set patches are taken fronpatches. We choose a simple objective function
Photo Tourism[15] reconstructions of Trevi Fountain and
Half Dome. The test set is from Notre Dame. All input _ Zzij:o(WT(Xi —x;))?

S, (W — ;)2

patches aré4 x 64 grayscale. We typically use 10,000
pairs for training, and 100,000 for testing. o ) :

which is the ratio of variance between the non-match and
match differences along the direction We seek projec-

- tions
Paigﬁ Non-Linear [_lLinear Discr.| | normalise Descriptor
P Transform Embedding )A( *
w* = argmax J(w) (4)
w

x=T(p) x=U'x  &=x/|x|

Ji(w) ®3)

that maximise this ratio. Writing equati@hin terms of the

covariance matrices gives
Figure 2: Our descriptor extraction procedure. After per-

forming a non-linear transforrd (p) (sectiori4.1), we ap- wlAw )
ply a learnt discriminant projectioly. Post-normalisation a
is applied, before nearest neighbour classification of the de~yhere

scriptorsx.
. . _ A= —x))(xi —x5)" (6)
this data. In this paper we attempt to learn feature descrip- 1,,=0
tors in a more unstructured fashion using linear discriminant T
embedding (LDE). We present three main contributions: B= ) (xi—x)(xi —x)) (7)
l

ij=1

1. We are the first to exploit non-parametric dimension

reduction techniques to learn invariant feature descrip-
tors.

Note that since the matches are symmettic € 1;;), the
means of the match/non-match classes are equal This
motivates our choice of variance ratio in our objective func-
2. We propose a novel algorithm that uses power regular-tion, instead of techniques such as Fisher LOAthat re-
isation to enable stable linear discriminant embedding quire the means of the two classes to have different values.
in high dimensional spaces. It is easy to show that the solution of equatois the
largest eigenvector of the generalised eigensystem
3. We exceed the state of the art in feature matching per-
formance, whilst using far fewer dimensions than pre- Aw = \Bw (8)

vious approaches.
PP To form a linear embedding, we identify theeigenvec-

tors associated with the largestgeneralized eigenvalues
A. This is equivalent to Local Discriminant Embeddir, [
but without the local weighting functions.
The input to our method is a set of labelled matching and  An alternative objective function is suggested i3y [
non-matching image patches
)} ~=1(WTXi)2

P S W %) ©

2. Linear Discriminant Embedding

S = {pi,p;, li;} @)



(again we have ignored the local weighting functions sug-
gested in[T]). This is equivalent to replacing the non-match
covarianceA with a weighted data variance for matches

A = X"DX (10)

whereX = [x1,Xa,...,X,] iS the set of all input vectors.
D = diag(k;) is a diagonal matrix wherk; = Zj l;j isthe
number of matches to patchin the training set. We will
name the linear discriminant embedding obtained by opti-
mising J1(w) (equation3) as LDE-I, and the embedding
obtained fromJ>(w) (equatior9) as LDE-II. For clarity of
presentation we will usé and A interchangeably in the
remainder of this paper.

2.1. Power Regularisation

A common practical concern with the linear discriminant
formulation described above is that it is prone to overfitting.
This can occur for projections that are essentially in the
noise components of the signals, but appear to be discrimi
native in the absence of sufficient data. This is particularly
relevant given the high dimensional inputs that result from
the lifted input image patches. Our inputs € R™ typi-
cally haven > 1024 or more dimensions (see sectigh
To tackle this problem we propose a modified cost function

wl Aw
T = TR (11)
where B’ = UA'UT is a regularised version dB =

UAUT with its eigenvalues clipped against a minimum
value. More specifically, if\;; = \; thenAl, = X, where

;= max(A\;, Ar) (12)

andr is set to the maximum value for whigh\;}, i > r
accounts for a fraction: of the signal power, i.e.
n

Zi:r’
Yima
Note that); has units ofx? and thus the above equation
defines a threshold on the signal to noise power ratio. In
our experiments, we use a valuecnt= 20%.

Note that our power regularisation approach is preferable
to simply taking the PCA oB, which would effectively in-
troduce infinite penalties for discriminative directions lying
outside the signal subspaceBf Figure3 shows the effect
of power regularisation on the projections learnt via LDE
on normalised image patches.

i

y >« (13)

r = min s.t.
T/

2.2. Orthogonality Constraints

Figure 3: The first 10 projections found using LDE-I on
match/non-match normalised patches. From top to bottom
a = 20%,10%,2%,0%. Note that the eigenvectors be-
come progressively noisy as the power regularisation is re-
duced.

has suggested potential benefits to maintaining orthogonal-
ity of the projections. This is easily achieved in practice by
adding linear constraints to the optimisation criteriorbof

To pursue theé:*" orthogonal projectiorw,, we solve the
following constrained optimisation problem

* wl Aw
W= argmv:clmx Thw
st. wlw; =0
wliw,_1=0 (14)

wherew, ..., w,_; are the set of orthogonal projections
we already obtained. By formulating the Lagrangian, it can
be shown that the solution can be found by solving another
eigenvalue problem

Mw = (I- B~ 'W;Q;'W{)B'A) W = \w (15)

where

Wi = [wi,wa,.. (16)

17

. 7wk:—1]
Qk = W,ZB*W,C

The optimal solution to thé*" projection is then the eigen-
vector associated with the largest eigenvaluevdf We

omit details of this derivation but refer the interested reader
to [5]. Orthogonal projections are attractive for two reasons.
Firstly, the extra constraints on the projections may help to
avoid overfitting. Secondly, the lack of linear dependence
may avoid redundancy in representing the subspace. We
use the terms OLDE-I and OLDE-II to refer to the two dif-

Another issue of interest with the generalized eigen so- ferent orthogonal linear discriminant embeddings obtained
lution to equation is that the pursued projections are not using.J; (w) and.J;(w) respectively, subject to orthogonal-
necessarily orthogonal to one another. Previous wbfk [ ity constraints onw;.



3. Description of the Datasets T4 we compute isotropic difference of Gaussian responses
at each location for 2 different scales. The outputs are

Our training dataset consists of several hundred thousand rectified to give2 x 2 components for each location.

image patches, sampled by back-projecting 3D points from
Photo Tourism reconstruction$d]. To establish a consis- ) )
tent scale and orientation we projected a virtual reference  There are a small number of parameters associated with
point, slightly offset from the original 3D point, into each €ach of these T-blocks, for example, the pre-smoothing
image. Seel7] for full details. Examples of image patches scale and filter widths. We have manually set fixed val-
from our training and test datasets are given in figlire ues for these parameters based on the worklcf [The

In our experiments, we have uséd,000 patch pairs ~ Non-linear transform outputs = 7 (p) are normalised to
(50% matches and 50% non-matches) for training, unlessunit length before identification of the linear discriminant
specified otherwise. For testing we u$@0,000 patch  Subspace.
pairs from a separate dataset (again 50% matches and 50%
non-matches).  We use another small dataset, 660 4.2. Linear Discriminant Embedding
match/non-match pairs as a validation set to choose the op-

timal number of dimensions for the embedding space. We identify a linear projectiolJ using the techniques

described in sectidB, and project the lifted vecto to this
4. Descriptor Extraction Procedure subspace’ = U'x.
Figure2 shows our descriptor extraction procedure. We 4 3. Post Normalisation
begin by applying a variety of non-linear transformations
such as bias-gain normalisation, rectified gradients etc. to We have found that normalising the descriptors to unit
the input patches. Next we learn discriminative projections length & = x’/|x'|) after projection to the discriminant
of the lifted inputs using the techniques described in sectionsubspace substantially improves the results in most cases.
2. Finally, we normalise the projected descriptor vector to See the results in sectidn3. .
unit length. Nearest neighbour classification is applied in
the resulting descriptor space to identify matches and non-g Experiments
matches.
i . We present four main sets of experiments. First we
4.1. Non-Linear Feature Transformations explore dimensionality reduction on the normalised image
We perform experiments with a variety of non-linear Patches directly. Second, we perform the same experiments

transformations applied to the input patches. This is analo-USing gradients of the patches (analogous to PCA-SIFT).
gous to the T-blocks irill7). Thirdly, we attempt to find linear embeddings after applying

non-linear T-block transformations to the image patches.

Normalised Patcheswe compute bias-gain normalised Finally, we test the ability of our algorithms to reduce the

patches by subtracting the mean and dividing by the dimensionality of existing descriptors.

standard deviation of the input patch. In all our experiments, we have applied a synthetic jitter
to the patches in both the training and test sets to simulate
errors in the interest point localisation process. Such er-
rors have been suppressed in our database since we use pro-
T1 we evaluate the gradient at each location in the in- jections of bundle adjusted 3D point positions. We apply

put patch, and linearly interpolate the gradient mag- Gaussian noise to the position, orientation and scale of the

nitude into 4 orientation bins. The interpolation is per- patches with standard deviations of 0.25 pixels in position,

formed in the orientation of the gradiefit similar to 11 degrees in orientation and 12% in scale respectively.

the scheme used in SIFT. To summarise the results of our experiments we plot
ROC curves and quote the error rate as the false positive
rate at 95% true positives. This is a sensible operating point
for our intended application of large scale object recogni-
tion, where verifying a potential match is easy but missing a
match may be problematic. Results from our four proposed
T3 we compute™ order steerable filter responses at each algorithms LDE-I, LDE-II, OLDE-I and OLDE-II are pre-

location using 4 orientations. For each orientation, sented. For comparison purposes we also include results for

we compute a 4 vector containing the rectified com- SSD and PCA orx, as well as the baseline results for our

ponents of the quadrature pair. own implementation of SIFT applied to the input patcbes

Normalised Gradient we compute the x and y gradients
of a bias-gain normalised input patch.

T2 we evaluate the gradient at each location and transform
it into a positive valued 4 vector whose elements are
the positive and negative components of the x and y
gradients.



Figure 4: The top 20 projections from each dimensionality reduction method using normalised patches. From top to bottom:
LDE-I, LDE-II, OLDE-I, OLDE-II, PCA. These projections were learnt from 500,000 training examples without imposing
any prior knowledge on the nature of the projections, other than the power regularisation criterion of Séctitsing only

18 and 14 projections from LDE-I and LDE-II respectively we were able to outperform our own implementation of SIFT
(128 dimensions) on our test dataset. The PCA projections gave much worse performance.

Error Rate (O/Oadimensions) Error Rate (O/Oadimensions)

# Training Pairs 10* 10° 5 x 10° T1 T2 T3 T4
SSD 31.9Q1024) | 31.9Q1024) | 31.9Q1020) SSD | 35.961020) | 34.921020) | 36.564000) | 52.931200)
PCA 31.6k2s5) | 28.180) | 28.045s) PCA | 3494, | 345850 | 49.19.,5 | 511650

LDE-I 840:7, | 6032, | 5925 [DE-l | 47735 | 4360 | 4.15:s | 83900
LDE-II 9531 | 7281 | 5.76u [DE-l | 440sy | 4543 | 40021 | 74049
OLDE-I 13.9623;, | 13.0%s2 | 11.8Qs5 || OLDE-l | 4585y | 4485, | 51ki0) | 8.290s
OLDE-II 132821, | 12.9%5s | 12.0450 || OLDE-Nl | 4.98s; | 48Lss) | 47703 | 8.3k

Table 1:Effect of # of training examples for each subspdable 2: LDE on T-block outputs using non-linear transforms
method applied to normalised patches (95% error rate§L-T4.

5.1. Experiments on Normalised Patches to viewpoint change, and scale and rotation errors in the in-
terest points. These factors all tend to cause distortions that

We first present our results using normalised patches.are |arger further away from the interest point location than
For training we us&00, 000 example pairs drawn randomly 5t the centre.

from the Trevi-Half Dome dataset. The ROC curves forthe  \ye also note that our learnt projections strongly resem-

different methods are presented in Fighre ble the “Jets” of Schmid and MohLB], combined with
Note that our linear discriminant algorithms produce the geometric blur of Berg and Malil3]. Both of these
substantial improvements over raw SSD (31.9% error rate)techniques have been found to be very effective in practical
and PCA (28.0% error rate). PCA produces only a small matching problems, and thus it is unsurprising to see that
improvement over SSD in this case. The LDE-I and LDE-Il they are learnt as discriminative projections by our tech-
algorithms both give low error rates ef 6% false posi- nique.
tives at 95% true positives, which is comparable to ourim-  The PCA subspace, whilst capturing some of the spatial
plementation of SIFT on this dataset. However, our LDE integration characteristics of the discriminative projections,
algorithms use far fewer dimensions than SIFT (14 and 18 has no notion that the centre of the patch is more impor-
dimensions respectively compared to 128 in SIFT). tant than its edge. Also, it tends to focus on axis aligned
We visualise the projections learnt by our algorithms projections rather than the circular integrations found by
in figure4. Note that the most discriminative projections LDE. The fact that the latter gives dramatically better per-
found by LDE concentrate on the centre of the patch (the formance for matching is not unknown in the research
interest point location). This reflects the fact that image community, where state of the art feature designs such as
data further from the interest point is less likely to be re- GLOH [11] and Shape Context&]use log-polar instead of
liable for matching. There are many practical reasons for axis aligned summation regions.
this, for example geometric distortions and occlusions due A final point to note is that the results of LDE-l and LDE-
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Figure 5:LDE and PCA using normalised patches SSD  Figure 6:LDE and PCA using gradient patches SSD and
and SIFT. In parenthesis: # of dimensions and 95% error S|FT. In parenthesis: # of dimensions and 95% error rate.

rate.

Il are quite similar to each other, as are the results of OLDE- ing patches td8 x 18 before applying the non-linear trans-
| and OLDE-II. Indeed we find that this is true in general formations due to the extra dimensions added by each filter
and we take up this issue in the appendix band. Tabie2 summarizes the 95% error rate of the differ-
ent methods using the non-linear transformation methods of

5.1.1 Effect of Number of Training Examples TltoT4. )
As we can observe, the proposed methods applied to T1,
To understand the effect of the number of training exam- T2 and T3 all give excellent results with very low dimen-
ples on the performance of our proposed methods, we havesionality. They all achieve error rates of arouhd 5% with
performed experiments withD?*, 10° and5 »; 10° training less thant0 dimensions, and thus beat SIFT (6.02%) while
pairs using normalized image patches. Tabgimmarizes  using far fewer dimensions. In particular, LDE-II combined
the 95% error rates. We see substantial gains moving fromwith T3 obtains the best error rate ©40% with 24 dimen-
10,000 to 100,000 training examples, with diminishing re- sions, followed by LDE-I combined with T3 with an error
turns thereafter. rate of4.15% using oniy18 dimensions. The top results
are highlighted in Table. Once again, PCA did not im-
prove significantly over the SSD baseline. We present the
- . . ROC curves for the results on T2 and T3 in Figuresds.
We now perform a similar analysis with normalised gra- . . o .
. . . o We visualize the top four projections using T1 responses
dient patches as input. This sétup) is directly comparable . g .
. . : for each subspace learning method in FigBreSince the
to the approach used in PCA-SIF[8].| The results using . . . .
5o ) T T1 output has lifted the image patch to 4 orientation bands,
10° training pairs are shown in figut@ We were unable - .
. each projection contains four small blocks arranged from
to reproduce the strong results reported in the PCA-SIFT band 1 to band 4
paper. Although we did find small improvements to using h . th h imilariti
PCA (41.5%) over SSD on the patch gradient (53.3%), this . :1— E prol?ctlocr;sf pithe Tllputguts share sl,:(.)rne §|mr|]ar|t|es
result was well below the SIFT baseline (6.0%). However, with those found for normalised patches ( |gl4)en_t at
LDE was again able to significantly improve over PCA and they are_centrally focussed,_ but they are more horl_zontally
SSD (6.23% error, LDE-Il), giving comparable results to and vertically c_)rlente(_ll. This seems reaso_nable_ since _the
T1 transformation splits the gradient magnitude into axis-

5.2. Experiments on Gradient Patches

those found with normalised image patcles . . ) : ;
aligned orientation bins. Again, the energy of the top PCA

5.3. Learning from Non-Linear Filter Responses projections is distributed evenly over the patch, ignoring the
extra discriminative power of the central region.

In this section, we present results for learning feature de-
scriptors from the output of several different non-linear lift- o
ing methods presented in Sectiérl. We resized the train-  ©-3-1  Effect of Post Normalisation
We found that post normalisation of the descriptor after pro-

jection to the discriminative subspace gave a marked im-

1Although in this experiment we us@&@ x 32 input patches instead of
the41 x 41 patches used in PCA-SIFT.
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Figure 7:LDE and PCA using T2 outputs SSD and SIFT. Figure 8:LDE and PCA using T3 outputss SSD and SIFT.

on embeddings learned from these feature descriptors did
not in factimprove performance. This may be because these
descriptors have already been subject to SIFT like normali-
sation (i.e., threshold clipping and then normalization).

ety TS €20 w0 LA
SRS Nl et ™Dl

6. Conclusions

Figure 9: The top 4 projections from each method using We h q discriminative f K f
T1 outputs. From top to bottom: LDE-I, LDE-Il, OLDE-I, e have proposed a new discriminative framework for

OLDE-II, and PCA. Each projection contains four consec- learning local image descriptors. In contrast to all previous
utive blocks since the T1 output has 4 orientation bands. work in this area, our scheme is almost parameter free. We

demonstrate that our approach produces descriptors with
equal or better performance than state of the art approaches,

provement in performance in the case of nonlinear featurePut with 5-10 times fewer dimensions.
transformations (T-Blocks inll7]) (Table 3). Post normali- . .
sation also gave small improvements (1-2%) for normalised A- Approximate Equivalence J,(w) and J,(w)

patches, but actually made things slightly worse in the case e il show that under certain conditions, the objective

of S-blocks 1.1], as shown irb.4. functions.J; (w) and.J;(w) in Section2 are approximately
equivalent.

Assume a labelled datasBt= {x;, g; }_,, whereg; is

In this set of experiments, we demonstrate that we canthe group ID. Samples with the same group ID are consid-
even apply the proposed methods to existing feature de-ered to be matched. Suppose that the ddtas zero mean
scriptors, achieving improved or comparable results with and covarianceC. Our training setS = (x;,x;,1;;), is
fewer dimensions. In particular, we present the results of randomly sampled fror® as follows. First, we randomly
applying the proposed methods to four of the best featureselectx;, with replacement. To generate a non-match pair,
descriptors presented in{]. The descriptors that we use we randomly seleck; with a different group ID, while to
are named T3h-S4-25,.T3j-S2-17, T1b-S1-16 and T1c-S2-generate a match pair, we randomly drayfrom the same
17 in that paper. We summarize the results in Tabldote group asx;. In our experiments, we generate an equal num-
that the baseline results now correspond to tha!best resulber of match and non-match pairs, and the cardinality of
achieved in17]. each group of matcheg is variable. However, if instead

In all cases we are able to improve the performance of thethe following conditions hold, we will see thaf (w) and
feature descriptors whilst using fewer dimensions by using J>(w) are approximately equivalent:
one of our algorithms. Furthermore, the optimal number of
dimensions is typically 5-10 times smaller than the original
descriptors (i.e., arourgD) — 50 dimensions). Note that the
results presented in Tableare obtainedvithout perform- 2. Allarge number of input pairs;, x; are sampleéhde-
ing post-normalisation. [\We found that post-normalisation pendentlyfrom the dataset.

5.4. Dimension Reduction on Feature Descriptors

1. The number of matches to inputx; is a constank
andk << n.



w/ Normalisation w/o Normalisation Error Rate (Y)dimensions)
T1(1024) T2(1024) T1(1024) T2(1024) T3h-S4-25| T3j-S2-17 | T1b-S1-16| T1lc-S2-17

SSD 3596 | 3492 | 35096 34.92 Base | 1.99400) | 2.5%sas) | 550128 | 2.98072)
PCA | 34.94 .40 | 345550, | 36.04405) | 34.6941s) PCA | 2.702s) | 2.7630) | 54000 | 2.69108)
[DE-l | 4773, | 43629 | 14.1210) | 13.1820) [DE-l | 1975 | 1.89s0) | 3.76u7 | 2.190s)
[DE-Il | 4403, | 4545, | 1649 | 14.240 [DE-l | 18914 | 2.3%27 | 3.962s) | 2.285s
OLDE-l | 458ss | 44540 | 11.6225 | 10.7820) OLDE-l | 2.3Lsy | 2.3Ls, | 47727y | 2.056
OLDE-Il | 4.98s;, | 4.8ls; | 14.301) | 14.9415) | | OLDE-Nl | 25205 | 2.6ks1, | 53620, | 2.19s2)

Table 3: Effects of post-normalization of descriptors on Wable 4:Dimension reduction of the descriptors 4f7[. Note

performance of embeddings using T-blocks.

For J;(w), condition 2 implies thatA = Zluzo(xi —
x;)(xi—x;)T =~ >0 (xi—x;)(x;—x;)T. Thisis because

the number of possible non-match pairs is much greater

than the number of possible match pairs, Béj_, l;; <<

n. Furthermore, by the properties of independent random

variables, and the central limit theorem, we hate ~
covarx; — x;) = 2 x covalx;) = 2 x C. Now in the
case ofJ(w), we can writeA = Y7 | k;x;x7. But by
condition 1,k; = k and thusA = k x C. Since the scaling
on C is arbitrary, we find that/; (w) and J,(w) are both

equivalent to the following objective, if conditions 1 and 2

are met

T
_w Cw (18)

wIBw

Z?:l (whx;)?

W —x,))?

Bw) =5

whereC is the covariance of all the da@ = > | x;x7.

7

This suggests thal;(w) itself should be a suitable objec-

tive, an assertion that we leave for future workJj
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