Verified Interoperable Implementations of Security Protocols

Karthikeyan Bhargavan Cédric Fournet ~ Andrew D. Gordoii Stephen Tse

*Microsoft Research TUniversity of Pennsylvania
Abstract Protocol Code
N
We present an architecture and tools for verifying im- _ Conerete
plementations of security protocols. Our implementations e i
can run with both concrete and symbolic implementations / Some Other
of cryptographic algorithms. The concrete implementation & \ i
is for production and interoperability testing. The symbolic * proverir e (ELR) CL{SF’F
implementation is for debugging and formal verification.
Verification Symbolic Testing ‘ Interoperability (via SOAP)

We develop our approach for protocols written in F#, a di-
alect of ML, and verify them by compilation to ProVerif,
a resolution-based theorem prover for cryptographic pro-
tocols. We establish the correctness of this compilation
scheme, and we illustrate our approach with protocols for
Web Services security.

search goal. The present paper advances in this direction
by contributing a new approach to deriving automatically
verifiable models from code. We demonstrate its applica-
tion, if not to production code, at least to code constituting
a working reference implementation—one suitable for in-
teroperability testing with efficient production systems but
1. Introduction itself optimized for clarity not performance.
Our prototype tools analyze cryptographic protocols

The design and implementation of code involving cryp- written in F# 39], a dialect of ML. F# is a good fit for our
tography remains dangerously difficult. The problem is to purposes: it has a simple formal semantics; its datatypes of-
verify that an active attacker, possibly with access to somefer a convenient way of programming operations on XML,
cryptographic keys but unable to guess other secrets, canimportant for our motivating application area, web services
not thwart security goals such as authentication and se-security. Semantically, F# is not so far from languages like
crecy B3; it has motivated a serious research effort on Java or C#, and we expect our techniques could be adapted
the formal analysis of cryptographic protocols, starting with to such languages. We run F# programs on the Common
Dolev and Yao 16] and eventually leading to effective ver- Language Runtime (CLR), and rely on the .NET Frame-
ification tools. Hence, it is now feasible to verify abstract work libraries for networking and cryptographic functions.
models of protocols against demanding threat models. The diagram above describes our new language-based

Still, as with many formal methods, a gap remains be- approach, which derives verifiable models from executable
tween protocol models and their implementations. Distill- code. We prefer not to tackle the converse problem, turning
ing a cryptographic model is delicate and time consum- a formal model into code, as, though feasible, it amounts
ing, so that verified protocols tend to be short and to ab- to language design and implementation, which generally is
stract many potentially troublesome details of implementa- harder and takes more engineering effort than model extrac-
tion code. At best, the model and its implementation are re-tion from an existing language. Besides, modern program-
lated during tedious manual code reviews. Even if, at someming environments provide better tool support for writing
point, the model faithfully covers the details of the protocol, code than for writing models.
itis hard to keep it synchronized with code as it is deployed We strive to share most of the code, syntactically and se-
and used. Hence, despite verification of the abstract modelmantically, between the implementation and its model. Our
security flaws may appear in its implementation. approach is modular, as illustrated by the diagram: we write

Our thesis is that to verify production code of security application code defining protocols against restrictive typed
protocols against realistic threat models is an achievable redinterfaces defining the services exposed by the underlying

To appear in the proceedings of théth IEEE Computer Security Foundations Work-
shop (CSFW 2006)uly 5-7, 2006, Venice, Italyt) IEEE 2006.

cryptographic, networking, and other libraries. Further, we The fs2pv/ProVerif tool chain is applicable in principle
write distinct versions of library code only for a few core in- to a broad range of cryptographic protocols, but our moti-
terfaces, such as those featuring cryptographic algorithmsvating examples are those based on the WS-Secidy [
For example, cryptographic operations are on an abstracstandard for securing SOARJ] messages sent to and from
type bytes We provide duatoncreteandsymbolicimple- XML web services. WS-Security prescribes how to sign
mentations of each operation. For instance, the concreteand encrypt parts of SOAP messages. WESH fs an
implementation ofoytesis simply as byte arrays, subject implementation of security protocols based on WS-Secu-
to actual cryptographic transforms provided by the .NET rity. Previous analyses of pi calculus models extracted from
Framework. On the other hand, the symbolic implemen- WSE by hand have uncovered attac8s1[0], but there has
tation definedytesas algebraic expressions subject to ab- been no previous attempt to check conformance between
stract rewriting in the style of Dolev and Yao, and assumed these models and code automatically. To test the viability of
to be a safe abstraction of the concrete implementation. our new approach, we have developed a series of reference
We formalize the active attacker as an arbitrary program implementations of simple web services protocols. They
in our source language, able to call interfaces defined by theare both tested to be interoperable with WSE and verified
application code and also the libraries for cryptography andvia our tool chain. The research challenge in developing
networking. Our verification goals are to show secrecy and these implementations is to confront at once the difficulty
authentication properties in the face of all such attackers.of processing standard wire formats, such as WS-Security,
Accordingly, we can adapt our threat model by designing and the difficulty of extracting verifiable models from code.
Suitable interfaces fOI’ the beneﬁt Of the attacker. The appll- Our mode' extraction tool] fszp\/, accepts an expressive
cation code implements functions for each role in the pro- first-order subset of F# we dub F, with primitives for com-
tOCOI, so the attacker can create multlple instances Of, Saymunications and concurrency. It has a Simp'e formal se-
initiators and responders, as well as monitor and send netmantics facilitating model extraction, but disallows higher-
work traffic and, in some models, create new principals and order functions and some imperative features. The applica-
compromise some of their credentials. tion code and the symbolic libraries must be within F, but
Given dual implementations for some libraries, we can the concrete libraries are in unrestricted F#, with calls to
compile and execute programs both concretely and symbolthe platform libraries. Formally, we define the attacker to
ically. This supports the following tasks: be an arbitrary F program well formed with respect to a re-
strictive attacker interfacamplemented by the application
code. The attacker can only interact with the application
code via this interface, which is supplied explicitly to the
with some other available, black-box implementation. M0del extraction tool along with the application code. Al-
Experimental testing is essential to confirm that the though we compile to the pi calculus for verification, the
protocol code is functionally correct, and complete for Properties proved can be understood independently of the pi
at least a few basic scenarios. (Otherwise, it is surpris- calculus. We prove theorems to justify that verification with

ingly easy to end up with a model that does not support ProVerif implies p'ropertie§ Qf source programs _defined in
some problematic features.) terms of F. The principal difficulty in the proofs arises from

relating the attacker models at the two levels.

o ; it) ? Since security properties within the Dolev-Yao model
application code against symbolic libraries. This al- .6 ndecidable, and we rely on an automatic verifier, there
lows basic testing and debugging, especially for the jg ¢qrrect code within F that fails to verify. A cost of our
expected message formats. Though this guaranteegnethod, then, is that we must adopt a programming disci-
neither wire format interoperability nor any security jine within F suitable for automatic verification. For ex-
properties, it is pragmatically useful during the initial - 3 mpje. we avoid certain uses of recursion. The initial per-
stages of code development. formance results for our prototype tools are encouraging, as

(3) To performformal verification we run our model ex- much of the performance is determined by the concrete Ii-
traction tool, called fs2pv, to derive a detailed for- braries; nonetheless, there is a tension between efficiency
mal model from the application code and symbolic of execution and feasibility of verification. To aid the latter,
libraries. Our models are in a variant of the pi cal- fs2pv chooses between a range of potential semantics for
culus B0, 1] accepted by ProVerifl3, 12]. ProVerif each F function definition (based on abstractions, rewrite
compiles our models to logical clauses and runs a res-fules, relations, and processes).

(1) To obtain areference implementationve execute ap-
plication code against concrete libraries. We use the
reference implementation for interoperability testing

(2) To obtain asymbolic prototypewe execute the same

olution semi-algorithm to prove properties automati- Our method relies on explicit interfaces describing low-
cally. In case a security property fails, ProVerif can level cryptographic and communication libraries, and on
often construct an explicit attack][some embedded specifications describing the intended se-

curity properties. Model extraction directly analyzes ap- A companion report]1] provides additional technical
plication code using these interfaces plus the code of thedetails, including definitions for the source (F) and target (pi
symbolic libraries, while ignoring the code of the concrete calculus) languages, the formal translation, and all proofs.
libraries. Hence, our method can discover bugs in the appli-
cation code, but not in the trusted concrete libraries. 2. A Simple Message Authentication Protocol

At present, we have assessed our method only on new
code written by ourselves in this style. Many existing pro- \ye illustrate our method on a very simple, ad hoc proto-

tocol implementations rely on well defined interfaces pro- ¢q| example. Sectio discusses more involved examples.
viding cryptographic and other services, so we expect our

method will adapt to existing code bases, but this remains
future work.

In general, the derivation of security models from code
amounts to translating the security-critical parts of the code
and safely abstracting the rest. Given an arbitrary program,
this task can hardly be automated—some help from the pro-
grammer is needed, at least to assert the intended securit{/)
properties. Further work may discover how to compute safe

The protocol Our example protocol has two roles, a client
that sends a message, and a server that receives it. For the
sake of simplicity, we assume that there is only one princi-
pal A acting as a client, and only one princiggahcting as
a server. (Further examples support arbitrarily many princi-
als in each role.)

Our goal here is that the server authenticate the mes-
sage, even in the presence of an active attacker. To this end,

o s b or oo a6 O & ASEor.besed message aentcation coc
' y (MAC). The protocol consists of a single message:

ence implementation is worth the cost of adding some secu-
rity assertions in application code and adopting a program- A — B: HMACSHA1{nonce [pwd, | tex{ |
ming discipline compatible with verification. RSAEnNcryp{ pks }[noncé | text

In summary, our main contributions are as follows: _ _ - .
The client acting for principal sends a single messaigat

(1) An architecture and language semantics to support ex-to the server acting foB. The client and server shares
traction of verifiable formal models from implementa- passwordowd,, and the client know®'s public key pkg.
tion code of security protocols. To authenticate the messatgxt the client uses the one-
way keyed hash algorithm HMAC-SHAL1 to bind the mes-
(2) A prototype model extractor fs2pv that translates from sage withpwd, and a freshly generated valnence Since
F to ProVerif. This tool is one of the first to extract the password is likely to be a weak secret, that is, a secret
verifiable models from working protocol implementa- with low entropy, it may be vulnerable to offline dictionary
tions. Moreover, to the best of our knowledge, it is attacks if the MAC, the messagext, and the nonce are all

the first to extract models from code that uses a stan-known. To protect the password from such guessing attacks,
dard message format (WS-Security) and hence inter-the client encrypts the nonce Wit

operates with other implementations (WSE).

Application code Given interface€rypta Net, andPrins
defining cryptographic primitives, communication opera-
tions, and access to a database of principal identities, our
verifiable application code is a module that implements the
(4) Reference implementations of some typical web ser- following typed interface.

vices sec_u.rity protocols and mechanismg,_ both for- pkB: rsakey

mally verlfleq and tested for interoperability. .Our client str —s unit

implementation is modular, so that most code is ex- gapyer unit — unit

pressed in reusable libraries that give a formal seman- .] .
tics to informal web services security specifications. The valuepkB is the public encryption key for the server.
Calling client with a string parameter should send a single

Section2 informally introduces many ideas of the paper message to the server, while callisgrvercreates an in-
in the context of a simple message authentication protocol.stance of the server role that awaits a single message.
Section3 defines our source language, F, as a subset of F#, In F#,str — unitis the type of functions from the typsr,
and formalizes our desired security properties. Secfion which is an abstract type of strings defined by @wypto
outlines our techniques for model extraction, and states ourinterface, to the empty tuple typmit. TheCryptointerface
main theorems. Sectioh summarizes our experience in also provides the abstract typga key of RSA keys.
writing and verifying code for web services security proto- The exported functionslientandserverrely on the fol-
cols. Sectioré concludes. lowing functions to manipulate messages.

(3) Theorems justifying model extraction: low-level prop-
erties proved by ProVerif of a model extracted by fs2pv
imply high-level properties expressed in terms of F.

let macnoncepasswordext= let address= S "http://server.com/pwdmac"

Cryptohmacshahonce let pwdA = PrinsgetPassworG "A")
(concat(utf8 passwordl (utf8 text)) let pkB = PrinsgetPublickeyS"B")
let maketext pk password= type Ev = Sendof str| Acceptof str
let nonce= mkNonce) in let client text =

(macnoncepasswordext, log(Sendtexd):

Cryptarsaencryptpk nonce texy Netsendaddres§marshall(maketext pkB pwdA))

let verify (m,entext) sk password=

. Here, the functiometPasswordetrievesA’s password from
let nonce= Cryptarsadecryptsk enin

: ~ the password database, agetPublicKeyextractsB's pub-
if not (m = macnoncepasswordex{) lic key from the local X.509 certificate database. The func-
then failwith "bad MAC tion Sis defined byCryptc; the expressio "A" , for exam-

The first functionmag takes three arguments—rance ple, is an abstract string representing the lit¢fdl . The
a sharedbassword and the messagext—and computes ~ function client then runs the protocol for sendirigxt it
their joint cryptographic hash using some implementation builds the message, then uséstsend a networking func-
of the HMAC-SHA1 algorithm provided by the crypto- tion that posts the message as an HTTP requesidoess
graphic |ibrary_ As usual in dialects of ML, Wpes may be Symmetrically, the functiorserverattempts to receive
left implicit in code, but they are nonetheless verified by @ single message by accepting a message and verifying its
the compilermachas typebytes— str —str —bytes The ~ content, usind's private key for decryption.

functionsconcatandutf8 provided byCrypto perform con- let skB = PrinsgetPrivateKe(s "B")
catenation of byte arrays and an encoding of strings into | server() =
byte arrays. let m,entext=unmarshal(Netaccep@addrespin

The two other functions define message processing, for verify (m,entext) skB pwdA: log(Accep(text)
senders and receivers, respectively. Functimkecreates

a message: it generates a fresince computes the MAC, The functionsmarshall and unmarshallserialize and

and also encrypts theonceunder the public kepk of the ~ deserialize the message triple—the MAC, the encrypted

intended receiver, using thea encryptalgorithm. The re- nonce, and the text—as a string, used here as a simple wire

sulting message is a triple comprising the MAC, the en- format. (We present an example of the resulting message

crypted nonce, and the text. Functiverify performs the below.) These functions are also part of the verified appli-

converse steps: it decrypts the nonce using the private keycation code; we omit their details.

skd recomputes the MAC and, if the resulting value dif-

fers from the received MAC, throws an exception (using the Concrete and symbolic libraries The application code

failwith primitive). listed above makes use o€ayptolibrary for cryptographic
Although fairly high-level, our code includes enough de- operations, &letlibrary for network operations, andrins

tails to be executable, such as the details of particular algo-library offering access to a principal database. The concrete

rithms, and the necessanyf8 conversions from strings (for implementations of these libraries are F# modules contain-

passworcandtexi) to byte arrays. ing functions that are wrappers around the corresponding
In the following code defining protocol roles, we rely platform (.NET) cryptographic and network operations.

on events to express intended security properties. Events To obtain a complete symbolic model of the program, we

roughly correspond to assertions used for debugging pur-also develop symbolic implementations of these libraries as

poses, and they have no effect on the program executionF# modules with the same interfaces. These symbolic li-

Here, we define two kinds of eventsendtext) to mark the braries are within the restricted subset F we define in the

intent to send a message with content, andAccep(text) next section, and rely on a small modiedefining name

to mark the acceptance ¢fxt as genuine. Accordingly, creation, channel-based communication, and concurrency

clientuses a primitive functiofog to log an event of the first in the style of the pi calculus. FunctioRssendandPi.recv

kind before sending the message, ardverlogs an event allow message passing on channels, funct®irsameand

of the second kind after verifying the message. Hence, if Pi.changenerate fresh names and channels, and a function

our protocol is correct, we expect evekgcep(texi) event Pi.fork runs its function argument in parallel. The members

to be preceded by a matchiggndtext) event. Such a cor- of Pi are primitive in the semantics of F. Tl module is

respondence between events is a common way of specifyingalled from the symbolic libraries during symbolic evalu-

authentication. ation and formal verification; it is not called directly from
The client code relies on the network address of the application code and plays no part in the concrete imple-

server, the shared password, and the server’s public key: mentation.

module Crypto// concrete code in F#
open SystemSecurityCryptography
type bytes= bytd]

type rsakey = RSA of RSAParameters

let rng = new RNGCryptoServiceProvidd)
let mkNonce() =
let x = Bytearraymakel6in
rng.GetBytesx; x

let hmacshak x =
new HMACSHAL(k).ComputeHaslx

let rsa= new RSACryptoServiceProvidér

let rsakeygen() = ...

let rsapub(RSAT) = ...

let rsaencrypt(RSAT) (v:byteg = ...

let rsadecrypt(RSAT) (v:byteg =
rsalmportParamete(s);
rsaDecryp{v,false

The listings above show the two implementations of
the Crypto interface. The concrete implementation de-
fines bytes as primitive arrays of bytes, and essentially
forwards all calls to standard cryptographic libraries of
the .NET platform. In contrast, the symbolic implemen-
tation definesbytesas an algebraic datatype, with sym-

module Crypto// symbolic code in F
type bytes=

| Nameof Pi.name

| HmacShabf bytesx bytes

| RsaKeyof rsakey

| RsaEncrypof rsakey x bytes

and rsakey = PK of bytes| SK of bytes

let freshbytedabel= Name(Pi.namelabe)
let mkNonce() = freshbytesnonce"

let hmacshak x = HmacShagk,x)

let rsakeygen() = SK (freshbytesrsa")
let rsapub (SK(s)) = PK(s)
let rsaencryptst = RsaEncryg(s,t)
let rsadecrypt(SK(s)) e = match e with
| RsaEncryfipket) when pke= PK(s) —t
| - —failwith "rsa_decrypt failed"

The function send adds a message to the channel
httpchanand the functioracceptremoves a message from
the channel.

In this introductory example, we have a fixed popula-
tion of two principals, so the values fé{s password and
B’s key pair can simply be retrieved from the third interface

bolic constructors and pattern matching for representing Prins the concrete implementation &finsbinds them to

cryptographic primitives. This internal representation is
accessible only in this library implementation. For in-
stance hmacshals implemented as a function that builds
an HmacShagk,x) term; since no inverse function is pro-

vided, this abstractly defines a perfect, collision-free one-

way function. More interestingly, RSA public key encryp-
tions are represented bysaEncryptterms, decomposed
only by a functionrsadecryptthat can verify that the valid
decryption key is provided along with the encrypted term.
Similarly, the concrete implementation bfet contains
functions, such asendandaccept that call into the plat-
form’s HTTP library SystemNetWebReque$t whereas
the symbolic implementation of these functions simply en-

queues and dequeues messages from a shared buffer impl

mented with thePi module as a channel. We outline the
symbolic implementation dflet below.

module Net// symbolic code in F

let httpchan= Pi.char()

let sendaddressnsg=
Pi.sendhttpchan(addresgnsg

let acceptaddress
let (addrmsg = Pi.recvhttpchanin
if addr=addresghen msgelse...

constants; its symbolic implementation binds them to fixed
names generated by callif@jname In general, a concrete
implementation would retrieve keys from the operating sys-
tem key store, or prompt the user for a password. The sym-
bolic version implements a database of passwords and keys
using a channel kept hidden from the attacker.

Next, we describe how to build both a concrete reference
implementation and a symbolic prototype, in the sense of
Sectionl.

Concrete execution To test that the protocol runs cor-
rectly, we run the F# compiler on the F application code,
the concrete F# implementations@©fypto, Net, andPring

?6gether with the following top-level F# code to obtain a

single executable, sayin. Depending on its command line
argument, this executable runs in client or server mode:

do match Sysargv.(1) with
| "client" — client (S Sysargv.(2))
"server" —server()

| - —printf "Usage: run client txt\n" ;
printf" or: run server\n"

The library function callSysargv.(n) returns thenth ar-
gument on the command line. As an example, we can exe-

cute the commandun clientHi on some machine, execute monitor and send network traffic, but unable to access

runserveron some other machine that listens adress principals’ credentials directly. In particulafjetsend

and observe the protocol run to completion. This run of the enables the attacker to send any message to the server

protocol involves our concrete implementation of (HTTP- while Netacceptenables the attacker to intercept any mes-

based) communications sending and receiving the encodedage sent to the server. The functidbig/ptarsaencrypt

string “FADCIzZhW3XmgUABgRJj1KjnWy...". and Cryptarsadecryptenable encryption and decryption
with keys known to the attackeiCryptorsakeygenand

Symbolic execution To experiment with the protocol CryptamkNonceenable the generation of fresh keys and
code symbolically, we run the F# compiler on the F applica- NoncesCryptahmacsha®nables MAC computation.

tion code, the symbolic F implementations@fypto, Net, Giving O access talient andserverallows it to create

and Prins and the F# implementation of @ interface, arbitrarily many instances of protocol roles, while access to
together with the following top-level F code, that conve- pkB lets O encrypt messages for the server. (We can enrich
niently runs instances of the client and of the server within the interface to give the opponent access to the secret cre-

a single executable. den_tials_ of some prin_cipa_lls, an_d to al!ow the generation of
i) . arbitrarily many principal identities.) SingevdA, skB, and
do Pifork (fun()— client(S"Hi")) log are not included in the attacker interface, the attacker
do server() has no direct access to the protocol secrets and cannot log
The communicated message prints as follows events directly. .
_ Formal verification aims to establish secrecy and authen-
HMACSHA1{nonce3[pwd1| Hi1 | . tication properties for all progran® Oassembled from the
RSAEnNcryp{PK(rsasecret}[nonce} | 'Hi’ given systenSand any attacker progra®

where pwdl, rsasecret? and nonce3are the symbolic In particular, th(_a message authentication property of our
names freshly generated by tRémodule. This message €X@mple protocol is expressed as correspondedo¢-
trace reveals the structure of the abstract byte arrays in thdVe€n events logged by code witrh For allO, we want
communicated message, and hence is more useful for dethat in every run ofs Q everyAcceptevent is preceded by
bugging than the concrete message trace. We have found it cOrrespondingendevent. In our syntax (based on that _Of
useful to test application code by symbolic execution (and ProVerif), we express this correspondence assertion as:
even symbolic debugging) before testing them concretely ev.Accep(x) = ev.Sendx)

on a network.

Formal verification We can check correspondences at

Modelling the opponent We introduce our language- runtime during any particular symbolic run of the program;
based threat model for protocols developed in F. (Se@ion the more ambitious goal of formal verification is to prove
describes the formal details.) them for all possible runs and attackers. To do so, we run

Let Sbe the F program that consists of the application our model extractor fs2pv on the F application code, the
code plus the symbolic libraries. The progr&nwhich symbolic F implementations @rypto, Net, andPrins and
largely consists of code shared with the concrete implemen-the attacker interface as described above. The result is a
tation, constitutes our formal model of the protocol. pi calculus script with embedded correspondence assertions

Let O be any F program that is well formed with respect suitable for verification with ProVerif. In the simplest case,
to the interface exported by the application code (in this F functions compile to pi calculus processes, while the at-
case, the valugkB and the functionslientandservej, plus tacker interface determines which names are published to
the interfacesCrypto andNet. By well formed, we mean the pi calculus attacker. For our protocol, ProVerif immedi-
thatO only uses external values and calls external functions ately succeeds.

explicitly listed in these interfaces. Moreové, can call Conversely, consider for instance a variant of the pro-
all the operations in thei interface, as these are primitives tocol where the MAC computation does not actually de-
available to all F programs. We take the prograno repre- pend on the text of the message—essentially transforming

sent a potential attacker on the formal mo8ef the proto- the MAC into a session cookie:
col, a counterpart to an active attacker on a concrete imple-
mentation. (Treating an attacker as an arbitrary F program
develops the idea of an attacker being an arbitrary parallel
process, as in the spi calcull.) For the resulting script, ProVerif automatically finds and
Giving O access to th&€rypto and Net interfaces, but reports an active attack, whereby the attacker intercepts the
not Pring corresponds to the Dolev-Yad§ model of client message and substitutes any text for the client’s text
an attacker able to perform symbolic cryptography, and in the message. Experimentally, we can confirm the attack

let macnoncepasswordext= hmacshahonce
(concat(utf8 passwordl (utf8 (S "cookie")))

found in the analysis, by writing in F an instance of the (if ethen e elseey), equality €1 = &), sequencinge; e2),
attacker progran®© that exploits our interface. Here, the and other expressions can be derived within this core syn-

attack may be written: tax.
dofork(fun()— client(S"Hi")); Syntax of F:
let (nonce mag _) = unmarshal(Netacceptaddresyin . |
fork(fun()— serve()); X,Y,Z variable
Netsendaddresgmarshall(nonce mag S "Foo")) ab name
. . .)) constructor (uncurried)
This code first starts an instance of the client, inter- , function (curried)

cepts its message, starts an instance of the server, and fo'i'ruefalsetuplen n>0 primitive constructors

wards an amended message to it. Experimentally, we Ob'namesendrecv,Iog,failwith primitive functions

serve that the attack succeeds, both concretely and symboIM, N:— value
ically. At the end of those runs, two everisnd'Hi"* and X variable
Accept"Foo" have been emitted, and our authentication name
query fails. Once the attack is identified and the protocol f(My,...,Mp) constructor application
corrected, this attacker code may be added to the test suite,.._ expression
for the protocol. M value

In addition to authentication, we verify secrecy proper- M; ... My function application
ties for our example protocol. Via ProVeril§], we can fork(fun()— €) fork a parallel thread
query whether a protocol allows an attacker to guess aweak ,5:«h M with (|M; —)€t pattern match
secret and then verify the guess—if so, the attacker can oy — e ine sequential evaluation
mount an offline guessing attack. In the case of our pro- 4.._ declaration

tocol, ProVerif shows the password is protected against of-

.) A g : types= (] fj of s1%.. .*smi)iﬂ-” datatype declaration
fline guessing attacks. Conversely, if we consider a variant

A X letx =e value declaration
of the protocol that passes the nonce in the clear, we find an |4 4 X1 Xg =€ n> 0 function declaration
attack that can also be written as a concrete F program. g.._ dy---dy system: list of declarations
| |
3. Formalizing a Subset of F# A systemSis a sequence of declarations. We write the

list Sas@ when it is empty. A datatype declaration intro-

This section defines the untyped subset F of F# in which duces a new type and its constructors (much likenan
we write application code and symbolic libraries. We define type with tags in C); the type expressi)s are ignored
the syntax, sketch the fairly standard semantics, and definen F. A value declaratiotet x = etriggers the evaluation of
security properties. Some details are left to the technicalexpressiore and binds the result te. A function declara-
report fL1]. tionlet £ x; ... X%, = edefines functiorf with formal param-

The language F consists of: a first-order functional core; etersx; ...xy and function bodye. These functions may be
algebraic datatypes with pattern-matching (such as the typerecursive.
bytesin the symbolic implementation &frypto); a few con- A valueM is a variable, a name, or a constructor appli-
currency primitives in the style of the pi calculus; and a cation. A name is only introduced during evaluation by the
simple type-free module system with which we formalize primitive nameto model the generation of channels, keys,
the attacker model introduced in the previous section. (Al- and nonces; source programs contain no free names. Ex-
though we do not rely on type safety in the formal defini- pressions denote potentially concurrent computations that
tion, F programs can be typechecked by the F# compiler.) return values. Primitive functions mostly represent commu-

In the syntax below/ ranges over functions (such as nication and concurrencyname) returns a freshly gener-
freshBytesor hmacshalin Crypto) and f ranges over ated namesendM N sendsN on the channeM; recv M
datatype constructors (such Bsmeor Hmacshalin the returns the next value received on chankellog M logs
type bytesin Cryptg. Functions and constructors are the eveniM; failwith M represents a thrown exception; and
either primitive, or introduced by function or datatype fork(fun()— e) evaluatesin parallel. (We need not model
declarations. The primitives include the communica- exception handling in F as we rely on exceptions only to
tion and concurrency functionBi.send Pi.recy, Piname represent fatal errors.) #fhas a declaration, the application
Pi.fork described in the previous section. In F, we treat ¢ M; ... M, invokes the body of the declaration with actual
Pichanas a synonym forPi.name they have different parameterddy, ..., Mn. A match M with (| Mj — ei)‘€1--”
types but both create fresh atomic names. We omit theruns g for the leasti such that patteriM; matches the
“Pi.” prefix for brevity. Tuple (ey,...,&,)), conditional valueM; if the patternM; contains variables, they are bound

in g by matching withM. If there are two or more occur- report contains the simple inference rules for this judgment.
rences of a variable in a pattern, matching must bind each toThese rules are an abstraction of the typing rules of F# for
the same value. (Strictly speaking, F# forbids patterns with the fragment we consider. They are automatically enforced
multiple occurrences of the same variable. Still, the effect by the F# compiler.)

of any such pattern in F can be had in F# by renaming all

but one of the occurrences and adding one or more equa”t\ﬂllnterfaces. ,
constraints via avhen clause.) Finallylet x = e; in & first ui= mention
evaluates; to a valueM, then evaluates,{M/x}, that is, x:val | f:ctor n| ¢:fun n value, constructor, or function
the outcome of substitutinig for each free occurrence gf | = ug,...,HUn interface (unordered sequence)
ine. Letl - S: 1’ meanSis well formed giverl, and exportd’.

Next, we sketch the operational semantics of F and the! !
idea of safety with respect to a query. cAnfiguration C, For example, here is the F interface that corresponds to

is a multiset of running systems and logged events. Wethe typed interface implemented by application code in Sec-
equip configurations with a small-step reduction semantics:tion 2.
C — C’ means tha€ can take one step ©'. Most reduc-

tions arise from evaluation of expressions within systems as . o) o
described above. We define aPrim interface to describe the F primitives,

wheremis an arbitrary maximum width of tuples:

pkB: val, client fun 1, server fun 1

Operational Semantics of F: . .
; 1 true ctor 0, false ctor 0, (tupld: ctor i)'€1-m,

I

C:=S|eventM | (C|C') multiset of events and systems failwith: fun 1, log: fun 1, Pi.name fun 1, Pi.chan fun 1,
C =C’ equality up to laws thatis associative and Pi.send fun 2, Pirrecv. fun 1, Pi.fork: fun 1
commutative, witho as neutral element.

LetC — C' mean there is a computation step fr@mo C'.
LetC —% C'if and only if eitherC=C' orC —* C'.

|

We define a robust safety property, that is, safety in the
presence of an opponent. To avoid vacuous failures, we
forbid the opponent from logging eventsl| i an interface,

Wi thenticati d oth ties in t an l-opponent is a syster® that depends only oh and
e express authentication and other properties in termsy .) notlog.

of event-based queries. The general form of a query is
evE = evB; Vv---VvevBy, which means that every reach- Formal Threat Model: Opponents and Robust Safety
able configuration containing an event matching the pat-! !

tern E also contains an event matching one of Bygpat- LetS:: lpup ff Primi- S_: IP“bflp“V for someIPm,. ,
Let O be anl-opponentff Prim\log,| - O: |’ for somel’.

ems. Let Sherobustly safe for q and iff

Queries and Safety: S:: 1 andS Ois safe forq for all I-opponentO.

T 1 L |

A query qis writtenev.E = ev.B, V.-V evB, Hence, setting a verification problem for a systSms-
for valuesE, By, ..., By containing no free names. sentially amounts to selecting the subsg of its interface

Let o stand for a substitutiofMs /xy,...,Mn/Xn}. that is made available to the opponent.

Let? = query evE /:f ev.By v oV ev.By if and only if For the example protocol in Secti@nlet Sbe the system
C’ =eventBio | C" for somet € Ln, that consists of application code and symbolic libraries, and
wheneveC = eventEo | C'. let | ,up be the following interface.

Let Sbesafe for gif and only if C = g whenevelS—% C.
! | Netsend fun 2, Netacceptfun 1,

CryptaS: fun 1, CryptaiS: fun 1,
Cryptobase64fun 1, Cryptoibase64fun 1,
Crypto.utf8: fun 1, Cryptaiutf8: fun 1,
Cryptaconcat fun 1, Cryptaiconcat fun 1,
Crypto.concat3fun 1, Cryptaiconcat3 fun 1,
CryptamkNonce fun 1, CryptomkPasswordfun 1,
Cryptarsakeygen fun 1, Cryptarsapub: fun 1,
Cryptarsaencrypt fun 2, Cryptorsadecrypt fun 2,
Cryptahmacshailfun 2,

pkB: val, client fun 1, serverfun 1

For example, a system safefor queryev.Accep(x) =
ev.Sendx) from Section2 if every reachable configuration
containingeventAccep(M) also containgventSendM).

We introducenterfaces Ito record the set of values, con-
structors, and functions imported or exported by a system.
Since our verification method does not depend on types, F
interfaces omit type structure and track only the distinction
between values, constructors, and functions, plus the ari-
ties of constructors and functions. The judgmentS: I’
meansS refers only to external values, constructors, and
functions listed inl, and provides declarations for the val- Our verification problem is to show th8is robustly safe
ues, constructors, and functions listedin(Our technical for ev:Accep(x) = ev.Sendx) andlyyp.

4. Mapping F# to a Verifiable Model newkV; out(verify, ((m,entext),skpwdkV)); in(kV,();
eventEv(Accep(text));

We target the script language of ProVerif for verifica- ~ OUt(kR, ())

tion purposes. ProVerif can establish correspondence and 1iq nrocess first calls functicacepas follows: it gen-
secrecy properties for protocols expressed in a variant Oferates a fresh continuation chanti; it sends a message

the pi calculus, whose syntax and semantics are detailedy, t carries the argumeatidresandkX on channehccept
in our technical report. .In this calculus, active att'ackers and it receives the function resuiinl on channekX. The
are represented as arbitrary processes that run in parali)roces:s then similarly calls the functionsmarshalland

lel, communicat_e with the protocol on free chgnnels, and verify. If both calls succeed, the process finally logs the
perform symbolic computations. Given a script that de- eventAccep(text) and returns an (empty) result &R.
fines the protocol, the capabilities of the attacker, and some Our pi calculus includes the same term algebra—values

target query, ProVerif generates logical clauses then uses, it from variables, names, and constructors—as F, so val-

a resolution-based semi-algorithm. When ProVerif COm- ;o4 are unchanged by the translation. Moreover, our pi cal-
pletes successfully, the script isbustly safefor the tar- o5 includes term destructors defined by rewrite rules on
get query, that is, the query holds against all (pi calculus) y,q torm algebra, and whenever possible after inlining, our
attackers; otherwise, ProVerif attempts to reconstruct an at'implementation maps simple functions to destructors. For
tack trace. ProVerif may also diverge, or fail, as can be j,qiance we actually translate thecfunction declaration
expected since query verification in the pi calculus is not into the native ProVerif reduction:

decidable. (ProVerif is known to terminate for the special

class oftaggedprotocols [L14]. However, the protocols in ~ reduc magqnoncepwd,text) =

our main application area of web services rarely fall in this ~ HmacSha(nonceConca(Utf8(pwd),Utf8(text)))

class.) ProVerif is a good match for our purposes, as it of-
fers both general soundness theorems and an effective im
plementation. Pragmatically, we also rely on previous pos-

Both formulations ofmacare equivalent, but the latter is

more efficient. On the other hand, complex functions with
r . . ; 2 . side-effects, recursion, or non-determinism are translated as
ftive expenence In generating large verlflcat|0r_1 scripts for processes. Our tool also supports a third potential transla-
ProVerlf.. !n p_r|n0|ple, however, we may benefit from any tion for mag into a ProVerif predicate declaration; predi-
other ver|f|_c ation tool. . . cates are more efficient than processes and more expressive

. To obtain a ProVerif script, we translate F programs t‘? than reductions. Our translation first performs aggressive
pi calculus processes and rewrite rules. To help ProVerlfinlining of F functions, constant propagation, and similar

?ucceer, wel_(;lste a flexible corntlDt)lns/tlo_r; of se}/era;l tranI'TI""'optimizations. It then globally picks the best applicable
lons. 10 validate our usage ot Froveril, we aiso 1ormally ¢ myjation for each reachable function, while eliminating
relate arbitrary attackers in the pi calculus to those exXpressaad code

ible n & . . Finally, the translation gives to the pi calculus context
.At Its core, qur translation maps fl,!nct|ons to ProCessSes ,q capabilities available to attackers in F. For example, the
using the.CIaSS'C call-by-vglue encoding from lambda cal- channelhttpchanrepresenting network communication is
culus to P! calculusZ{Q]. For Instance, we may translate the exported to the context in an initialization message. More
macfunction declaration of Sectidh interestingly, every public function coded as a process is
let macnoncepwd text = made available on an exported channel.
Cryptohmacshahonce(concat(utf8 pwd) (utf8 text)) For instance, theerverfunction is available to the at-

. tacker; accordingly, we generate the process:
into the process aly g p

" .
lin(mag, (noncepwatextk)): lin(serverPUB (argkR)); out(server (argkR))

out(k,Hmacsha(nonceConca(Utf8(pwd),Utf8(text)))) This enables the attacker to trigger instances of the server
using the public channekrverPUB Conversely, the private
channelserveris used only by the translation, so that the
attacker cannot intercept local function calls.

Formally, we define translations for expressi@nslec-
ationsd, and system$&. The translations’[€](x,P) is a
process that binds variab¥eto the value ok and then runs
procesd. The translations”[d](P) and.[S](P) are pro-

This process is a replicated input on chanmehg
each message omac carries the functional arguments
(noncepwd,text) as well as a continuation chanrelWhen
the function completes, it sends back a message that carrieF
) L ar
its result on channet. Similarly, we translate theerver
function declaration of Sectiahinto:

lin(server (argkR)); cesses that elaboraleandS, and then run proce$s At the
new kX; out(accept (addreskX)); in(kX,xml); top level, the translatiofiS :: | pyy] is @ ProVerif script that
new kM; out(unmarshall (xml,kM)); in(kM,(m,entext)); includes constructor definitions for the datatypesiand

defines a process that elaboragand then export$pyp. some queries are designed to test the boundaries of the at-
Details of these translations are in the technical report. tacker model and are meant to fail during verification. Fi-
Our main correctness result is the following. nally, the table gives the size of the logical model generated
by ProVerif (the number of logical clauses) and its total run-
ning time to verify all queries for the protocol.
For example, consider the simple authentication proto-
col of Section?, namedPassword-based MAM the tables;

In the statement of the theore®js the series of mod- its implementation has 38 lines of specific code; ProVerif
ules that define our systenhys is a selection of the val- takes less than one second to verify the message authen-
ues, constructors, and functions declare8that are made tication query and to verify that the protocol protects the
available to the attackeg is our target security query; and Password from guessing attacks. A variant of our imple-
[S:: lpup] is the ProVerif script obtained fro®and| pyp. mentation for this protocol (second row of Tableand?2)

The proof of Theoreni appears in our technical report; Produces the same message, but is more modular and relies
it relies on an operationa| Correspondence between reducOn more realistic Iibraries; it SUppOTtS distributed runs and
tions on F configurations and reductions in the pi calculus. €nables the verification of queries against active attackers

We implement our translation as a command line that may selectively corrupt some principals and get access
tool fs2pv that intercepts code after the F# compiler front- to their keys and passwords.
end. The tool takes as input a series of module implemen- As a benchmark, we wrote a program for the four mes-
tations definingS and module interfaces bounding the at- Sage Otway-Rees key establishment protagdj, jwith two
tacker's capabilities, much likgp. The tool relies on the additional messages after key establishment to probe the se-
typing discipline of F# (which is stronger than the scope dis- crecy of message payloads encrypted with this key. To com-
cipline of F) to enforce thaB:: I It then generates the plete a concrete, distributed implementation, we had to code

script [S:: 1pup] and runs ProVerif. If ProVerif completes —detailed message formats, left ambiguous in the description

Theorem 1 (Reflection of Robust Safety)if S:: Ipyp and
[S:: 1pub] is robustly safe for g, then S is robustly safe for g
and lpup.

successfully, it follows thalS::] is robustly safe fog. ~ of the protocol. In the process, we inadvertently enabled a
Hence, by Theorer, we conclude thaSis robustly safe typing attack, immediately found by verification. We ex-
for g andlpyp. perimented with a series of 16 authentication and secrecy

As a simp|e examp|e, recall the Syst@and its inter- queries; their verification takes a few minutes.
facelyun, as stated at the end of Secti@n Our tool runs
successfully on this input, proving thats robustly safe for A Library for Web Services Security As a larger, more

the queryev.Accep(x) = ev.Sendx) andl yyp. challenging case study, we implemented and verified sev-
eral web services security protocols.
5. Verification of Interoperable Code Web services are applications that exchange XML mes-

sages conforming to the SOAP standa?@][To secure
these exchanges, messages may include a security header,
defined in the WS-Security standaf®], that contains sig-
natures, ciphertexts, and a range of security elements, such
as tokens that identify particular principals. Hence, each
For each protocol, Tablé gives the program size for the secure web seryice impl_eme_nts a security protocql by com-
implementation (in lines of F# code, excluding interfaces P°S"9 mechanisms defined in WS-Security. Previous anal-
and code for shared libraries), the number of messages oy YSes of such WS-Security protocols established correctness
eorems 21, 9, 7, 25, 26] and uncovered attack®,[10].

changed, and the size of each message, measured both wever. th nal rated on models of protocol
bytes for concrete runs and in number of constructors for Oowever, Inese analyses operated on models of protocols
and not on their implementations. In the rest of this section,

symbolic runs. Tabl@ concerns verification; it gives the . e .
number of queries and the kinds of security properties theyyxfeforgz(reankgl(tehve\/(:gsge\:\?izzzzii%);;r?\S(aur:iZtrg;;he security of
express. A secrecy query requires that a password (dej First, we develop a library in F that impler.nents the for-

or key (key) be protected; a weak-secrecy query further re_mats and mechanisms of the web services messaging and

quires that a weak secret (weak pwd) be protected from a . . : ; .
guessing attack. An authentication query requires that gSeeurity specifications. Like WSE8, our library is a par-

message content (msg), its sender (sender), or the whol ial implementation of these s_peC|f|cat|ons; we selected f_ea-
exchange (session) be authentic. Some queries can be ver ures based on the need .to mteropgrate with protocols im-
fied even in the presence of attackers that control some Cor_plemented by WSE. Our library provides several modules:
rupted principals, thereby getting access to their keys and e Soapimplements the SOAP formats for requests, re-
passwords. Not all queries hold for all protocols; in fact sponses, and faults, and their exchange via HTTP.

To validate our approach experimentally, we imple-
mented a series of cryptographic protocols and verified their
security against demanding threat models.

Tablesl and2 summarize our results for these protocols.

10

Protocol Implementation

LOCs | messages bytes symbols
Password-based MAC 38 1 208 16
Password-based MAC variant 75 1 238 21
Otway-Rees 148 4 | 74;140; 134; 68| 24;40; 20; 11
WS password-based signing 85 1 3835 394
WS X.509 signing 85 1 4650 389
WS password-based MAC 85 1 6206 486
WS request-response 149 2 6206; 3187 486; 542

Table 1. Summary of example protocols

Protocol Security Goals Verification
queries| secrecy authentication| insiders| clauses time
Password-based MAC 4 | weak pwd| msg no 69 0.8s
Password-based MAC variant 5| pwd msg, sender | yes 213 2.2s
Otway-Rees 16 | key msg, sender | yes 155 | 1m50s
WS password-based signing 51| no msg, sender | yes 456 53s
WS X.509 signing 5| no msg, sender | yes 460 26s
WS password-based MAC 3 | weak pwd | msg, sender | no 436 10.9s
WS request-response 15 | no session yes 503 | 44m45s

Table 2. Verification Results

e Wsaddressingmplements the WS-Addressindlq] The library consists of 1200 lines of F code. We can
header formats, for message routing and correlation. quickly write security protocols using this library, such as
an authentication protocol that uses a password or an X.509
e Xmldsig and Xmlenc implement the standards for certificate to generate an XML digital signature (protocols
XML digital signature L8] and XML encryption [L7), WS Password-based signiagd WS X.509 signingn Ta-
which provide flexible formats for selectively signing ples1 and2). Only 85 additional lines of code need to be
and encrypting parts of an XML document. written to implement these protocols; their verification takes

i . a few seconds.
e Wssecurityimplements the WS-Security header for-

mat and common security tokens, such as username

As a case study, we used our web services library to im-

These modules rely on thi&ryptomodule for cryptographic ~ plement an existing password-based authentication protocol
functions and a new(m| module (with dual symbolic and (WS password-based MA@ken from the WSE samples.
concrete implementations) for raw XML manipulation. The protocol is quite similar t®assword-based MA@x-
Applications written with this library produce and con- cept that the message is now a standards-compliant XML
sume SOAP messages that conform to the web serviceslocument. This message is sent as the body of a SOAP
specifications. Such applications can interoperate with envelope that includes a WS-Security security header that
other conformant web services, such as those that use WSEcontains aisername tokemepresenting the client’s identity,
The requirement to produce concrete, interoperable, andand anX.509 tokenrepresenting the server’s identity. The
verifiable code is quite demanding, but it yields very pre- username token includes a freshly generated nonce used,
cise executable models for the informal WS-Security spec-along with a shared password, to derive a key for message
ifications, more detailed than any available in the literature. authentication. This nonce is protected by encrypting the
For verifiability, we adopt a programming discipline that entire username token with the server’s public key, using
reduces the flexibility of message formats wherever possi-XML encryption. The message is authenticated by an XML
ble. In particular, we fix the order of headers in a messagedigital signature that includes a cryptographic keyed hash
and limit the number of headers that can be signed. Weof the body using a key derived from the username token.

avoid higher-order functions (such ast.map and recur- In earlier work [LO], we wrote a non-executable formal
sion over lists and XML, and instead inline these functions model for this protocol and analyzed it with ProVerif. Here,
by hand. we extract the model directly from a full-fledged implemen-

11

tation. Moreover, we encode a more realistic threat model are authentication of the request and the response, as well
that enables the attacker to gain access to some passwordss correlation between the messages. Correlation relies on
and keys. In particular, therinsmodule has two additional ~a mechanism callesignature confirmatiorfdescribed in a

functions in its interfaceleakPasswordndleakPrivateKey draft revision of WS-Security), where the response echoes

TheleakPassworflnction is defined as follows: and signs the password-based signature value of the request.
The protocol is namedlVS request-response the tables;
ProVerif establishes all our authentication and correlation
goals, but takes almost 45 minutes for the analysis.

When the attacker callsakPasswordor a principalu, Our protocol implementation can also be used as part
the function extracts the password fofrom the database of a larger web application, while still benefiting from our
and returns it to the attacker; but before leaking the pass-results. The client functions can be exported as a library
word, the function logs an evehtak(u) recording thatthe jnyoked by applications written in any language running on
principalu has been compromised. the CLR, such as C# or Visual Basic. Similarly, the server

We implement the client and server roles using our li- functions can be embedded in the security stack of a web
brary, with slightly differentSendand Acceptevents from server that checks all incoming messages for conformance
the ones in SectioB. To enable sender authentication, the to the protocol before handing over the message body to
client logsSenqu,m), whereu is the principal that sends g web application written in any language. In both cases,
the XML messagen. Similarly, on receiving the message, assuming the application code does not have access to secret

the server logé.ccep(u,m). The datatype of events and the passwords or keys, the security results transparently apply.
authentication query becomes

let leakPasswordu:str) =
let pwd = getPassword in log Leal(u); pwd

type Ev = Sendof strxitem 6. Conclusions

| Acceptof str«item

| Leakof str We describe an architecture and programming model
q=ev.Accep(u,m) = ev.Sendu,m) V ev.Leak(u) for security protocols. For production use, protocol code

whereitem is the datatype of XML elements. The query ~ runs against concrete cryptography and low-level network-
asks that the server authenticate the messagend the ing libraries. For initial development, the same code runs
sending principals, unlessu has been leaked. L& be against symbolic cryptography and intra-process communi-
the System that consists of the client and server Code, thé:ation libraries. For Veriﬁcation, much of the code trans-
symbolic libraries Crypto, Net, Pring andXml), and the lates to a low-level pi calculus model for analysis against
web services library. Lel,,p be the interface of Sectio® a Dolev-Yao attacker. The attacker can be understood and
extended with thétem datatype. Using fs2pv and ProVerif, customized in source-level terms as an arbitrary program
we prove thatV is robustly safe for andlp, The veri- running against an interface exported by the protocol code.
fication of message and sender authentication takes only a Our prototype implementation is the first, we believe, to
few seconds. As witlPassword-based MA@/e also prove extract verifiable models from code implementing standard
that the password is protected even if it is a weak secret. ~ Security protocols, and hence able to interoperate with other
We experimentally checked that our concrete implemen- implementations. Our prototype has many limitations; still,
tation complies with the web services specifications: we canWe conclude that it significantly reduces the gap between
run our client with a WSE server, and conversely accessSymbolic models of cryptographic protocols and their im-
our server from a WSE client. Many details of our model Plementations.
would have been difficult to determine from the specifica-
tions alone, without interoperability testing. The resulting Limits of our model As usual, formal security guarantees
messages exchanged by the concrete execution are arourttbld only within the boundaries of the model being consid-
6 kilobytes in size, while the symbolic execution of the pro- ered. Automated model extraction, such as ours, enables the
tocol generates messages with 486 symbols. The runtimdormal verification of large, detailed models closely related
performance of our concrete implementation is comparableto implementations. In our experience, such models are
to WSE, which is not surprising for this protocol, since the more likely to encompass security flaws than those focusing
execution time is dominated by XML processing and com- on protocols in isolation. Independently of our work, mod-
munication. elling can be refined in various directions. Certified com-
We also implemented and verified an extension of the pilers and runtime environments can give strong guarantees
protocol described above, where the server, upon acceptthat program executions comply with their formal seman-
ing the request message, sends back a response messaties; in our setting, they may help bridge the gap between
signed with the private key associated with its X.509 cer- the semantics of F and a low-level model of its native-code
tificate. For this two message protocol, the security goals execution, dealing for instance with memory safety.

12

Our approach also crucially relies on the soundness ofcryptographic protocol for online poker without a trusted
symbolic cryptography with regards to one implementa- third party. Their goal is to prevent some insecure informa-
tion of concrete cryptography, which is far from obvi- tion flows by typing. They do not derive a formal model of
ous. Pragmatically, our modelling of symbolic cryptog- the protocol from their code.
raphy is flexible enough to accommodate many known There are only a few works on compiling implemen-
weaknesses of cryptographic algorithms (introducing for in- tation files for cryptographic protocols to formal mod-
stance symbolic cryptographic functions “for the attacker els. Bhargavan, Fournet, and Gord@ translate the pol-
only”). There is a lot of interesting research on recon- icy files for web services to the TulaFale modelling lan-
ciling symbolic cryptography with more precise computa- guage 10|, for verification by compilation to ProVerif. This
tional models B, 6]. Still, for the time being, these models translation can detect protocol errors in policy settings, but
do not support automated analyses on the scale needed faipplies to configuration files rather than executable source
our protocaols. code. Other symbolic modellin@{, 9, 7, 25, 26] of web
services security protocols has uncovered a range of poten-
tial attacks, but has no formal connection to source code.
Goubault-Larrecq and Parrenn@g] are the first to derive
a Dolev-Yao model from implementation code written in C.
Their tool Csur performs an interprocedural points-to anal-
ysis on C code to yield Horn clauses suitable for input to
a resolution prover. They demonstrate Csur on code imple-

anq concurrency, their calculus cannot_ d|re_ctly capture I|n_— menting the initiator role of the Needham-Schroeder public-
earity properties (such as replay detection via nonces), as 'tiey protocol

only imperative feature is name generation. Several systems There is al N h ifving impl t

[35, 31, 27, 36] operate in the reverse direction, and gen- i e;e IS ‘:’:SO reﬁ_en lres_etﬁrc on Ve”fym% Itmp eTen Ia-

erate runnable code from abstract models of cryptographic 1ons Ot cryptographic aigoriinms, as opposed to protoco’s.
or instance, Cryptoll9] is a language-based approach to

protocols in formalisms such as strand spaces, CAPSL,and ~ . > ! .
the spi calculus. These systems need to augment the unde?fem(ymg implementations of algorithms such as AES.
lying formalisms to express implementation details that are
ignored in proofs, such as message sizes and error handlerg\cknowledgements James Margetson and Don Syme
Going further in the direction of growing a formalism into helped us enormously with using and adapting the F# com-
a programming language, Guttman, Herzog, Ramsdell, andpiler. Tony Hoare and David Langworthy suggested im-
Sniffen [24] propose a new programming language CPPL provements to the presentation.
for writing security protocols; CPPL combines features for
communication and cryptography with a trust management
engine for logically-defined authorization checks. CPPL References
programs can be verified using strand space techniques, al-))
though there is no automatic support for this at present. A 1] M- Abadi and C. Fournet. Mobile values, new names, and
limitation of all of these systems is that they do not imple- secure communication. i28th ACM Symp?s'um on Prin-

. ciples of Programming Languages (POPL'Qppges 104—
ment standard message formats and hence do not interop- 115, 2001.
erate with other implementations. In terms of engineering

Related work The ideas of modelling protocol roles as
functions and modelling an active attacker as an arbitrary
functional context appear earlier in Sumii and Pierce’s stud-
ies of cryptographic protocols within a lambda calculus
[37, 38]. Unlike our functional language, which has state

2] M. Abadi and A. D. Gordon. A calculus for cryptographic

effort, it seems easier to achieve interoperability by starting protocols: The spi calculudnformation and Computatign

from an existing general purpose language such as F# than 148:1-70, 1999.

by developing a new compiler. [3] M. Abadi and P. Rogaway. Reconciling two views of cryp-
Giambiagi and DamZ(] take a different approach to tography (the computational soundness of formal encryp-

showing the conformance of implementation to model. tion). Journal of Cryptology15(2):103-127, 2002.

They neither translate model to code, nor code to model. [4] X. Allamigeon and B. Blanchet. Reconstruction of attacks
Instead, they assume both are provided by the programmer, ~ against cryptographic protocols. 18th IEEE Computer Se-
and develop a theory to show that the information flows al- ;‘(’)gtsy Foundations Workshop (CSFW'0fjages 140-154,
lowed by the implementation of a cryptographic protocol ' .

are nong other tr?an those allowed byyfhegabsptractpmodel of [5] A. Askarov and A. Sabelfeld. Security-typed languages for

h L Th he ab | i implementation of cryptographic protocols: A case study. In
the protocol. They treat the abstract protocol as a specifica- 10th European Symposium on Research in Computer Secu-

tion for the implementation, and implicitly assume correct- fity (ESORICS'05)volume 3679 oL NCS pages 197-221.
ness of the abstract protocol. Springer, 2005.

Askarov and Sabelfeld] report a substantial distributed [6] M. Backes, B. Pfitzmann, and M. Waidner. A composable
implementation within the Jif security-typed language of a cryptographic library with nested operations Piroceedings

13

(7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]
(18]
(19]
(20]

(21]

(22]

(23]

(24]

of the 10th ACM Conference on Computer and Communica- [25] E. Kleiner and A. W. Roscoe. Web services security: A pre-

tions Security (CCS’03pages 220—230. ACM Press, 2003.
K. Bhargavan, R. Corin, C. Fournet, and A. D. Gordon. Se-
cure sessions for web services. 2004 ACM Workshop on
Secure Web Services (S\W8ges 11-22, Oct. 2004.

K. Bhargavan, C. Fournet, and A. D. Gordon. Verifying
policy-based security for web services dlith ACM Confer-
ence on Computer and Communications Security (CCS'04)
pages 268-277, Oct. 2004.

K. Bhargavan, C. Fournet, and A. D. Gordon. A semantics
for web services authenticatiortheoretical Comput. Sgi.
340(1):102-153, June 2005.

K. Bhargavan, C. Fournet, A. D. Gordon, and R. Pucella.
TulaFale: A security tool for web services. limernational
Symposium on Formal Methods for Components and Ob-
jects (FMCQO’03) volume 3188 ofLNCS pages 197-222.
Springer, 2004.

K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse. Ver-
ified interoperable implementations of security protocols.
Technical Report MSR-TR-2006-46, Microsoft Research,
2006.

B. Blanchet. An efficient cryptographic protocol verifier
based on Prolog rules. Ib4th IEEE Computer Security
Foundations Workshop (CSFW’Qbages 82—-96, 2001.

B. Blanchet, M. Abadi, and C. Fournet. Automated verifica-
tion of selected equivalences for security protocols20th
IEEE Symposium on Logic in Computer Science (LICS’05)
pages 331-340, 2005.

B. Blanchet and A. Podelski. Verification of cryptographic
protocols: Tagging enforces terminatiohheoretical Com-
puter Scienceg333(1-2):67-90, 2005.

D. Box, F. Curbera, et alWeb Services Addressing (WS-
Addressing)Aug. 2004. W3C Member Submission.

D. Dolev and A. Yao. On the security of public key pro-
tocols. |IEEE Transactions on Information TheoryT—
29(2):198-208, 1983.

D. Eastlake, J. Reagle, et aKML Encryption Syntax and
Processing2002. W3C Recommendation.

D. Eastlake, J. Reagle, D. Solo, et ¥ML-Signature Syntax
and Processing2002. W3C Recommendation.

Galois ConnectionsCryptol Reference Manug2005.

P. Giambiagi and M. Dam. On the secure implementation
of security protocols.Science of Computer Programming
50:73-99, 2004.

A. D. Gordon and R. Pucella. Validating a web service secu-
rity abstraction by typing. 12002 ACM workshop on XML
Security pages 18-29, 2002.

J. Goubault-Larrecq and F. Parrennes. Cryptographic pro-
tocol analysis on real C code. 6th International Confer-
ence on Verification, Model Checking and Abstract Interpre-
tation (VMCAI'05) volume 3385 oL NCS pages 363-379.
Springer, 2005.

M. Gudgin et al. SOAP Version 1,22003. W3C Recom-
mendation.

J. D. Guttman, J. C. Herzog, J. D. Ramsdell, and B. T.
Sniffen. Programming cryptographic protocols. Tirusted
Global Computing (TGC’05)volume 3705 oL NCS pages
116-145. Springer, 2005.

14

(26]

[27]

(28]

[29]
(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

liminary study using Casper and FDR. Automated Rea-
soning for Security Protocol Analysis (ARSPA,@)04.

E. Kleiner and A. W. Roscoe. On the relationship between
web services security and traditional protocols. Math-
ematical Foundations of Programming Semantics (MFPS
XXI), 2005.

S. Lukell, C. Veldman, and A. C. M. Hutchison. Au-
tomated attack analysis and code generation in a multi-
dimensional security protocol engineering framework. In
Southern African Telecommunication Networks and Appli-
cations Conference (SATNAQ)PO3.

Microsoft Corporation. Web Services Enhancements
(WSE) 2.02004. Athttp://msdn.microsoft.com/
webservices/building/wse/default.aspx

R. Milner. Functions as processédathematical Structures

in Computer Scien¢®(2):119-141, 1992.

R. Milner. Communicating and Mobile Systems: the
Calculus CUP, 1999.

F. Muller and J. Millen. Cryptographic protocol genera-
tion from CAPSL. Technical Report SRI-CSL-01-07, SR,
2001.

A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo.
OASIS Web Services Security: SOAP Message Security 1.0
(WS-Security 2004Mar. 2004. OASIS Standard 200401.

R. Needham and M. Schroeder. Using encryption for au-
thentication in large networks of computersCommun.
ACM, 21(12):993-999, 1978.

D. Otway and O. Rees. Efficient and timely mutual authen-
tication. Operation Systems Revigi(1):8-10, 1987.

A. Perrig, D. Song, and D. Phan. AGVI — automatic genera-
tion, verification, and implementation of security protocols.
In 13th Conference on Computer Aided Verification (CAV)
LNCS, pages 241-245. Springer, 2001.

D. Pozza, R. Sisto, and L. Durante. Spi2Java: automatic
cryptographic protocol Java code generation from spi calcu-
lus. In18th International Conference on Advanced Informa-
tion Networking and Applications (AINA 20Q4)olume 1,
pages 400-405, 2004.

E. Sumii and B. C. Pierce. Logical relations for encryp-
tion. In 14th IEEE Computer Security Foundations Work-
shop (CSFW’01)pages 256-269, 2001.

E. Sumii and B. C. Pierce. A bisimulation for dynamic seal-
ing. In31st ACM Symposium on Principles of Programming
Languages (POPL'04)pages 161-172, 2004.

D. Syme. F#, 2005. At http://research.
microsoft.com/projects/ilx/fsharp.aspx

T. Woo and S. Lam. A semantic model for authentlcatlon
protocols. InIEEE Computer Society Symposium on Re-
search in Security and Privacpages 178-194, 1993.

http://msdn.microsoft.com/webservices/building/wse/default.aspx
http://msdn.microsoft.com/webservices/building/wse/default.aspx
http://research.microsoft.com/projects/ilx/fsharp.aspx
http://research.microsoft.com/projects/ilx/fsharp.aspx

	. Introduction
	. A Simple Message Authentication Protocol
	. Formalizing a Subset of F#
	. Mapping F# to a Verifiable Model
	. Verification of Interoperable Code
	. Conclusions

