
Evaluating a Trial Deployment of Password Re-Use for
Phishing Prevention

Dinei Florêncio and Cormac Herley
Microsoft Research, One Microsoft Way, Redmond, WA

ABSTRACT
We propose a scheme that exploits scale to prevent phishing.

We show that while stopping phishers from obtaining pass-

words is very hard, detecting the fact that a password has

been entered at an unfamiliar site is simple. Our solution in-

volves a client that reports Password Re-Use (PRU) events

at unfamiliar sites, and a server that accumulates these re-

ports and detects an attack. We show that it is simple to

then mitigate the damage by communicating the identities

of phished accounts to the institution under attack. Thus,

we make no attempt to prevent information leakage, but we

try to detect and then rescue users from the consequences

of bad trust decisions.

The scheme requires deployment on a large scale to realize

the major benefits: reliable low latency detection of attacks,

and mitigation of compromised accounts. We harness scale

against the attacker instead of trying to solve the problem

at each client. In [13] we sketched the idea, but questions

relating to false positives and the scale required for efficacy

remained unanswered. We present results from a trial de-

ployment of half a million clients. We explain the scheme

in detail, analyze its performance, and examine a number of

anticipated attacks.

Categories and Subject Descriptors
K.6.5 [MANAGEMENT OF COMPUTING AND IN-

FORMATION SYSTEMS]: Security and Protection—Au-
thentication, Unauthorized access, Phishing

General Terms
Phishing

Keywords
passwords, phishing, authentication, access control

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
APWG eCrime Researchers Summit, 2007 Pittsburgh, PA, USA.
.

1. INTRODUCTION
Phishing for user credentials has pushed its way to the very

forefront of the plagues affecting web users. An excellent re-

view of recent attacks [22] shows the explosive growth of the

phenomenon. The problem differs from many other security

problems in that we wish to protect users from themselves:

by social engineering users are manipulated into divulging

their password. Two obvious approaches are to:

• Prevent the user from divulging the password

• Prevent the phisher from gaining anything useful from

the password.

Preventing the user from divulging the password is ex-

tremely difficult. It requires first determining that a partic-

ular site is phishing, and then blocking data transfer (or at

least password transfer) to the site. False positives (where

we wrongly block a legitimate site) are completely unaccept-

able and false negatives (where we fail to detect a phishing

site) are very expensive. So, if we wish to block the con-

nection, this is an extremely unforgiving classification prob-

lem. We will review several anti-phishing technologies in

Section 2, but many avoid this problem by issuing the user

with a warning rather than blocking the information trans-

fer. Thus, instead of preventing the user from divulging

the password, they present the user with better, or more

overt information, and hope that the user will act on it.

Here, there are two major problems. First, to be useful, the

warning must be issued before the user types the password

(Javascript websites can transmit the password a key-at-a-

time as it is typed). Thus when deciding whether or not

to warn, the browser has little other than the URL and the

actual document downloaded. We treat these approaches

in more detail in Section 2, but we believe this to be an

essentially impossible task (unless the client receives black-

list information from elsewhere). Blacklist approaches and

their problems are tackled in Section 2.3.1 and [12]. Second,

even when a user is presented with a warning, recall that she

must observe, understand and act on it. If the user ignores

the warning, nothing is accomplished and the phisher suc-

ceeds. Unfortunately, there is growing evidence that users

suffer from “warning fatigue.” The weakness of warnings

as a tool in the particular case of phishing is shown in [28].

The great difficulty of getting users to act on security indi-

cators was thoroughly documented recently by Schecter et

al. [25]. Finally, of course, any warning that is generated

by client-side information will be seen by the phisher before

he launches the attack. It must be expected that competent

attackers will endeavor to avoid triggering a warning that

might decrease his yield.

In [13, 11] we sketched an approach that represents a con-

siderable departure from previous efforts. Rather than at-

tempt to prevent information leakage, we try to save users

from the consequences of bad trust decisions. The scheme

does so so without altering current password habits or in-

frastructure. Rather than stop passwords from being stolen

our scheme seeks to make it quick and easy to identify when

a password has been stolen, and simplify the task of miti-

gating the damage. Recall that, while it is too late to warn

the user after she has typed the password, it may not be

too late to prevent the phisher exploiting the account. If

we considered each user alone this would still be a difficult

task. Since users share passwords among sites all the time

observing a user typing a password at an unfamiliar site

is not actionable. However, by aggregating the information

across many users we can build a far more reliable indication

of a phishing attack.

The power of the scheme derives from scale, but this also

implies a weakness: without a large enough deployment the

aggregation of data is insufficient to allow low latency de-

tection of sites. Thus [13] merely suggested the potential of

the approach. We now have data from a trial deployment

of over half a million clients. This allows us to evaluate the

outstanding issues, such as false positives, server load, distri-

bution of victims and the scale needed for a full deployment

to be successful.

In the next section we examine related and previous work.

Section 3 covers the scheme we are proposing in detail. Sec-

tion 4 presents the results of a trial deployment of a version

of the client to over half a million clients. Section 5 deals

both with current phishing attacks, and the types of attacks

that might evolve and how our system handles them. We

also address the questions of whether the system can be used

to mount DoS attacks.

2. RELATED WORK
In its relatively short history the problem of phishing has at-

tracted a lot of attention. Broadly speaking, solutions divide

into those that attempt to filter or verify email, password

management systems, and browser solutions that attempt

to filter or verify websites.

2.1 Email and Spam Solutions
The email that induces a user to enter her credentials at a

phishing site is a particular kind of spam. Machine Learning

tools for filtering have achieved a lot of success against spam

in recent years[26], and many phishing emails get caught as

spam. However, the task is complicated by the fact that the

phishing email purports to come from a trusted institution,

and purports to contain very important information; so it is

unlikely that spam filtering tools alone will solve the problem

Since spoofing the email origin is an important part of the

phishing attack a number of approaches seek to verify either

the email path or the sender. Today it is trivially easy for

a phisher to make an email appear as though it comes from

accounts@bigbank.com and the goal of verification systems

is to make that difficult or impossible. For example, Yahoo’s

Domainkeys proposal [7] proves the path of an email by

having the originating mail server sign the message, and

having that server itself certified by a DNS server. Adida et

al. [5] also propose a trust architecture that allows detection

of spoofed emails. However, it is a lightweight architecture

and doesn’t require a full public-key infrastructure (which

is the main draw back of systems such as DomainKeys).

2.2 Password Management Systems
An early password management system proposed by Gaber

et al. [14] used a master password when a browser session

was initiated to access a web proxy, and unique domain-

specific passwords were used for other web sites. These were

created by hashing whatever password the user typed using

the target domain name as salt. While the work of [14] pre-

dates the recent surge of phishing attacks, the idea of domain

specific passwords is a very powerful tool in protecting users.

Several one time password systems exist that limit the

phisher’s ability to exploit any information he obtains. Se-

cureID from RSA [1] gives a user a password that evolves

over time, so that each password has a lifetime of only a

minute or so. This solution requires that the user be issued

with a physical device that generates the password. One

time passwords can be based on an SKEY approach [27].

This solution requires considerable infrastructure change on

the server side, and has not seen any significant deploy-

ment to general users. Several other approaches that involve

changing the mechanism by which users are authenticated

exists. For example two-factor schemes might effectively

eliminate the phishing phenomenon. Oorschot and Stub-

blebine [21] propose authentication via a personal hardware

device. In spite of the attractiveness of such schemes pass-

word authentication appears likely to persist.

Ross et al. [23] propose a solution that, like [14], uses

domain-specific passwords for web sites. A browser plug-in

hashes the password salted with the domain name of the

requesting site. Thus a phisher who lures a user into typ-

ing her BigBank password into the PhishBank site will get

a hash of the password salted with the PhishBank domain.

This, of course, cannot be used to login to BigBank, unless

the phisher first inverts the hash. Their system has no need

to store any passwords. To prevent browser scripts from

confusing the plug-in that a password is being typed, they

use a key tracker and perform a mapping on the keys which

is undone only when the data is POSTed. The user must

prefix the password by typing a special control sequence,

so a change of user behavior is needed. Further, different

sites have different password rules (e.g. numeric, alphanu-

meric, etc.) and length requirements. These rules must be

tabulated for the client.

Halderman et al. [16] also propose a system to manage

a user’s passwords. Passwords both for web sites and other

applications on the user’s computer are protected. In con-

trast to [23] the user’s passwords are stored in hashed form

on the local machine. To avoid the risk of a hacker mount-

ing a brute force attack on the passwords a slow hash [20]

is employed.

PassPet [30] by Yee and Sitaker also acts as a password

management system implemented as a browser plugin. It

generates unique passwords for each site and allows auto-

mated entry of credentials. As with many client password

managers roaming is a problem. WebWallet [29] by Wu et

al. warns users if it detects that credentials are being sub-

mitted to a non-trusted site.

2.3 Filtering Web-sites
A number of browser plug-in approaches attempt to iden-

tify suspected phishing pages and alert the user. Chou et

al. [6] present a plug-in that identifies many of the known

tricks that phishers use to make a page resemble that of a

legitimate site. For example numeric IP addresses or web-

pages that have many outbound links (e.g. a PhishBank

site having many links to the BigBank site) are techniques

that phishers have used frequently. In addition they perform

a check on outgoing passwords, to see if a previously used

password is going to a suspect site. Earthlink’s Scamblocker

[2] toolbar maintains a blacklist and alerts users when they

visit known phishing sites; however this requires an accu-

rate and dynamic blacklist (see Section 2.3.1). Spoofstick

[3] attempts to alert users when the sites they visit might

appear to belong to trusted domains, but do not. Trustbar

[17] by Herzberg and Gbara is a plug-in for FireFox that

reserves real estate on the browser to authenticate both the

site visited and the certificate authority.

Dhamija and Tygar [8] propose a method that enables

a web server to authenticate itself, in a way that is easy

for users to verify and hard for attackers to spoof. The

scheme requires reserved real estate on the browser dedi-

cated to userid and password entry. In addition each user

has a unique image which is independently calculated both

on the client and the server, allowing mutual authentication.

A commercial scheme based on what appear to be similar

ideas is deployed by Passmark Security [4]. The main dis-

advantage of these approaches is that sites that are poten-

tially phishing targets must alter their site design; in addi-

tion users must be educated to change their behavior and

be alert for any mismatch between the two images.

2.3.1 Problems with Blacklists and Filtering

Some anti-phishing solutions, such as [2], are based on

keeping up-to-date blacklists, i.e., a comprehensive list of

phishing sites. Apart from the difficult in populating the

list, the required traffic can become unmanageable [12]. If

the list is to be periodically broadcast to the users, the entire

installed base must be reached, and clients are still vulner-

able to new sites until the next download. Alternatively, if

the list sits in the server, every client may need to contact

the server every time it loads a page. For a comparison of

the server load of our scheme vs. blacklist schemes see Table

1 of Section 4. In addition it bears mentioning that most

current blacklists seem to be compiled using large amounts

of manual or semi-manual effort. Users are often encouraged

to report phishing sites (see e.g. [22]), but parsing these re-

ports into useable lists requires much effort.

If the client attempts to identify a phishing site based

on examining the page, smart design can obfuscate which

link the user is actually looking at, by spreading the page

across many domains. Further, the question of when the

client performs its filtering becomes a serious problem. If

it waits for the document to finish loading, a phisher can

evade detection by including a single broken link (i.e. in In-

ternet Explorer the onDocumentComplete event would not

occur). If the client waits a fixed time interval, the phisher

can delay loading the most suspicious elements of the page

until after the checks are performed. Finally, a very in-

teresting study by Wu [28] points out that users tend to

ignore warnings. The study attempted to measure whether

users notice the warnings provided by toolbars even when

the toolbar correctly detected the attack. A large percentage

of the participants did not change their behavior based on

the warning.

2.4 Relation to our Method
A sketch of our basic approach was presented in [13] with-

out analysis or data. While our scheme requires client code,

we make no attempt to identify sites as suspicious based on

their content or URLs. In fact we believe there may be no

reliable way to distinguish phishing sites from other login

pages based on examining the URL and HTML. What dis-

tinguishes a phishing site from other sites is not numeric IP

addresses, or outbound links, or low pagerank, or lack of

traffic or reputation information. Some or all of these char-

acteristics are shared by many sites that are not engaged

in phishing. What distinguishes a phishing site from most

other sites is that the phisher requires victims to type a pass-

word. And not just any password: it must be a password

that the victim has previously used at another site. Thus, we

focus our attention on the one thing that a phisher requires:

he must get the victim to type the desired password at the

phishing site. So we regard the first instance of a password

being re-used at an unfamiliar site as an interesting event.

In that respect, we start with similar ideas to the outgo-

ing password check described in [6]. We also populate a

list of protected credentials by examining the data POSTed

when the browser submits data. However in contrast to [6]

we do not rely on the same approach to detect passwords

typed at suspicious sites: we track the user’s key entries and

constantly check against known passwords. Once the pass-

word has been typed it may of course be in the hands of

the phisher. However it is not too late to save that user’s

account. We solve the problem associated with storing the

information, in ways that related to the slow hash techniques

presented in [16] and [20]. We avoid Javascript attacks using

keyboard tracking, similar to the technique used in [23]. In

contrast to [6, 23, 16], we do not attempt to detect an attack

at each client, but rather rely on aggregating information at

the server. Thus a phishing site using the online mock field

password field that Ross et al. explain would be stopped by

our scheme. It bears mentioning that each of the approaches

[23, 6, 16] attempts to protect users individually, while our

approach aims at detecting the attack globally.

Each of [23, 6, 3, 2, 17] relies upon a pop-up, or a traffic

light type signal to alert the user to problematic sites. All of

these schemes depend (in order to stop a phishing attack) on

users changing their behavior in response to a warning. Our

method for stopping the attack relies on the accumulation

of information at the server and mitigation at the target.

This is a strength, in that information from many users is

aggregated. But it also a weakness, in that our approach

requires that the client plug-in is used by a great many users

in order to be truly effective.

3. OUR SCHEME
Our goal is to halt an attack in which a Phisher lures users

to a website and asks them for userid (uid) and password

(pwd) information. The architecture of our scheme consists

of a client piece, a server piece and a backchannel to commu-

nicate with the target of the attack (e.g. BigBank, PayPal

etc.). The client piece has the following responsibilities:

1. identify and add important credentials userid, and pass-

word to the protected list;

2. detect when a user has typed protected credentials into

a non-whitelisted site;

3. report instances of 2. to the server.

The server has the responsibility of aggregating this infor-

mation across users and determining when an attack is in

progress. When it detects an attack it adds the phishing

domain to a Blocked list and sends the hashes of the com-

promised userids accounts to the target domain with a view

to initiating takedown and mitigation. Communicating with

the target might appear non-scalable or to require much

manual intervention and infrastructure. We show in Sec-

tion 3.3.1 that this is not the case; it is actually simple and

automatic.

Our client requires a full-featured browser that supports

scripting (the defender’s task is a great deal simpler if the

browser does not support scripting languages). The trial

deployment client (see Section 4) was implemented as an

optional component of the [anonymized]Toolbar for Internet

Explorer. It could equally be implemented as a plug-in for

any other browser.

3.1 Client Role: tracking and reporting

We will explore the client’s tasks in sequence. First, to pro-

duce a list of protected information; second, to detect that

that information has been entered into another site; and,

third, to report this to the server. Note that the client de-

scribed in Section 4 differs in some respects from the ideal

client we describe here. The trial deployment client imple-

mented only features necessary to gather data to evaluate

the scheme. It does not, for example, report hashed userids,

and the server does not store any IP information.

3.1.1 Identifying credentials to be protected

The password, pwd, and userid, uid, are easy to identify on

any page that uses HTML forms, and the browser of course

knows the domain, dom, to which it just connected. We add

[dom, uid , pwd] to the protected list. Since it would not be

safe to store the credentials in the clear, what we actually

store in the protected list is:

P0 = [dom, h(pwd), h(uid)],

where dom is the domain. We restrict pwd to be 16 char-

acters long, and that we use salt that is specific to the

client and to each table entry. Passwords estimated to have

strength less than 20 bits were ignored.

Observe that we add P0 to the protected list without

knowing whether the login is successful or not. The Before-

Navigate2() event handler provided by Internet Explorer is

used to do all of the above processing, before the HTTP

POST data gets sent. As described, this would mean that if

a user mis-types her password, a new entry (with the wrong

password) would be generated in the protected list. We ar-

bitrarily restrict the protected list to 256 entries; this should

be more than enough to store all of the important password

sites for any user, even if the list ends up containing many

spurious entries. We employ a Least Recently Used strategy

for maintaining the list. All entries of the protected list are

stored using the Windows Data Protection API (the same

mechanism used for storing passwords that are saved by the

browser).

3.1.2 Detecting when protected credentials are typed

The near universal use of HTML forms makes populating

the protected list relatively simple. It would be convenient

if we could depend on phishers to use HTML forms; then we

might just check the value of any password field submitted

by a browser and see if it’s on the protected list. It must

be expected however that phishers will employ any means

possible to conceal their intent from our defences. Using

Javascript, for example, a phisher can present a page to

the user that looks identical to the BigBank login page, but

is code obfuscated in such a way that our plug-in cannot

determine what data is being posted. An excellent account

of several Javascript obfuscating techniques is given in [23].

To handle any and all tricks that phishers might em-

ploy we access the keystrokes before they reach the browser

scripts. Figure 1 illustrates the procedure. For each key

typed, we add the key to a FIFO buffer 16 characters long.

�������

����	
����

���
�	�	
�������

��������

���	����	�

���������

����������
	 �

���	�

��	!��

��	!��
�

�

�

��	!��

Figure 1: Keyboard analysis thread. Every key
pressed gets added to a 16 character FIFO. Only if
the hash of any of the last 7-16 characters matches
the hash of a password and the domain is neither
on the Cleared list nor Protected list is the server
contacted.

Next we check to see which domain dom has control of the

browser. If dom is in the whitelist, we do nothing (check-

ing when credentials are to be added to the protected list

is done in the separate thread detailed in Section 3.1.1). If

dom is not in the whitelist, at each typed key we compute

the hashes of possible passwords ending with the last typed

character, and check against the appropriate hashes in the

protected list. More specifically, since passwords can be be-

tween 7 and 16 characters, we need compute hashes of 10

strings. Since each entry in the protected list has a specific

salt, we need to compute a total of 10× 256 = 2560 hashes,

and compare with the appropriate entries in the protected

list. When one of the FIFO hashes matches a protected

list H1 value, it means that the just-typed string matches

a password on the protected list. Since we already deter-

mined that we are connected to a non-whitelisted domain

this event is worth reporting to the server.

3.1.3 Reporting to the Server

Whenever a hit is generated, we inform the server. The

report informs the server that a password from dom1, on

the protected list, was typed at domR, which is not on the

whitelist. More specifically, what the client reports is:

Creport = [[(dom1, h(uid1)), (dom2, h(uid2)), · · ·], domR, h(IP)],

where h(IP) is the hash of the IP address of the reporting

computer. Recall that users commonly use the same pass-

word at several legitimate sites. We will see next that this

is not a problem.

3.2 Server Role: aggregation and decision
The server has the role of aggregating information from

many users. As detailed in Section 3.1.3, Creport is sent

when protected credentials are typed into a non-whitelisted

site; the server stores this record along with a timestamp.

Recall that the server receives a report of every instance of a

user typing protected credentials into a non-whitelisted site.

In fact, it receives a vector with all legitimate domains that

share that same password. The server collects this informa-

tion for all non-whitelisted sites, and uses that to include

the site on the blocked and white lists. We deem domA to

be a phishing site that is attacking domB if:

1. domA appears in a list five or more times with domB

2. domB is in 75% of the SURL lists where domA appears

3. Number of logins at domB ≥ 5x number of logins at

domA

4. domA not on “Whitelist”

5. domB is on a list of “phishable sites.”

The simple Blocked list rule given suffices for the phishing

attacks reported to date. However, the logic on the server

might have to evolve as attacks evolve. One of the strengths

of our system is that by making use of such reliable infor-

mation (i.e. password re-use), aggregated across many users,

the server is in a position to identify and stop an attack. To

succeed with a distributed attack (see Section 5.1.4 and [18])

the phisher would have to make the pattern of client reports

statistically insignificant.

3.3 Backchannel: notification and mitigation
A component common to many good security systems is

that the tools and responsibility for mitigating the problem

reside with the party most motivated to fix it. To this end

a key element of our scheme is delivering to the target the

information that it is under attack, the coordinates of the

attacker, and enough information to identify the (possibly)

compromised accounts.

3.3.1 Notifying the Target

When the server determines that an attack is in progress

it must notify the institution under attack. There are two

very important components to the information the server

can now provide domR :

• The attacking domain dom

• The hashes h(uid) of already phished victims.

The mechanism for notifying domR that it is under attack

is simple. An institution BigBank that wishes to have its do-

main protected must set up an email account phishreports@-

bigbank.com. Reports will be sent to that address. For veri-

fication purposes the email header will contain the time, the

domain (i.e. “Bigbank”) and the time and domain signed

with the server’s private key. Any email arriving at that ad-

dress that does not conform to the protocol will be dropped

on the floor by the BigBank mail server. In this manner any

spam or other email that does not come from the server can

be immediately discarded.

Additional victims are likely to be phished in the interval

between the server notifying domR and the phishing site dom

actually going offline. The server sends additional reports

to the target as each of these arrive. These messages again

are signed so that verification is simple, and thus h(uid) for

each victim can be routed to domR without delay.

We point out that scale of deployment is a key factor

here. Only if deployment of the client piece accounts for

a significant percentage of web users will BigBank find it

advantageous to set up the mail account necessary. The

quality and timeliness of the information received depends

on the scale of the deployment. Optimally the client should

be implemented as part of a browser with large installed

base such as Microsoft’s Internet Explorer.

3.3.2 Mitigation

On receiving an attack report from the server domR can

initiate actions to

• Takedown the attacking site dom

• Limit activity on the compromised accounts.

Web-site takedown is the process of forcing a site offline

and can involve technical as well as legal measures. Sev-

eral companies specialize in these procedures (e.g. Cyota,

Branddimensions and Internet Identity). While “Cease and

Desist” and legal measures are pursued, a simple denial of

service attack can put the phisher out of commission. In-

deed by flooding the faked login page hosted by dom with

randomly generated uid and pwd fields it is easy to ensure

that the phisher will have to trawl through much junk to

find the few (uid, pwd) pairs from actual victims.

In addition the target can limit activity on compromised

accounts. This does not necessarily mean that all access

to the account is denied, or innocent features disabled. For

example, if the target is a bank, then recurring payments, or

bill payments to recipients already on record represents little

risk. However payments to new recipients, or any attempt

to change the address of record of the account should clearly

be disabled.

4. RESULTS OF TRIAL DEPLOYMENT
As we make clear in [13], detection of phishing sites based

on PRU relies on a very large deployment. For example, at a

threshold of 5 reports, a 1% deployment would only detect a

phishing sites after about 500 users from the population have

fallen victim to the page. Most phishing attacks are much

smaller than that (as the data will indicate), and therefore

would go undetected by a 1% deployment of PRU.

Nevertheless, a number of questions are unanswered. In

particular, questions relating to the false positive rate, and

the willingness of the users to opt into the system, can be

answered with a small deployment. Furthermore, reliable

statistics about the size, distribution, and timing of phishing

attacks, and about typical password re-use patterns, can

help in evaluating the effectiveness of the problem and help

foresee potential problems.

A trial deployment to capture the additional data neces-

sary for the analysis was carried out. Our client software

shipped as a component of [anonymized] toolbar. The com-

ponent was optional, and users were presented with an opt-

in agreement. The toolbar was first available for download

on the web on 7/24/2006, and a total of 544960 clients in-

stalled and activated by 10/1/2006. The opt-in rate was

greater than 60 % of those offered the client and was approx-

imately the same as for other non-security related options.

4.1 Trial Implementation
The client consists of a module within the toolbar that

monitors and records Password Re-use Events (PRE’s). It

contains the following main components.

HTML password locator: this component scans the

document object model in search of filled-out password fields,

and extracts the passwords. This search is initiated every

time the browser BeforeNavigate2 event occurs. Once the

password is found it is hashed and added to the Protected

Password List (PPL).

Protected Password List: This list contains the pass-

word hash and the full URL of the receiving server. All of

the information in the PPL is stored using the Data Protec-

tion API (DPAPI) provided by Windows [24]. For security

reasons weak passwords (with bitstrength < 20 bits) gener-

ate no entry in the PPL.

Realtime password locator: this component maintains

a 16 character FIFO that stores the last 16 keys typed while

the browser had focus. If any 7-16 character section of the

FIFO matches a password in the PPL, it checks whether the

URL of the current server is among the URLs previously

associated with the password. If not a Password Re-use

Event (PRE) report is sent to the server.

PRE Report: this contains: the current (primary) URL

and all of the URLs previously associated with the password

(secondary URLs). Observe that neither the password, nor

its hash are sent in the report. There is no personally iden-

tifying information in the report. Comments on interesting

and unexpected findings from that data are detailed in [10].

Privacy: A number of measures were taken to protect

the privacy of those who opted in. No Personally Identi-

fying Information was gathered from the clients. Neither

passwords, nor their hashes were sent to the server. IP ad-

dresses from which reports were received were not stored at

the server. In addition the time at which PRE reports were

received was timestamped at the server with granularity 10

minutes to make identifying users by login times difficult.

Finally, the hashes of the userID were neither stored nor

sent with the report 1. A privacy audit was performed and

published [19].

Server: The server records each received report and stores

with a per-PRE report ID and a timestamp. It does not

record any location information such as IP address that

might allow for identification of the user or his/her location.

4.2 Data Analysis
Downloads began almost as soon as the client became

available on the web, and data from the clients began to

flow shortly thereafter. The data sheds considerable light

on web users password habits. A detailed study of aspects

of the data unrelated to phishing can be found in [10]. The

500K clients helped us answer a number of questions, and

estimate performance of the algorithm.

4.2.1 Phishing is a Big Problem, Phishing is a Small
Problem

This deployment is only a survey, as 500,000 clients cor-

respond, to, maybe, about 0.01% of internet users. Yet, we

point out that this is a big survey. For example, the re-

sults in section 4.2.2 are based on these 500k clients. Previ-

ous surveys on the size of the phishing problem by Gartner

(2006) and the Federal Trade Commission [9], were based

on samples phone or email samples of 5000 and 4057 peo-

ple respectively. Thus this deployment represents 100 times

more participants than previous surveys or studies of the

problem. In addition, our deployment client measures what

clients actually do, rather than what they remember and say

they did. The Gartner study was based on an email and the

FTC [9] on a phone survey.

Phishing is a big problem when measured by the standards

of the volume of phishing email received by users, and by the

number of new reported phishing sites. APWG [22] reports

more than 37000 new phishing sites per month in late 2006.

This is large by any standard, but it appears likely that a

majority of these sites get few or no victims. For example

if each received an average of 100 victims, and we assume

an active web population of 500 million users, this would

imply that 100 × 3.7e6 × 12/500e6 ≈ 8.8% of users were

being phished annually. This seems higher than common

sense would indicate.

4.2.2 Size and Distribution of Phishing Attacks

We had access to a list of phishing sites that were active

during a three week period toward the end of the study.

These sites were determined and verified to be phishing by

a third party vendor. There was an average of 436 k clients

during this three week period. We recorded 101 PRE reports

1In the future, if a full deployment relies on the back-end
protection, hashes of the UserID would have to be stored in
the PPL and sent with the reports. No password informa-
tion is ever sent.

listing one of the verified phishing sites as the primary URL.

This implies that the client has typed at the phishing site

a password previously used at another site on the user’s

PPL, which is a fairly good indication that the user has

been “phished.” We can use this to get an estimate of the

annualized fraction of the population being phished as

101× 365

436000× 21
≈ 0.00403.

Thus the data indicates that about 0.4% of the population

falls victim to a phishing attack a year.

4.2.3 False Positives

A major outstanding issue is whether the algorithm used

in Section 3.2 to decide domA is phishing domB produces

many false positives. False positives will happen when the

first few users visiting a new site have an overlapping set of

password re-use sites. For example, if the first five visitors

to myNewStore.com all use the same password at the store

as they have used at BankOfAmerica, the server would de-

cide that the site is phishing BankOfAmerica. In [13] our

conjecture was that the password re-use habits among un-

correlated users would be diverse enough to keep the false

positive rate very low. The trial deployment confirms that.

In fact, the diversity of sites is greater than we had antici-

pated. Our client population visited a total of 143k distinct

login URLs. There were approximately 20 million total login

events. If we applied only the first three requirements of the

phishing detection in Section 3.2 (i.e. omit the whitelist and

phishable tests) there were only 41 false positives among the

143k URLs. That is, the pattern of password re-use among

our clients is such that less than 0.03% of sites accidentally

trigger an alert even before we apply any whitelist or phish-

able rules. This confirms that phishing sites have a very

different pattern of PRE reports from that of innocent sites,

even when a suspicion threshold of five reports is used.

Since we did not have authoritative and exhaustive white

or phishable lists applying the last two tests must be mod-

eled. We approximate the first by whitelisting any URL for

which we have login history more than 7 days old. (Note:

we do not suggest this as a reliable whitelisting strategy; we

merely assume that in the absence of active attacks on the

trial deployment sites with history are good). Using this

simple whitelist drops the number of positives from 41 to 12

(or 0.008% or URLs).

Since an exhaustive list of phishable (e.g. bank) URLs was

not available, we settle for excluding instead cases where the

target was among the 10 most visited non-phishable URLs.

That is, we constructed a list of the 10 most trafficked sites

(e.g. as hotmail, myspace) which are not usually targets

of phishing attacks. If domA satisfied the first four criteria

in Section 3.2, but domB was on our non-phishable list we

discounted it. This reduced the number of positives (among

the 143k distinct login URLs) to 2.

Given that we believe more exhaustive white and phish-

able lists can be built, we believe this false positive rate is

negligible. In fact, we believe that with a more exhaustive

whitelist (based on traffic from a larger client base) it will be

possible to drop the threshold from 5. We pursue that line

of enquiry as a response to distributed attacks in Section

5.1.4.

4.2.4 Size Distribution of Attacks

We assume that not all phishing attacks are equally large.

There were 60 distinct verified phishing sites among the 101

for which we received a PRE report in the three week period

mentioned in Section 4.2.2. There is a certain distribution of

reports across sites, e.g. we received 4 reports from one site,

3 from few, 2 and 1 from a great deal more. The standard

method of estimating the probability mass associated with

unobserved types from a sample is to take the Good-Turing

estimate [15]. This gives that the probability mass of the

missing types is N1/N = 33/101, where N1 is the number

of sites with one report and N is the number of reports. We

model the distribution of phishing sites as an exponential

e−λx, where x is the site number, ordered by decreasing

number of PRE reports (so x = 0 has most reports, x =

1 has second most and so on), and get λ = 0.0257. This

accords well with the expectation that a few phishing sites

get many victims, but there is a long tail which receive very

few.

4.2.5 How many Victims can PRU Save?

The efficacy of our scheme depends on the distribution of

victims among sites. If every single phishing site received

fewer than 5 victims the detection of Section 3.2 would save

nobody. We use the exponential distribution of victims from

Section 4.2.4 to estimate the save rate. We normalize so

that the total number of victims (integral of the whole dis-

tribution) matches the estimated number of victims over the

population of 50 million.

c ·
∫ ∞

0

λe−λxdx = 101× 50e6

436e3
,

giving c = 11.6k. The number of victims that cannot be

saved is all victims at sites that have fewer than 5 victims,

and the first 5 at all other sites. Using the above model

there will be

λe−λx0 = 5 ⇒ x0 = 205,

sites that have more than 5 victims (over the three week

period), and then

ce−λx0 = 59 victims,

at sites that receive 5 or fewer victims. There will be at least

5× 205 = 1025 victims at the larger sites before suspicion is

raised. The total number of expected victims is

c =
50e6 · 101

436e3
= 11.6k.

Thus, we achieve

1−
(

205 · 5 + 59

11.6e3

)
≈ 0.907,

or a rate of 91%.

PRU
Scheme

Contact Server
for Blacklist

Broadcast
Blacklist

Server hits/day 1e6 1e10 1e8

Table 1: Traffic comparison. Assuming 100 million
deployed clients, each browsing 100 pages/day. We
assume each client establishes four new accounts a
year re-using an existing password. Observe that the
PRU scheme traffic is far smaller than a blacklist
scheme. In addition, if the blacklist is broadcast
once a day, there is a large latency in the list.

4.3 Server Traffic
An important consideration of any web service is the re-

sources it consumes, and how this can be expected to scale

with deployment.We now estimate this. The scheme sends

a message to the server only when a protected password

is typed into a non-whitelisted site. It takes time for the

Protected List to fill (i.e. for a user to visit all of her pass-

word protected accounts). Once this happens reports are

sent only when a new account is established (or the user

is phished). Figure 2 shows the number of sites sharing a

password vs. the age of the client. As can be seen, after

50 days the average password is being used at 5.5 sites and

is being added to about 0.1 new sites per month. We also

measure (see [10]) that the average client has 6.5 passwords

after 50 days. It is the incremental rate at which existing

passwords are re-used at new login sites that determines the

rate of PRE reports arriving at the server. Thus we expect

0.65 reports per client per month. At an installed base of

50 million users this would translate to less than one million

server hits per day (a load that is minor by the standards

of modern web services). Table 1 compares the server load

from our scheme with that of a blacklist scheme.

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

Age of Client

S
ite

s
pe

r
pa

ss
w

or
d

Figure 2: Number of sites per password vs. age of
client in days. The average password appears to be
used at about 6 different sites.

5. ATTACKS
There are two main ways of succeeding with a phishing at-

tack on the system. First, the phisher may try to prevent

clients from reporting to the server. Second, he may try to

prevent the server from detecting an attack from the reports

it receives by hiding below any suspicion threshold the server

may have. Finally, a vandal may try to use the system to

mount an denial of service attack at a legitimate site.

5.1 Preventing the client from reporting
We kept the logic of the client piece as simple as possible,

so that it is hard to prevent it from reporting entry of pro-

tected credentials at non-whitelisted sites. This means that,

once deployed, the client piece probably does not need to be

updated as phishing attacks evolve. To make the client piece

as durable as possible we have considered several attacks.

5.1.1 Flushing the protected list

A Phisher might try to circumvent the protection by remov-

ing some (or all) of the passwords from the protected list.

For example, since the protected list has only 256 entries, a

phishing site could submit (using HTML forms) 256 strings

as passwords to a random site. As described in Section 3.1.1

this would effectively “flush” everything from the protected

list because of the Least Recently Used maintenance rule.

To avoid this attack, before accepting a new entry, from the

HTML form data (as in Section 3.1.1), we match the pass-

word with the keyboard buffer, effectively requiring that the

password have been actually typed at the site. It is unlikely

that a Phisher can induce a victim to actually type hundreds

of password-like strings.

5.1.2 Hosting on a whitelisted domain

A phisher might attempt to host on an existing, legitimate

site. For example putting the phishing page up on an ISP

member site, like members sites on AOL or MSN, or a small

site like a community group association, or by employing a

Cross-Site Scripting (CSS) attack. Each of these is handled

by proper design of the client whitelist.

It is easy to handle ISP member sites by including the

ISP, but excluding certain sub-domains from the whitelist.

Small groups like community associations cannot be de-

pended upon to prevent break-ins. Thus the client whitelist

should contain only very large commercial domains. Recall

that a site can be on a users protected list, without being on

the whitelist. CSS attacks actually host the phishers page

on a target domain. For this reason, only sites that can be

depended upon to maintain basic levels of security should

be permitted to populate the client’s whitelist.

5.1.3 Tricking the user into mis-typing the userid

An earlier version of the algorithm hashed the combined

uid/pwd. This provided a way a way for a Phisher to cir-

cunvent the system, by forcing the user to mis-type the uid.

Normally, as you type your userid, the letters show up at

the screen. Suppose the Phisher introduces a page with a

script where the third character you type does not show up

in the screen. You’d think you did not press hard enough,

and would re-type the character. As you do that, the key-

board buffer will have that character twice, and it will not

hash to the protected entry. We note that this attack is

not possible with the password, since the password does not

show up in the screen as you type (only ****). If something

goes wrong, most users simply delete the whole thing and

re-start.

5.1.4 Distributed Attack

A possible approach for a phisher who seeks to evade de-

tection is to distribute the attack. Rather than phish Big-

Bank by directing victims to PhishBank the phisher may

use many domains, or numeric IP addresses. Thus when

clients report sending their BigBank credentials, it fails to

trigger an alert at the server. For this reason, we believe the

server logic needs to adapt as phishers adapt. For example,

while the destination for several BigBank credentials may

be distributed, a large increase in the number of reports for

a given whitelisted domain is in itself worthy of suspicion.

Recent data seem to point to evidence of an increase in

this kind of distributed attack. We point out that, in the

limit, attacks can be such that each victim is directed to

a different URL. In this case, any schemes based on black-

listing, will become completely ineffective. It might appear

that our approach also would suffer this fate. In Section

4.2.3 we suggested that the false positive rate was so low

that we might consider dropping the threshold for suspi-

cion from 5 PRE reports. In fact, with a large and reliable

whitelist we suggest that it can be dropped to one. That

is, if we receive a single PRE reporting that domA has ac-

cepted a password previously used at domB and domA is not

on a whitelist we immediately inform domB , as suggested in

Section 3.3.1. It might appear that for this we would have

to whitelist every possible URL (which runs to billions of

pages). Recall, however, that PRE reports come only from

login URLs: i.e. pages that either have a password field,

or that have accepted text that was previously typed into

a password field on another site. First, there are many or-

ders of magnitude fewer login pages than there are ordinary

pages. Second it is only the new login pages that might

trigger false positives. Third, by informing the suspected

target we inconvenience only those users who attempt to lo-

gin to the suspected target domB and conduct a suspicious

transaction, before domB has had time to determine that

the alarm is false.

5.1.5 Redirection Attack

Similar to the distributed attack is a Redirection attack

where a phisher directs all victims to a single URL, but each

victim is redirected to a different (possibly unique) address

to be phished. For example the phishing URL might origi-

nally redirect to IP1, but as soon as the first victim is caught

it redirects to IP2 and so on. This might appear to confuse

our system by distributing the client reports one at a time

among many addresses. To circumvent this we include in the

client report any URLs visited in the last minute. By inter-

section, the redirecting (phishing) URL can be detected.

5.2 Denial of Service on a Site
Related to false positives is the possibility of using the sys-

tem to mount an Denial of Service attack on a site. Specif-

ically, suppose someone falsely reports that MomnPop.com

has accepted BigBank passwords enough times to cause the

server to conclude that MomnPop is phishing BigBank.

First, note that we track the IP of the reporting client; a

single client reporting the site repeatedly will have no effect.

Second, no site that is on the client whitelist (of large in-

stitutions) or the server’s much larger whitelist can ever be

placed on the Blocked list. The most powerful defense, how-

ever, is that if MomnPop does get on the Blocked list the

consequences of the false positive are almost undetectable

as shown in Section 4.2.3 above.

5.3 Roaming and Internet Cafes
A user at an internet kiosk will not be protected. By this

we mean that typing her BigBank credentials at a phishing

site will generate no report to the server. This is so, since

the user does not have access to their protected list. A main

advantage of the scheme, however, is that by aggregating

across many users the server can detect an attack much more

quickly and the Block list can be expected to be updated

with low latency.

6. CONCLUSION
We proposed a scheme which has the potential of neutral-

izing most phishing attacks. The client piece stores hashes

of important personal information (e.g., passwords), and re-

ports to the server whenever this information is typed at

non-whitelisted sites. The server aggregates those reports

to produce a very responsive blocked list. The scheme re-

quires no change in user behavior. In fact, no notification is

ever made to any user. Instead, hashes of the compromised

accounts are passed onto the financial institution, which will

proceed to take down the phishing site, and to limit on-line

privileges at the compromised accounts. Restoring full ac-

cess to the compromised accounts will follow each institu-

tions procedure, but will likely be similar to the ones used

today to restore access to a stolen credit card. False positives

are extremely rare, and almost innocuous. The wrongly ac-

cused site is not impacted, and suffers no loss.

The extent of deployment is key in making the scheme

effective. The more users involved in the scheme, the faster

the detection. Additionally, the willingness of the financial

institutions to put back channel mechanisms in place will

be proportional to the number of customers reached. De-

ployment by one or more large browsers is at the same time

a requirement for the scheme and a win for the browser’s

users. Acknowledgements: the authors wish to acknowl-

edge enormous help and assistance from Steve Miller, Geoff

Hulten, Anthony Penta, Raghava Kashyap and especially

Steve Rehfuss. Cem Paya provided several suggestions and

attacks that have materially improved the scheme.

7. REFERENCES

[1] http://www.rsasecurity.com.

[2] http://www.scamblocker.com.

[3] http://www.spoofstick.com.

[4] http://www.passmarksecurity.com.

[5] B. Adida, S. Hohenberger, and R. L. Rivest. Fighting

phishing attacks: A lightweight trust architecture for

detecting spoofed emails. USENIX Steps to Reducing

Unwanted Traffic on the Internet Workshop (SRUTI).

[6] N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, and

J. Mitchell. Client-side defense against web-based

identity theft. Proc. NDSS, 2004.

[7] M. Delany. Domain-based email authentication using

public-keys advertised in the dns. 2004.

http://www.ietf.org/internet-drafts/

draft-delany-domainkeys-base-01.txt.

[8] R. Dhamija and J. D. Tygar. The battle against

phishing: Dynamic security skins. Symp. on Usable

Privacy and Security, 2005.

[9] Federal Trade Commission. Identity Theft Survey

Report. 2003. http:

//www.ftc.gov/os/2003/09/synovatereport.pdf.

[10] D. Florêncio and C. Herley. A Large-Scale Study of

Web Password Habits. WWW 2007, Banff.

[11] D. Florêncio and C. Herley. Stopping a Phishing

Attack, Even when the Victims Ignore Warnings.

MSR Tech. Report TR-2005-142, 2005.

[12] D. Florêncio and C. Herley. Analysis and

Improvement of Anti-Phishing Schemes. SEC, 2006.

[13] D. Florêncio and C. Herley. Password Rescue: A New

Approach to Phishing Prevention. Proc. Usenix Hot

Topics in Security, 2006.

[14] E. Gaber, P. Gibbons, Y. Matyas, and A. Mayer. How

to make personalized web browsing simple, secure and

anonymous. Proc. Finan. Crypto ’97.

[15] W. Gale. Good-Turing Smoothing Without Tears.

Statistics Research Reports from AT&T Laboratories

94.5, AT&T Bell Laboratories, 1994.

[16] J. A. Halderman, B. Waters, and E. Felten. A

convenient method for securely managing passwords.

Proceedings of the 14th International World Wide

Web Conference (WWW 2005).

[17] A. Herzberg and A. Gbara. Trustbar: Protecting (even

naive) web users from spoofing and phishing attacks.

2004. http://eprint.iacr.org/2004/155.pdf.

[18] M. Jakobssen and A. Young. Distributed phishing

attacks. 2005.

http://eprint.iacr.org/2005/091.pdf.

[19] Jefferson Wells Inc. Microsoft Phishing Filter Feature

in Internet Explorer 7 and Windows Live Toolbar.

2006. http://www.jeffersonwells.com/

client audit reports/Microsoft PF IE7

IEToolbarFeature Privacy Audit 20060728.pdf.

[20] J. Kelsey, B. Schneier, C. Hall, and D. Wagner. Secure

applications of low-entropy keys. Lecture Notes in

Computer Science, 1396:121-134, 1998.

[21] P. Oorschot and S. Stubblebine. Countering identity

theft through digital uniqueness, location

cross-checking, and funneling. Financial Cryptography,

2005.

[22] Anti-Phishing Working Group.

http://www.antiphishing.org.

[23] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C.

Mitchell. Stronger password authentication using

browser extensions. Proceedings of the 14th Usenix

Security Symposium, 2005.

[24] M. E. Russinovich and D. A. Solomon. Microsoft

Windows Internals. Microsoft Press, fourth edition,

2005.

[25] S. Schechter, R. Dhamija, A. Ozment, I. Fischer. The

Emperor’s New Security Indicators: An evaluation of

website authentication and the effect of role playing

on usability studies. IEEE Security & Privacy, 2007.

[26] M. Sahami, S. Dumais, D. Heckerman, and

E. Horvitz. A bayesian approach to filtering junk

email. Learning for Text Categorization, 1998.

[27] B. Schneier. Applied Cryptography. Wiley, second

edition, 1996.

[28] M. Wu, R. Miller, and S. L. Garfinkel. Do Security

Toolbars Actually Prevent Phishing Attacks. CHI,

2006.

[29] M. Wu, R. Miller, and G. Little. Web Wallet:

Preventing Phishing Attacks by Revealing User

Intentions. SOUPS, 2006.

[30] K. Yee and K. Sitaker. Passpet: Convenient Password

Management and Phishing Protection. SOUPS, 2006.

