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ABSTRACT
Because races represent a hard-to-manage class of errors in
concurrent programs, numerous approaches to detect them
have been proposed and evaluated. We consider specifically
asymmetric races, a subclass of race conditions, where a
programmer’s thread correctly acquires and releases a lock
for a specific variable, while another thread causes a race by
improperly accessing this variable. We introduce ToleRace,
an oracle that allows programs to either tolerate or detect
asymmetric races based on local replication of shared state.
ToleRace provides an approximation of atomicity in critical
sections by creating local copies of shared variables when a
critical section is entered and propagating the appropriate
copy when the critical section is exited. We characterize
the possible interleavings that can cause races and precisely
describe the effect of ToleRace in each of these cases. We
evaluate the theoretical aspects of the oracle and note that
it could be implemented in hardware and/or software within
a favorable range of overhead-to-benefit scenarios.

1. INTRODUCTION
Race conditions are memory errors that occur when mul-

tiple threads read and write a memory location in an under-
specified order. Because race conditions depend on the inter-
leaving of the memory operations of individual threads, they
are notoriously difficult to reproduce and represent a major
obstacle in the task of writing correct concurrent programs.
The advent of multicore processors has generated significant
interest in this problem [7, 8, 21, 24, 25, 26, 27, 29, 31].

Current approaches dealing with race conditions focus on
the problem of race detection and face three significant ob-
stacles. First, both static and dynamic methods for race de-
tection can produce false positives that significantly reduce
their effectiveness in practice (e.g., see [24, 27]). For exam-
ple, recently published static analyzers report false positive
rates of 90% [23, 27]. Because race conditions are difficult
to reason about, determining if a race reported by a sta-
tic detection tool is a real race can be time consuming and
counter-productive. Second, dynamic race detection tools
can have lower false positive rates, but also currently add
significant overhead to execution time (ranging from 2x to
30x slowdown) [21, 29, 31]. Finally, even when a true race is
detected, they can be difficult to correct. Whenever software
errors are fixed, potential new errors may be introduced. For
example, fixing a race condition may involve introducing ad-
ditional synchronization constructs, and the incorrect use of
such constructs can result in a deadlock. Programmers are
faced with the choice between allowing a race that occurs

infrequently and creating potential new synchronization er-
rors that have broader impact. In large software systems
races can require months to correct after being observed.

We present ToleRace, a runtime system that allows pro-
grams with concurrency errors to tolerate them and con-
tinue executing. Inspired by the DieHard runtime system
[3], which probabilistically tolerates memory safety errors,
ToleRace uses replication to deterministically or probabilis-
tically manage asymmetric data races.1 An asymmetric race
occurs when one thread correctly protects a shared variable
using a lock, while another thread accesses the same variable
improperly due to a synchronization error (e.g., not taking
a lock, taking the wrong lock, taking a lock late, etc.).

ToleRace provides an approximation of atomicity in criti-
cal sections by creating local copies of shared variables when
a critical section is entered, detecting conflicting changes to
shared data when the critical section is exited, and propa-
gating the appropriate copy when possible to effectively hide
the race. ToleRace allows a variety of implementations that
range from software only, where races are only probabilisti-
cally detected and tolerated, to a combination of hardware
and software, where stronger guarantees are possible.

ToleRace can be compared with transactional memory [17],
which combines mechanisms for conflict detection and con-
flict resolution (through transaction abort and rollback).
ToleRace allows a range of approaches to conflict detection
that trade off precision with cost, while at the same time
we demonstrate that it tolerates a number of race scenarios
without requiring abort and rollback. ToleRace represents a
family of possible runtime implementations that occupy the
space between programming with existing locking mecha-
nisms and using full transactional memory. In this paper,
we focus on the fundamental properties of the ToleRace ora-
cle, described below. The contributions of ToleRace include:

• Comprehensive runtime management of races.
ToleRace allows programs with races to tolerate their
existence by increasing the likelihood that races will
not cause incorrect program behavior. Increasing a
program’s tolerance to races reduces the need for the
race to be debugged/patched. In instances where Tole-
Race cannot tolerate races, it detects them either pre-
cisely or with high probability, depending on the im-
plementation.

• Precise detection. ToleRace only identifies races
that happen at runtime. It detects a race when the

1In the remainder of the paper, a referral to a race means a referral
to an asymmetric race unless specified otherwise.
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Figure 1: An example of an RwR race.

critical section in which the race takes place exits.

• Programmer-centric local reasoning. ToleRace
enables programmer tools that allow local reasoning
about correctness and that facilitate a structured means
of detecting and tolerating errors that are caused by
code outside a programmer’s control. With ToleRace,
a programmer can add compensation code at the exit
of a critical section to create a custom resolution of a
detected race. It can be used to detect/patch a specific
race condition in the release version of the program
without identifying the exact source of the bug.

The example in Figure 1, inspired by a real race detected
in the Mozilla application suite [21], illustrates how Tole-
Race works. In this example, we see that Thread 1 cor-
rectly uses a critical section to protect its read accesses to
the shared variable gScript. Thread 2 incorrectly updates
gScript without a lock, creating a race. The race occurs
infrequently, when Thread 2’s update (w) is interleaved be-
tween the test for NULL (R) and the else part of the con-
ditional in Thread 1 (R).

On the right side of the figure, we see how the original
program is transformed by the ToleRace runtime system.
ToleRace eliminates the RwR conflict by creating a local
copy (local gSript) of the shared variable, gScript, when
the critical section is entered, operating on that copy in the
body of the critical section, and copying back the updated
value when the critical section is exited. With ToleRace,
Thread 2 never sees the memory state in which gScript is
set to NULL, and hence the race never occurs.

1.1 Why Asymmetric Races?
ToleRace allows programmers to reason locally about the

correctness of their critical sections. Normally local reason-
ing cannot be applied when considering the correctness of
programs with shared variables. Components that are lo-
cally correct (e.g., use locks to protect a shared variable)
are made incorrect by arbitrary code somewhere else in the
application. With large development teams, it is typical for
most of the code in an application to be outside the di-
rect control of a particular programmer. What is worse, the
source code of a library that contains a concurrency error
may not be available at all. In such cases, the client of an
incorrect library may be forced to program around the error

in an ad hoc way. ToleRace allows programmers to detect
and respond to external concurrency errors in a structured
and principled way with no changes to external code.

Races occur infrequently. As a result, attempts to detect
races dynamically induce significant overhead on all execu-
tions, partly because they attempt to precisely pinpoint both
threads that are interacting incorrectly. Surprisingly, Tole-
Race manages concurrency errors without requiring knowl-
edge of the thread that caused the error, reducing the exe-
cution overhead of maintaining precise information.

ToleRace detects asymmetric races, a class of races caused
by two threads accessing a shared variable, one that cor-
rectly acquires and releases a lock (thus creating a critical
section) and another that does not. While this prevents
ToleRace from addressing symmetric races where neither
thread uses a lock to protect the shared variable, asym-
metric races are common in software development for the
following reasons. First, most code is written correctly—
in many cases local reasoning about concurrency, including
taking proper locks, has been done correctly, leaving many
remaining concurrency errors as asymmetric races.

Second, asymmetric races can be caused when software
evolves and assumptions are invalidated. For example, code
might be developed with the assumption that application
initialization never occurs in a multi-threaded context. How-
ever, new code might be introduced (e.g., a second start-up
thread) that violates the original invariant. Another ex-
ample occurs when a library is written assuming a single-
threaded environment, and later the requirements change
and multiple threads are used. An expedient response to
this change in requirements is to demand that clients of the
library wrap calls to the library API, acquiring locks before
entry and releasing them on exit. Because this solution re-
quires that all clients of the library be changed, races can be
introduced when clients are inadvertently left unmodified.

2. PRELIMINARIES
A lock xV is typically associated with a group of shared

variables V . The purpose of xV is to enforce exclusive access
by a specific thread to any variable in V .

Definition 1. Critical section is a subgraph G of the
control-flow graph G ⊂ G(T ) of a specific thread T such that
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all entry points to G acquire a specific lock xV and all exit
points out of G release xV .

Here, T enters the critical section to gain exclusive access
to V . We allow arbitrary overlap or nesting of critical sec-
tions over distinct locks within the same thread. We denote
as l() and u() the atomic functions that acquire and release
a specific lock respectively. Next, we denote as r() and w()
two functions that read from and write to a specific vari-
able. We consider cases when a single variable is protected
and accessed, unless stated otherwise. We use l, u, r, and
w to denote the fundamental functions over that specific
variable. Finally, we use x to denote a “don’t care” function
which can be either a read or a write.

The control-flow graph of a critical section may create
numerous different sequences of reads and writes depending
on the machine state. With no loss of generality, we use a
notation where a sequence of reads and writes is presented
using an unfolded format (sequential, non-conditional). We
first denote a sequence of at least one read as r+ and a se-
quence of a non-negative number of reads as r∗, thus we
have r+ ≡ rr∗. Operators ∗ and + are equally defined for
writes. For a specific thread T1 we define the sequence of
critical operations using the above operators and fundamen-
tal functions. For example T1 = [l1r11w11r

+
12u1] denotes a

thread that first locks in a variable then reads and writes
exactly once, followed by at least one read before it unlocks
this variable. The first digit in the operation index denotes
the thread index, i.e., T1, and the second distinguishes be-
tween sequences of operations of the same type. We denote
one possible interleaved execution of critical operations of
two threads T1 = [l1r11w11r

+
12u1] and T2 = [w2] as the fol-

lowing sequence S = {l1r11w11w2r
+
12u1}. Sequence S spec-

ifies that the write from the second thread occurred after
the write in the first thread to result in a race condition.

2.1 Characterizing Asymmetric Races
To characterize asymmetric races, we exhaustively con-

sider all interleavings between operations in a correctly syn-
chronized thread and a second, unsynchronized thread. We
then reduce the interleavings that result in races into four
classes and consider how ToleRace handles each class. We
assume a programming model with two types of threads:

• a safe thread consists of a single critical section, and

• a malicious thread does not have a critical section
although it could access a shared variable.

Definition 2. A race condition represents any one of
all possible execution interleavings of a set of threads T =
{T1 . . . TN} where at least one of the threads in T is malicious
and at least one is safe, such that the final computation state
after all threads have executed does not correspond to the
case when all safe threads in T have executed atomically with
sequential memory consistency.

Our definition is agnostic to the execution order of in-
dividual threads. Thus, we assume that the programmer
intended that the threads can be executed in any order, as
long as they execute atomically with respect to their critical
sections.

A thread (safe or malicious) in T could execute but not
affect the program computation state. In this case, we infor-
mally relax Definition 2 to accept execution schedules where
a subset of threads from T does not execute as correct.

Using this definition, the sequence S presented earlier
in Section 2, represents a race because T1 does not exe-
cute atomically due to the interleaving of w2. Sequences
{w2l1r11w11r

+
12u1} or {l1r11w11r

+
12w2u1} are not consid-

ered races as they correspond to the atomic execution of the
safe thread T1.

For the purposes of this discussion, we assume the hard-
ware supports sequential memory consistency semantics [20]
and that ToleRace preserves these semantics. We relax these
restrictions in Subsection 3.3 by considering the general case
of races occurring within critical sections that protect mul-
tiple variables as well as critical sections that are nested
and/or overlapped.

To understand the ways in which the safe and malicious
threads can interact, we exhaustively explore all interleav-
ings where the malicious thread T2 executes between op-
erations in the safe thread T1. To simplify the analysis,
we note there are only three ways in which a sequence of
operations by a single thread can interact with a single vari-
able: by reading it only (r+), by setting its value regardless
of its prior (wx∗), and by setting its value based upon its
prior (r+wx∗). Operations that follow a write by a particu-
lar thread are important semantically but do not affect the
inter-thread interactions. Also note that rw could occur in
two versions: (i) w is dependant upon the value retrieved by
r and (ii) w is not dependant upon the value retrieved by r.
Sequences where (ii) is true, could be analyzed as indepen-
dent manifestations of two sequences of type r+ and wx∗.
Sequences where (i) is true, demand special attention; thus,
in the remainder of this paper, when we specify a sequence
rw issued by the same thread we assume (i).

Table 1 tabulates all possible interactions between two
threads: a safe thread T1 and a malicious thread T2. The
safe thread is improperly intercepted by T2 at a position
that slices the operations of T1 into two parts T ′1 and T ′′1 .
The table evaluates the outcome of this interaction exhaus-
tively. Symbols T and F specify that a race has and has not
occurred respectively. Symbol CT points to the fact that
a race occurs conditionally – the condition is that T2 alters
at least one more live variable in the program computation
state. This variable could be local to the thread. We derive
the following classification theorem from Table 1.

Theorem 1. Race condition cases. A race between
two threads occurs due to one of the following conditions:

I XwR ≡ {l1x+
1 w2x

∗
2r1u1}. This case specifies that

for any sequence of operations by T2 that starts with a
write, is followed by a read by T1, a race will occur.

II WrW ≡ {l1r∗11w11x
∗
1r

+
2 r∗12w12u1}. This case speci-

fies that any sequence of reads by T2 when placed in-
between two writes by T1 results in a race.

III RXwW ≡ {l1r1x
∗
1w2x

∗
2w1u1}. When T1 starts with

a read followed by an arbitrary sequence of operations,
and T2 executes any sequence of operations that starts
with a write just before T1 writes back to this variable,
a race will occur. An additional constraint is that T2

alters at least one more live variable in the program’s
computation state besides the variable protected by T1.
This variable does not need to be shared.

IV XrwX ≡ {l1x+
11r

+
2 w2x

∗
2x12u1}. This case specifies

that any sequence that starts by a write based upon a

3



Operation interleaving Operation interleaving Operation interleaving
T ′1 T2 T ′′1 Race T ′1 T2 T ′′1 Race T ′1 T2 T ′′1 Race
r+ r+ r+ F r+ wx∗ r+ T X r+ r+wx∗ r+ T X
r+ r+ wx∗ F r+ wx∗ wx∗ CT X r+ r+wx∗ wx∗ CT
r+ r+ r+wx∗ F r+ wx∗ r+wx∗ T X r+ r+wx∗ r+wx∗ T

wx∗ r+ r+ F wx∗ wx∗ r+ T X wx∗ r+wx∗ r+ T X
wx∗ r+ wx∗ T X wx∗ wx∗ wx∗ F wx∗ r+wx∗ wx∗ CT X
wx∗ r+ r+wx∗ T X wx∗ wx∗ r+wx∗ T X wx∗ r+wx∗ r+wx∗ T X

r+wx∗ r+ r+ F r+wx∗ wx∗ r+ T X r+wx∗ r+wx∗ r+ T
r+wx∗ r+ wx∗ T X r+wx∗ wx∗ wx∗ CT X r+wx∗ r+wx∗ wx∗ CT
r+wx∗ r+ r+wx∗ T X r+wx∗ wx∗ r+wx∗ T X r+wx∗ r+wx∗ r+wx∗ T

Table 1: Tabulating classes of race instances. Column marked “Race” denotes that a schedule T ′1T2T
′′
1 results

in a race. Symbols T and F specify that a race has and has not occurred respectively. Symbol CT points
to the fact that a race occurs conditionally. The conditions are outlined in Theorem 1. Symbol Xidentifies
whether the ToleRace oracle tolerates a specific atomic race type.

prior by T2 causes a races when interspersed in-between
any two operations of T1. This statement is conditional
in certain special cases. A special subset of XrwX,
denoted as R2 ≡ {l1w11x

∗
1r

+
2 w2x

∗
2w12u1}, is an in-

direct race only if T2 alters at least one live variable
u 6= v in the program’s computation state as u = f(v),
where f() is an arbitrary non-constant function and
v is the variable protected by T1. For sequences in
{l1x+

1 r+
2 w2x

∗
2w1u1} − R2, an additional constraint is

that T2 alters at least one more live variable in the
program’s computation state besides v.

With no effect on the generality of the theorem, in all se-
quences we assume that the last operation in T1 which com-
pletes the race condition, is the last operation in the critical
section.

Proof. Straightforward by combining cases from Table
1. We analyze the end-sequence r+

2 w2x
∗
2w12 in more detail.

Here we have two sub-cases:

• R1 ≡ {l1r1x
∗
1r

+
2 w2x

∗
2w12u1}, which is not a direct

race as it corresponds to T2 never executing with re-
spect to the protected variable. In case T2 alters any
other live variable in the program’s computation state,
this sequence is an indirect race.

• R2 ≡ {l1w11x
∗
1r

+
2 w2x

∗
2w12u1} is an interesting case.

It is not a direct race as it could correspond to T2 never
executing with respect to the protected variable v or
it could correspond to the execution schedule T2T1. In
the first case, if T2 alters any other live variable in the
program’s computation state, this sequence is an in-
direct race. In the second case, if T2 alters any other
live variable u in the program’s computation state as
u = f(v) where f() is an arbitrary non-constant func-
tion, this sequence is also an indirect race. We accept
only the second constraint, as the first is its superset.

All considered sequences cover x+
11x

+
2 x12 ∪ x+

1 x+
2 r+

1 w1.

The conditions that need to be satisfied for all races of
type III and some races of type IV to occur, are relatively
mild. Thus, in the remainder of this paper we assume that
they are fulfilled for each malicious thread.

Theorem 2. Reduction of race conditions. Any race
condition among K > 2 threads can always be reduced to one
of the I-IV cases of a race between two threads.

Proof. (sketch) A race is a consequence of two or more
threads interleaving reads and writes to alter the proper pro-
gram output. Based upon Theorem 1 race types I-III occur
due to a single interleaved instruction issued by a thread T2

accessing the data protected by T1. Once this instruction is
fired, the presence of other threads Ti, i > 2 does not impact
the occurrence of these race types. Only one race type could
be launched by more than two threads, race type IV. Here
the unprotected ”write based upon a prior,” rw, could be
launched by more transforming the functionality that com-
putes the value that w writes onto the protected variable, to
be computed in a single thread, we conclude our proof.

In the remainder of this paper we consider only race types
I-IV occuring in an environment with two concurrent threads.

3. THE TOLERACE ORACLE
The core of our approach to managing race condition cases

specified in Theorem 1 is to replicate the protected shared
state so that the thread that acquires a lock on the shared
state has an exclusive copy (see Figure 2). This thread con-
tinues reading from and/or writing to this copy until it re-
leases the lock. When the lock is released, ToleRace pro-
vides a family of software/hardware mechanisms to deter-
mine which race has occurred, with possible outcomes rang-
ing from tolerating the race completely, to reporting that a
race has occurred, to executing a programmer-specific han-
dler when an intolerable race is detected. In hardware as-
sisted implementations, suspended thread execution is also
possible with ToleRace. In this section, we evaluate the ef-
fect of ToleRace on the race cases described in Theorem 1
assuming an oracle determines which case has occurred.

Initialization and finalization: We assume that the
binding of locks (xV ) to shared variables (V ) is known before
the critical section in T1 is entered (“lock – shared variable”
associations are input to ToleRace and is discussed in detail
in Subsection 3.4) and that storage for two additional copies
(V ′, V ′′) of variable V has been allocated. After the lock is
released, storage for the two additional copies is deallocated.

Lock (Entry): When lock xV is acquired in T1, we copy
V to V ′ and V ′′ (V ′′ = V ′ = V ). Because multi-variable
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Figure 2: How ToleRace uses two additional copies of a variable to tolerate races.

copying is not atomic without hardware support, copying
may introduce additional races, which we discuss below.

Reads and Writes inside the Critical Section: Tole-
Race alters all instructions in the critical section of T1 to use
V ′ instead of V . Thus, V ′ is a local copy of V for T1 which
cannot be accessed by other threads due to a race.2 All
other threads such as T2 are unchanged and continue using
V for all accesses. Copy V ′′ is not accessed until T1 reaches
the exit of the critical section.

Unlock (Exit): When T1 exits the critical section by
releasing the acquired lock, ToleRace analyzes the contents
of V ′, the original value V ′′, and the value V that could
have been altered by other threads as a consequence of a
race. Depending on the relationship of values in {V, V ′, V ′′}
and knowledge about the specific case in Theorem 1 that
has occurred, ToleRace deploys a resolution function V =
f(V, V ′, V ′′) that defines the value of V after T1 is executed.

3.1 Effectiveness of the ToleRace Oracle
Combining the mechanism outlined above with the ex-

haustive interleavings enumerated in Table 1, we reason
about which cases ToleRace will tolerate. Assuming per-
fect knowledge of the specific case of race that has occurred,
Table 2 summarizes the definition of f and indicates the
cases that ToleRace correctly tolerates. Table 1 also con-
tains this information in expanded form, where the symbol
X denotes whether the ToleRace oracle tolerates a specific
interleaving.

Race type V = V ′′ f(V, V ′, V ′′) Tol? π
I XwR false V true T1T2

II WrW true V ′ true T2T1

III RXwW false V true T1T2

IVa RrwR false V true T1T2

IVb WrwX false V ′ true T2T1

IVc RrwX false custom f ′() false N/A

Table 2: Tabulating the outcome for f() for each
race type.

Because ToleRace can tolerate only some races of type IV,
in Table 2 we subdivide this case into three sub-cases:

2Other threads could potentially access V ′ via an erroneous
pointer, however ToleRace does not address such bugs by default
although it may point to them.

IVa RrwR ≡ {l1r+
11r

+
2 w2x

∗
2r12u1},

IVb WrwX ≡ {l1w1x
∗
11r

+
2 w2x

∗
2x12u1}, and

IVc RrwX ≡ XrwX− {RrwR ∪WrwX}.

The first column in Table 2 lists the race type based upon
the classification from Theorem 1, the second column speci-
fies whether V is equal to V ′′ at the point when f() is called,
the third column shows a resolution function f() that allows
ToleRace to tolerate the race, the fourth column indicates
whether f() provably succeeds in tolerating the race, and the
fifth presents π, the schedule of threads that ToleRace’s re-
sult represents. Table 2 shows that the ToleRace oracle tol-
erates all race cases except sequences that belong to RrwX
with a resolution function f(), defined by Table 2.

Based on Table 1, we introduce a simplified close-form
resolution function:

V = f(V, V ′, V ′′) ≡
�

V ′,
V,

V = V ′′

V 6= V ′′ , (1)

which enables tolerance of all race types except IVb and
IVc.

For races of type RrwX, the interleaving of reads and
writes from T2 breaks the program’s sequential memory con-
sistency. Here, T1 and the interleaved part of T2 both read
the value of the shared variable before entering the criti-
cal section, execute in parallel, and then join at the exit of
the critical section of T1 (see Figure 3). In this case, ei-
ther schedule T1T2 or T2T1 results in the read of the second
thread executing seeing the value of the variable written by
the first thread. Figure 3 illustrates all three outcomes.

��

�� ��

��
�� ��

�

Figure 3: Atomic execution order enabled by Tole-
Race. Schedules T1T2 and T2T1 are correct, whereas
the parallel execution of T1 and T2 is a race.
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It is interesting to notice that if w does not depend upon
r in RrwX, then ToleRace tolerates this case such that r
effectively executes before T1 and w executes afterwards,
while the execution of T1 is effectively uninterrupted.

In summary, surprisingly Table 2 shows that with correct
knowledge of what case of race has occurred, ToleRace cor-
rectly tolerates all but one class of races (IVc). Section 4
outlines simple techniques how software and hardware im-
plementations could enable ToleRace to distinguish between
race subclasses. Depending on the final disposition of values
V , V ′, and V ′′, we denote the two possible sets of outcomes
as A and B (see Theorems 3 and 4) and prove the results
below.

Theorem 3. A – Equivalence. V = V ′′ signals race-
free execution of T1.

Proof. Here, two cases could happen with respect to an
interleaved thread T2:

• T2 never wrote to V during the execution of T1 and

• T2 had a sequence of arbitrary operations x+
2 before

finally writing V ′′ to V .

In the former case, only a WrW race type could have
possibly happened. From Table 2, one can verify that Tole-
Race fully tolerates such races. In the latter case, a race
could occur only due to a race of type RrwX (see Table 2).
An interfering malicious sequence r+

2 w2x
∗
2 that initiates a

RrwX-type race with the last write in w2x
∗
2 that resets V

to its original value V ′′, is surprisingly tolerated by Tole-
Race with a correct execution schedule T2T1. Because T2

sets in this case the value of the shared variable V to its
original value, we conclude that the schedule T2T1 executes
race-free. In essence, the effect of executing T1 on the com-
putation state is the same whether T2 executed or not.

When ToleRace detects V = V ′′ it exits the critical sec-
tion in T1 by setting V = f(V, V ′, V ′′) = V ′, de-allocating
all replicated data, and unlocking xV . If the construct:
if (vii == v) v = vi;

is not atomic, a race of type III or IV could occur by an in-
terleaved w2(V ). We denote this post-execution ToleRace-
induced race as AP . Thus, a race could occur under Tole-
Race if V = V ′′ only in the unlikely subcase AP .

If V 6= V ′′, ToleRace concludes that at least one inter-
leaved w2(V ) has occurred while T1 executed its critical
section. From Theorem 1, we see that several cases are
possible. In cases I and IVa, thread T2’s write to V has oc-
curred after all writes (if any) in thread T1, hence this case
is correctly tolerated by leaving V as it is, resulting in the
execution order T1T2. In case III, thread T1’s final memory
operation is to write to V and thread T2 does not read V
before writing it. As a result the execution order T1T2 does
not require that thread T2 start executing after thread T1

writes the value of V , allowing the resolution of leaving V
the same on exit to provide the semantics of T1T2.

This condition does not necessarily mean that an actual
race occurred, e.g., sequence Xw ≡ {l1x∗1w2u1} is not a
race, yet results in V 6= V ′′. Since another interleaving of
the same threads could result in a race (e.g., RXwW), it is
desirable to report these incidents to the programmer.

Case RrwX cannot be tolerated by either of the out-
comes that resolve cases I–IVb, and as a result, ToleRace

will either raise an exception indicating that a race has been
detected, or execute a programmer-defined resolution func-
tion, f = f ′, when a semantically sound resolution function
is provided. An example of an efficient f ′() that tolerates
a RrwX race is shown in Figure 4. By knowing that the
variable gameScore participates as an operation destination
only in additions and subtractions of constants, the pro-
grammer uses a custom resolution upon a race detection to
tolerate RrwX races over gameScore. In the example, a
system without ToleRace exposes the erroneous nature of a
specific race instance.

Again, if the construct:
if (vii == v) v = f(v,vi,vii);

is not atomic, a race of type III or IV could occur by an
interleaved w2(V ). We denote this post-execution ToleRace-
induced race as BP .

3.2 Properties of the ToleRace Oracle
To refine the claims related to ToleRace, we introduce

two definitions of dynamic race detection. In both cases the
detector identifies dynamically a specific instance of inter-
leaved execution of a thread T2 with a lock-protected thread
T1. The instance is described as an execution of a sequence
x+

2 of consecutive instructions of T2 in-between two consec-
utive instructions in T1.

Definition 3. A hard race detector reports x+
2 as a

race if at least one of all possible instances of execution in-
terleaving of x+

2 with T1, could cause a race.

Definition 4. A soft race detector reports x+
2 as a

race if and only if the detected interleaving instance of x+
2

with T1 causes a race.

A soft race detector is more precise, detecting only those
interleavings that result in an actual race. In deployed appli-
cations, this is a more desirable form of race detection (as it
ignores benign races), but is also considerably more difficult
to implement. A hard race detector only detects interleav-
ings that have the potential to cause a race, but will report
races in specific interleavings that did not actually exhibit a
race. A hard race detector is of greater value in a testing or
debugging environment, where testers need to know about
the existence of a race even when many interleavings of the
race are benign, so that they can fix the code to eliminate
the possibility of the race altogether.

Theorem 4. B – Discrepancy. ToleRace is a deter-
ministic hard detector of all races that are not tolerated al-
ready by the platform.

Proof. The only race type not tolerated by ToleRace, is
RrwX (see Table 2). The last write in w2x

∗
2 can result in

V 6= V ′′ in which case the race is detected, or V = V ′′ in
which case the race is tolerated (see Theorem 3).

Theorem 5. False Positives. ToleRace reports false
positives with respect to the hard race detection oracle in the
case when: wWwWw ≡ {l1w+

11w
+
2 w+

12u1}∪{l1w+
1 w+

2 u1}∪
{l1w+

2 w+
1 u1}.

Proof. ToleRace reports a race only when V 6= V ′′.
This can only happen if T2 writes a new value to V . The
only case when T2 writes to V in-between two operations
over V by T1 and a race could not occur, is WXwW ≡

6
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Figure 4: An example of how program semantics can define a custom resolution function f ′ that could tolerate
RrwX races. The programmer knows the prior that all writes in the program to the shared variable are only
additions and subtractions of constants.

{l1w1x
∗
1w2x

∗
2w1u1} (see proof of Theorem 1). From the

perspective of a hard race detector, if there were any reads
in x∗1 or x∗2, there could be a possible permutation of opera-
tions in T1 and T2 that could lead to a race. Thus, we are left
with {l1w+

11w
+
2 w+

12u1} as one pool of cases where ToleRace
reports false positives. The remaining cases in wWwWw
represent the situations in which T2 writes to V before T1

writes to V ′ and/or T2 writes to V after the last write of
T1 to V ′. The correct execution permutations in these cases
are T2T1 and T1T2 respectively.

From Theorem 5 one can conclude that the lock and un-
lock operations over V should be placed as close as possible
to the first and last access to V respectively within the cor-
responding critical section. By doing so, the programmer
reduces the likelihood that another thread places a write
that could trigger a false positive by ToleRace.

For a software-only implementation, we conclude:

Theorem 6. False Negatives.3 ToleRace identifies all
race instances in protected threads except AP ∪BP .

Thus, software-only ToleRace would aim to provide a prob-
abilistic race prevention that significantly reduces the like-
lihood of races in programs. As a rough estimate, in an
execution with no stalls if the number of instructions in T1

is K times greater than the number of instructions in f(),
we expect a O(K)-fold lower likelihood of a race occurrence.

3.3 Relaxing the Assumptions
In this section we address two strong assumptions intro-

duced earlier: we allow multiple critical sections within a
thread, we allow their nesting and overlap, then finally we
allow that one lock protects a group of variables as opposed
to a single variable.

We differentiate between two modes of thread execution:

• sequentially consistent execution – where instruc-
tions in the thread are executed in the order specified
by the program [20], and

• out-of-order execution – where instructions in the
thread could be executed in an arbitrary order that
does not alter program functionality [18, 30].

3No proof provided. Straightforward from the discussions in Sub-
section 3.

First, we allow nested and interleaved critical sections
within a single thread, where each critical section protects
a single variable.

Lemma 1. Sequential Inconsistency - I. In the gen-
eral case of multi-threaded programs with threads that con-
tain multiple critical sections per thread such that each crit-
ical section protects a distinct shared variable, the ToleRace
oracle does not enable sequentially consistent execution.

Proof. (by an example) Consider two nested critical sec-
tions within a single thread T1: l1(xP )l1(xQ)w11(P )r11(Q)¦
r12(Q)w12(P )u1(xQ)u1(xP ), where ¦ denotes the location
where a malicious thread T2 interleaves the following se-
quence of instructions w2(Q)r2(P ). ToleRace will tolerate
both races from the perspective of out-of-order execution,
however based upon Table 2 w2(Q) will execute after u1(Q)
and r2(P ) will execute before l1(P ), breaking their program-
specified order of execution. A similar example could be
constructed for two overlapping critical sections.

Lemma 1 introduces an interesting paradox. Consider the
proof of this lemma. Although w2(Q)r2(P ) in T2 actually
executed in this order interleaved with instructions in T1,
from the perspective of the overall execution time-line due
to ToleRace the values in P and Q after u1(xP ) executed,
are such as if w2(Q) executed after r2(P ).

Next, assume that a single lock, i.e., critical section, pro-
tects a set of M variables V = {V1, . . . , VM} under the orig-
inal assumption that one thread represents a single critical
section.

Lemma 2. Sequential Inconsistency - II. In the gen-
eral case of multi-threaded programs with threads that con-
tain a single critical section which protects a set of shared
variables, the ToleRace oracle does not enable sequentially
consistent execution.

Proof. (by an example) Consider a critical section over
a set of two variables P and Q with the following order of
instructions l1(xPQ)w11(P )r11(Q) ¦ r12(Q)w12(P )u1(xPQ),
where ¦ denotes the location where a malicious thread in-
terleaves the following sequence of instructions w2(Q)r2(P ).
ToleRace will tolerate both races from the perspective of
out-of-order execution, however based upon Table 2 w2(Q)
will execute after u1(Q) and r2(P ) will execute before l1(P ),
breaking their program-specified order of execution.
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Figure 5: Out-of-order execution in ToleRace for a multivariable critical section. The data flow of the
malicious thread is partitioned into mutually independent subgraphs. Subgraphs are denoted as rectangles
with distinct colors. Each subgraph, based upon internal variable dependencies, is scheduled either as a
prefix, postfix, or a parallel, conflicting execution construct. Subfigures depict the execution order in the
case when ToleRace is (b) and is not (a) used.

In general, if a malicious thread T2 which operates over V
is interleaved with a safe thread T1 that properly protects
the access to V and uses ToleRace to handle races, then in-
dividual operations in T2 will get effectively rescheduled and
executed around and in parallel with T1. Before we describe
the rescheduling, we classify the variables in V via a data
flow graph [9]. We partition the data flow graph of a partic-
ular execution instance of T2 into P disconnected subgraphs
G = {G1, . . . , GP }, where P is a variable that depends upon
the data flow graph. By doing so we isolate variables in V
that are independent from groups of other variables that are
mutually dependent. Next, we merge all variables from V
that appear in a single subgraph Gi into a single variable
Wi. This step ensures that dependencies among different
variables are identified as a source of potential XrwX-type
conflicts. In an XrwX-type race condition, r and w could
be performed on different variables, however w could still be
dependent upon the result of r both directly or indirectly via
a variable that is local to T2. Then, for each subgraph Gi we
identify the sequence of accesses to Wi. Due to ToleRace all
operations in Gi then are rescheduled and executed based
upon the sequence of writes and reads to Wi as follows:

• prefix operations – WrW and RrwX such that
(∀Vj ∈ Wi)Vj = V ′′

j (see Theorem 3) – all instructions
in Gi are effectively executed before T1.

• postfix operations – XwR, RXwW, and RrwR –
all instructions in Gi are effectively executed after T1.

• conflict operations – RrwX – all instructions in Gi

are effectively executed in parallel with operations in
T1 and require a custom resolution function f = f ′.

Subgraphs with operations that affect only local variables
of the malicious thread can be effectively scheduled in an
arbitrary way with a preserved consistency of the computa-
tional state. These operations cannot cause a race with or
without ToleRace. The out-of-order execution of subgraphs
is illustrated using Figure 5.

Now we augment the definition of the ToleRace approach
to address the case when a single variable V is protected
using two different locks, xA and xB such that V ⊂ A ∩
B, and when these locks are used by two critical sections
that overlap, i.e., {l(xA)l(xB)u(xA)u(xB)}. Then ToleRace
copies V at the first lock l(xA) and resolves this variable at
the last unlock u(xB).

Theorem 7. Out-of-order Execution. In the general
case of multi-threaded programs with threads that contain
multi-variable critical sections that can intersect via nesting
or overlapping, the ToleRace oracle does not maintain se-
quential memory consistency. ToleRace does not introduce
new conflicts among the interleaved operations of the mali-
cious thread that are already tolerated (prefix and postfix) at
the level of an individual critical section of the safe thread.

Proof. (sketch) Lemmas 1 and 2 prove that ToleRace in
the most general case of thread organization does not pre-
serve sequential memory consistency. ToleRace does reorder
the sequence of executed instructions even in the case when
a processor executes them in-order.

In ToleRace, the protection lifetime of a single variable
V spans over all overlapping critical sections that could use
distinct locks to protect it. Therefore, operations in the
malicious thread that access V and that are tolerated by
ToleRace, are effectively rescheduled either before the first
lock or after the last unlock in the set of overlapping critical
sections. As they are shifted outside of the range of pro-
tection they cannot create any new conflicts that are not
allowed by the program specification.

Theorem 7 proves that ToleRace introduces only a mild
restriction to the execution environment. As in-order execu-
tion is important only from the perspective of the program-
mer while debugging, due to the out-of-order execution that
ToleRace provides, in-order symbolic debugging on such sys-
tems could be difficult to achieve [15]. Thus, in ToleRace a
debugger should provide the user with the observability and
controllability of all copies of the original shared variable.
This means that ToleRace is not transparent to the existing
program development process. However, in-order execution
is of little importance for testing or executing released soft-
ware. Based upon that premise most modern processors
enable out-of-order execution to take advantage of the pro-
gram’s instruction level parallelism.

3.4 Associating locks and shared data
We assume that there is a known static association be-

tween locks and shared data fed as input to ToleRace. In
the programmer’s mind such a binding must exist at some
level in order to write correct code. This relationship can
be determined automatically using existing static analysis
techniques (e.g., see Naik et al. [24]) or in cases where static
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analysis fails, programmer annotation may be required (e.g.,
SAL [12]). The application of these tools is orthogonal to
ToleRace; it can be done using arbitrary static analysis tools
or manual effort. Over-approximating the data protected by
a lock will not result in incorrect behavior with ToleRace;
the program will simply execute less efficiently. When sta-
tic analysis methods improve, the inefficiency introduced by
over-approximation decreases.

4. IMPLEMENTING TOLERACE
Conservative approximations of the ToleRace oracle can

be implemented using a variety of software-only and com-
bined software/hardware techniques. In this paper, we have
focused on describing and proving properties of the ToleRace
oracle. In the remaining limited space, we outline possible
implementation approaches.

4.1 Software-Only
Any software approach to race detection that requires

every program read and write be modified incurs signifi-
cant overhead in practice. Here, our purpose is to make the
case that a much lower overhead implementation of Tole-
Race is possible, based on modifying only code inside the
critical section of the safe thread. With such an implemen-
tation, we are able to detect and correctly tolerate race types
A = {RwR ≡ {l1r+

11w2x
∗
2r12u1} ⊂ I, II, IVa}. In each of

these cases, no knowledge of the malicious threads read be-
havior is needed to correctly identify and tolerate the race.
Unfortunately, cases III, IVb, and IVc, cannot be distin-
guished without knowing more about the behavior of the
malicious thread, specifically whether it performs a read of
the shared variable on which a later write is dependent. If
an efficient implementation for detecting occurrences of race
types IVb and IVc existed, ToleRace would tolerate all race
instances but IVb and IVc.

Thus, low-overhead software-only implementation of Tole-
Race would tolerate race cases A and serve as a reliable de-
tector of the remaining race classes. Since modern architec-
tures typically do not support atomic multi-variable test-
and-set instructions, we conclude that software-only Tole-
Race would only probabilistically reduce race occurrences
due to the existence of false negatives (see Theorem 6).

Despite its limits, a software-only implementation of Tole-
Race would be useful in debugging, testing, and in deploy-
ment. For debugging and testing, software-only ToleRace
provides a lower-overhead complement to existing dynamic
race detection tools (discussed below). In this mode, all
conflicts detected by ToleRace could be logged and in cases
where the race can be tolerated, the application can be al-
lowed to continue. This approach facilitates long haul stress
testing in which applications are run for many days to expose
infrequent error conditions, including races. High overhead
techniques or techniques that raise an exception the first
time an error is detected are less appropriate for such test-
ing. ToleRace’s dynamic detection can also be used to filter
and prioritize the results of static analysis techniques that
may report numerous false positives.

ToleRace can also be used in deployed software. To fur-
ther limit the performance overhead of software-only Tole-
Race, specific portions of the executable could be instru-
mented. For example, instrumentation sites can be pruned
based on a particular lock, data, and region of code that are
suspected to be involved in hard to reproduce races. Because

certain races are difficult to correct, the final software release
could be augmented at specific race-occurring locations with
ToleRace to reduce the likelihood of a race occurrence. This
could be done at release time or later as part of a software
patch. Furthermore, if the behaviors of more common races
are observed by ToleRace, a specific action to tolerate these
races can be deployed via custom resolution functions.

The overhead of software-only ToleRace could be quite low
when used to protect simple shared data objects, when com-
pared to existing approaches such as lockset algorithms [29].
In our preliminary implementation, we recorded 3-20% per-
formance overhead across a set of benchmarks with threads
that aggressively access shared data. However, for complex
dynamic data structures the overhead of software-only Tole-
Race could be excessive—one resolution to this problem is
using a shared pointer to access such structures and resolve
races prior to updating the structure.

4.2 Software/Hardware
The major benefit that hardware could provide in sup-

porting ToleRace would be to lower the cost of measuring
every read and write in the program, providing more data
in resolving the race cases in Table 1. For example, case III
could be distinguished from cases IVb and IVc if it were
known that no read had occurred on the shared variable out-
side of the safe thread since the critical section was entered.

A more ambitious approach would detect the read-write
dependency in the malicious thread that characterizes cases
IVb and IVc. In both cases, the dependent rw over a shared
variable could be established via a set of variables local to
the malicious thread and we briefly sketch how this detection
might be accomplished. With hardware support, a compiler
could associate a “read – clean – dirty” 3-tuple of bits with
each shared and all dependent local variables (based on the
analyzed dataflow). The first read of a shared variable would
set its “read” bit. The first write into a shared variable
would set its “clean” bit. Each write into a variable that is
dependent upon a variable that has its “read” bit set would
set the “dirty” bit unless the “clean” bit is already set. With
this support, a race over shared data with a set “dirty” bit
and V 6= V ′ belongs to IVb or IVc.

A separate detector which monitors the type of the first
operation over any shared variable would distinguish among
the subcases of race type IV. The hardware would signal
this information to f(). Finally, one proposed resolution to
races of type IVc (i.e., the only ones that ToleRace cannot
tolerate) is to suspend execution before the first dependent
write to a shared variable (for IVc race-types). For pro-
grams with infrequent races (vast majority of cases), the
suspensions triggered by this hardware should cause negli-
gible effect on resulting instruction level parallelism.

In summary, we anticipate that the proposed hardware
techniques paired with atomic multi-variable copy instruc-
tions could enable race-free (if all memory accesses are mon-
itored) execution of existing legacy code with relatively low
overhead. We speculate that hardware mechanisms to sup-
port different variants of ToleRace would be less complex
than transactional memory hardware (see Section 5). Im-
plementing ToleRace in software alone, we anticipate a non-
trivial performance overhead proportional to the amount of
protected data and the frequency of using ToleRace for pro-
tection. To avoid large overhead, selective protection and
using a common principle of accessing large shared data
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structures with shared pointers should be sufficient to re-
duce races significantly.

5. RELATED WORK
Related race detection research includes static and dy-

namic approaches. Static race detection relies on program
analysis and either assumes existing programming languages
(e.g. Java [24]) or defines new languages with semantics
that help improve the static detection of races (e.g., Cy-
clone [11]). Static analysis techniques face several chal-
lenges. First, because many of the techniques are based
on some form of model checking [16], they are computation-
ally expensive and issues of scalability arise. Second, the
conservative and approximate nature of the analysis creates
the potential for many false positives. RacerX [8] and Hou-
dini/rcc [10] address these issues by combining traditional
static analysis with heuristics and statistical ranking to iden-
tify the most probable races. One inherent drawback of sta-
tic analysis for race detection is that asymmetric races can
occur in contexts where the source code for the component
containing the error is not available for examination.

Eraser is a dynamic race detection system based on main-
taining locksets [29]. Lockset analysis discovers where pro-
grams access shared variables without properly holding locks.
Experience with this approach has shown that the overhead
of maintaining locksets is high and that false positives can be
problematic. Subsequent approaches extend lockset analy-
sis with happens-before analysis [2] which identifies data ac-
cesses with no implied ordering. Combining locksets with
happen-before results in higher precision dynamic race de-
tectors [7, 25, 26, 31]. Even with refinements, the execution
overhead of these approaches is typically larger than a factor
of two. Furthermore previous work does focuses primarily
on detecting races rather than tolerating them.

The AVIO system takes a training-based approach to iden-
tify erroneous access interleavings [21]. After training to
learn which interleavings are benign, they deploy runtime
checking to detect malicious interleavings dynamically. The
overhead of this checking is high without hardware support.
Similarly to ToleRace, AVIO considers interleavings of local
and remote references, and automatically filters those that
cannot produce a race. Unlike AVIO, ToleRace can be im-
plemented with a range of approaches, including a relatively
low overhead software implementation.

Transactional memory systems replace lock-based criti-
cal sections with fine-grain atomic transactions [17]. Trans-
actional memory mechanisms implemented entirely in soft-
ware (e.g., [1, 13, 14]), or in some combination of hard-
ware and software (e.g., [4, 5, 6, 19, 22]), has been pro-
posed and evaluated. Similar hardware mechanisms have
also been proposed for optimistically eliminating locks in
non-transactional systems [28]. While transactional memory
provides many advantages, it represents only one point in a
broad spectrum of approaches to building correct concur-
rent systems. There are distinct advantages to using Tole-
Race over transactional memory. First, while transactional
memory is still being researched, many existing lock-based
concurrent programs can benefit from ToleRace right now.
Second, ToleRace represents a spectrum of mechanisms that
range from a low-overhead software implementation to more
complex hardware mechanisms that still represent a simplifi-
cation over existing hardware transactional memory designs.
Finally, ToleRace can be used in many practical ways to im-

prove existing programs at different stages of the develop-
ment cycle, including testing, deployment, and patching.

6. SUMMARY
We introduce ToleRace, a conceptually novel runtime sys-

tem that uses data replication for detecting and tolerating
concurrency errors in lock-based multi-threaded programs.
ToleRace addresses asymmetric races, where one use of a
shared variable is correctly protected with locks while other
uses are not. We enumerate the set of all possible interleav-
ings that cause races and propose methods for their han-
dling. We focus on the theoretical aspects of the proposed
oracle and review several ideas for low-cost implementations.
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