
Weakening Failure Detectors for k-Set Agreement via
the Partition Approach

Wei Chen1, Jialin Zhang2?, Yu Chen1, Xuezheng Liu1

1 Microsoft Research Asia
{weic, ychen, xueliu}@microsoft.com

2 Center for Advanced Study
Tsinghua University

zhanggl02@mails.tsinghua.edu.cn

Abstract. In this paper, we propose the partition approach and define several
new classes of partitioned failure detectors weaker than existing failure detec-
tors for the k-set agreement problem in both the shared-memory model and the
message-passing model. In the shared-memory model with n + 1 processes, for
any 2 ≤ k ≤ n, we first propose a partitioned failure detector ΠΩk that solves
k-set agreement with shared read/write registers and is strictly weaker than Ωk,
which was conjectured to be the weakest failure detector for k-set agreement
in the shared-memory model [19]. We then propose a series of partitioned fail-
ure detectors that can solve n-set agreement, yet they are strictly weaker than
Υ [10], the weakest failure detector ever found before our work to circumvent
any asynchronous impossible problems in the shared-memory model. We also
define two new families of partitioned failure detectors in the message-passing
model that are strictly weaker than the existing ones for k-set agreement. Our
results demonstrate that the partition approach opens a new dimension for weak-
ening failure detectors related to set agreement, and it is an effective approach
to check whether a failure detector is the weakest one or not for set agreement.
So far, all previous candidates for the weakest failure detectors of set agreement
have been disproved by the partitioned failure detectors.

Keywords: failure detector, partitioned failure detectors, k-set agreement.

1 Introduction

Failure detector abstractions are first proposed by Chandra and Toueg in [3] to circum-
vent the impossibility result of consensus [9], and have since become a powerful tech-
nique to encapsulate system conditions needed to solve many distributed computing
problems. Among them the problem of k-set agreement has received many attention
from the research community. Informally, in k-set agreement each process proposes

? This work was supported in part by the National Natural Science Foundation of
China Grant 60553001, and the National Basic Research Program of China Grant
2007CB807900,2007CB807901.

some value and eventually all correct processes (those that do not crash) decide on at
most k different values [4]. It has been shown that k-set agreement cannot be solved in
asynchronous systems when k or more processes may crash [1, 12, 20]. In recent years,
a number of studies have focused on failure detectors for solving k-set agreement prob-
lem [21, 18, 11, 16, 17, 19, 10, 7]. These studies form the collective effort in the pursuit
of the weakest failure detector for k-set agreement, a goal yet to be reached. A particu-
lar candidate Ωk was conjectured to be the weakest failure detector for wait-free k-set
agreement [19] in the shared-memory model.

Consider distributed shared-memory model with n + 1 processes. In a very recent
paper [10], Guerraoui et.al define a new class of failure detectors Υ and show that
among a wide range of failure detectors defined as eventually stable failure detectors,
Υ is the weakest one necessary to solve any impossible problem in shared-memory
distributed systems, and Υ solves the n-set agreement problem. The Υ failure detector
disproves the conjecture on Ωk for the case of k = n. For a general k, a generalized Υ k

is proposed to solve k-set agreement, but only when at most k processes may crash, so
it does not disprove the conjecture on Ωk for wait-free k-set agreement.

The eventually stable failure detectors encompass most failure detectors known to
solve distributed decision tasks in the shared-memory model prior to [10], as the authors
claimed. Therefore, as the title of their paper says, indeed Υ is the weakest failure
detector ever found that solves any impossible problem in distributed computing.

In this paper, we introduce a new breed of failure detectors — partitioned failure de-
tectors — that could be made strictly weaker than Ωk and Υ but are still strong enough
to solve the set agreement problem. Our motivation is based on the following observa-
tion: In k-set agreement when k > 1, different processes may decide on different values,
and thus it is possible that processes may be partitioned to different components, each
of which decides on different values but together they still decide on at most k values.
In other words, k-set agreement (with k > 1) exhibits the partition nature. The parti-
tioned failure detectors are defined by consistently applying a method that captures the
partition nature to weaken existing failure detectors, for which we called the partition
approach.

In the partition approach, failure detectors partition the processes into multiple com-
ponents and only processes in one of the components (called a live component) are
required to satisfy all safety and liveness properties (of an existing failure detector),
while processes in other components only need to satisfy safety properties. Since those
processes in non-live components may generate quite arbitrary failure detector outputs,
intuitively the partitioned failure detectors are a new breed that does not fall into the
eventually stable failure detectors covered by [10].

We study the partitioned failure detectors in both the shared-memory model and the
message-passing model. In the main part of this paper, we apply the partition approach
to failure detectors Ωk and Υ in the shared-memory model to define weaker failure
detectors. More specifically, we first define a new class of failure detectors ΠΩk by
applying static partitions to Ωk. We show that ΠΩk is strong enough to solve k-set
agreement with shared read/write registers but it is not comparable with Υ , for all k =
2, 3, . . . , n. One direct consequence is that ΠΩk is strictly weaker than Ωk (because
Ωk is stronger than Υ), which disproves the conjecture that Ωk is the weakest failure

ΠΩn−1

ΠΩ2

ΠΩn
ΠΩΥ 2

ΠΩΥn−1

ΠΩΥn

Υ ΠΩΥ 1ΠΩΥ 0

ΠΩ1

Ω1

Ω2

Ωn−1

Ωn

results in [10]

Fig. 1. Relationship diagram for failure detectors in the shared-memory model (n ≥ 3). If A →
B, then A can be transformed into B. If there is no directed path from A to B, then A cannot be
transformed into B (Footnote 1 contains the only exception).

detector for wait-free k-set agreement in the shared-memory model for any k ≥ 2.
Moreover, ΠΩk is the first failure detector class that solves k-set agreement (for generic
k) but is incomparable with Υ . For example, even though failure detector ΠΩ2 solves
2-set agreement, it is not stronger than Υ .

Next, we define failure detectors weaker than Υ but are still strong enough to solve
n-set agreement. We achieve this by mixing some of the properties of ΠΩk and Υ

and define another class of partitioned failure detectors ΠΩΥ k. We show that for any
1 ≤ k ≤ n, ΠΩΥ k can still solve n-set agreement but it is strictly weaker than both
ΠΩk and Υ . Moreover, as k increases, the strength of ΠΩΥ k is strictly weakened.
Hence, we find a family of n different failure detector classes strictly weaker than Υ ,
which is the weakest one ever found before our work.

Figure 1 characterizes the exact relationship among all failure detectors we pro-
posed in this paper for the shared-memory model and the previously defined ones Ωk

and Υ . Note that every nonexistent directed path in the figure corresponds to an impos-
sible transformation from the source class to the destination class, with only one ex-
ception.1 Since Υ is already very weak, one can imagine that it would be very delicate
to define the new partitioned failure detectors and prove that they are incomparable to
or strictly weaker than Υ . Indeed, the definitions of failure detectors are subtle, and the
proofs of the impossible transformations are the most delicate and technically involved.

We also apply the partition approach to failure detectors Ωk × Σ in the message-
passing model, where Σ is the class of quorum failure detectors needed to work with Ωk

to solve k-set agreement in the message-passing model. We define two new families of
partitioned failure detectors that are strictly weaker than Ωk ×Σ but are strong enough
to solve k-set agreement in the message-passing model. These partitioned failure de-
tectors are different from the ones in the shared-memory model in that they integrate

1 The exception is the following problem that is still open: Can ΠΩk be transformed into
ΠΩΥ k−1 for any k ≥ 2? However, we have proven that ΠΩk+1 cannot be transformed into
ΠΩΥ k−1 for any k ≥ 2.

the partition of quorums in their definitions. Moreover, one family of failure detectors
incorporates dynamic splitting of partitions, while all failure detectors in the shared-
memory model are statically partitioned.

Our results not only show a number of new failure detectors that are strictly weaker
than existing ones such as Ωk and Υ , but more importantly, they demonstrate the power
of the partition approach: The partition approach opens a new dimension for weakening
various failure detectors related to set agreement, and it is an effective approach to check
whether a failure detector could be the weakest one solving set agreement or not. Using
the approach, we have successfully shown that (1) Ωk is not the weakest failure detector
for k-set agreement in the shared-memory model for any k ≥ 2; (2) Υ is not the weakest
failure detector for n-set agreement in the shared-memory model; and (3) Ωk×Σ is not
the weakest failure detector for k-set agreement in the message-passing model for any
k ≥ 2. So far, all failure detectors that were considered as the candidates for the weakest
failure detectors for set agreement have been disproved using our partition approach.
Therefore, we believe that partitioned failure detectors demonstrate the flexibility in
achieving set agreement, and it is important to use the partition approach as an effective
research tool in our pursuit to the ultimate weakest failure detectors for set agreement.

The rest of the paper is organized as follows. Section 2 provides the shared-memory
model used in our paper. Section 3 defines ΠΩk and shows how it solves k-set agree-
ment. Section 4 defines ΠΩΥ k. Section 5 provides a central place to show the relation-
ship among all failure detectors in the shared-memory model as captured by Figure 1.
Section 6 summarizes the results in the message-passing model. We conclude the paper
in Section 7. Further results including some k-set agreement algorithms and all correct-
ness proofs are covered by two technical reports [7, 5] on message-passing model and
shared-memory model, respectively.

2 Model

We consider asynchronous shared-memory distributed systems augmented with failure
detectors. Our model is the same as the model in [10], which is based on the models
of [13, 14, 2]. We provide the necessary details of the model below.

We consider a system with n + 1 processes P = {p1, p2, . . . , pn+1} where n ≥ 1.
Let T be the set of global time values, which are non-negative integers. Processes do
not have access to the global time. A failure pattern F is a function from T to 2P ,
such that F (t) is the set of processes that have failed by time t. Failed processes do not
recover, i.e., F (t) ⊆ F (t + 1) for all t ∈ T . Let correct(F) denote the set of correct
processes, those that do not crash in F . A process is faulty if it is not correct. A failure
detector history H is a function from P × T to an output range R, such that H(p, t)
is the output of the failure detector module of process p ∈ P at time t ∈ T . A failure
detector D is a function from each failure pattern to a set of failure detector histories,
representing the possible failure detector outputs under failure pattern F .

Processes communicate with each other by writing to and reading from shared
atomic registers. A deterministic algorithm A using a failure detector D is a collec-
tion of n + 1 deterministic automata, one for each process. Processes execute by taking
steps. In each step, a process p: (a) reads from a shared register to obtain a value, or

writes a value to a shared register, or queries its failure detector module, based on its
current local state; and (b) transitions its current state to a new state, based on its cur-
rent state, the value returned from the read or from the failure detector module, and the
algorithm automaton on p. Each step is completed at one time point t, but the process
may crash in the middle of taking its step. A run of algorithm A with failure detector D
under a failure pattern F is an infinite sequence of steps such that every correct process
takes an infinite number of steps and no faulty process takes any step after it crashes.

We say that a failure detector class C1 is weaker than a failure detector class C2,
if there is a transformation algorithm T such that using any failure detector D2 ∈ C2,
algorithm T implements a failure detector D1 ∈ C1. By implementing D1 we mean
that for any run of algorithm T with failure detector D2 under a failure pattern F , T

generates the outputs of D1 as a distributed variable D1-output such that there exists
failure detector history H ∈ D1(F) and H(p, t) = D1-output(p, t) for all p ∈ P and
all t ∈ T , where D1-output(p, t) is the value of the variable D1-output on p at time
t. If C1 is weaker than C2, we denote it as C1 � C2 and also refer to it as C2 can be
transformed into C1. if C1 � C2 and C2 6� C1, we say that C1 is strictly weaker than C2

and denote it as C1 ≺ C2. If C1 � C2 and C2 � C1, we say that C1 and C2 are equivalent
and denote it as C1 ≡ C2.

In k-set agreement with 1 ≤ k ≤ n, each process proposes a value, and makes an
irrevocable decision on one value. It needs to satisfy the following three properties: (1)
Validity: If a process decides v, then v has been proposed by some process. (2) Uniform
k-Agreement: There are at most k different decision values. (3) Termination: Eventually
all correct processes decide.

Two related failure detector classes are Ωk and Υ . Failure detectors in Ωk output a
subset of P of size at most k, and there is a time after which all processes always output
the same nonempty set, which contains at least one correct processes. Failure detectors
in Υ also output a subset of P , and there is a time after which all processes always
output the same nonempty set, which is not exactly the set of correct processes.

3 Failure Detector ΠΩk

3.1 Specification of ΠΩk

The class of partitioned failure detectors ΠΩk is obtained by applying static par-
titions to Ωk, as explained below. The output of ΠΩk for process p is a tuple
(isLeader, lbound, cid), where isLeader is a boolean value indicating whether this pro-
cess is a leader or not, lbound is a non-negative integer indicating the upper bound on
the number of possible leaders in p’s partitioned component, and cid is a component
ID drawn from an ID set I or is a special value ⊥ 6∈ I. The cid output indicates the
component the process belongs to and could be ⊥ for an initial period before the failure
detector decides on a partition.

For a failure detector output x, we use x.v to denote the field v of x, where v could
be isLeader, lbound, or cid in the case of ΠΩk. We say that a process p is an eventual
leader (under a failure pattern F and a failure detector history H) if p is correct and
there is a time after which the isLeader output on p is always True.

A partition of P is π = {P1, . . . , Ps}, where s ≥ 1 and Pi’s are non-empty
subsets of P such that they do not intersect with one another and their union is P .
For a process p, we use π[p] to denote the partitioned component that contains p.
For a component Pj ⊆ P (under a failure pattern F and a failure detector history
H), we define lbound(Pj) = max{H(p, t).lbound | t ∈ T , p ∈ Pj \ F (t)},2 and
Leaders(Pj) = {p ∈ Pj ∩ correct(F) | ∃t, ∀t′ > t, H(p, t′).isLeader = True}. The
value lbound(Pj) is the maximum lbound value among processes in component Pj ,
while Leaders(Pj) is the set of eventual leaders in Pj .

A failure detector D is in the class ΠΩk if for any failure pattern F and any failure
detector history H ∈ D(F), there exists a partition π = {P1, . . . , Ps} of P , such that
the following properties hold. First, the cid output needs to satisfy these properties:

(ΠC1) The cid outputs on all correct processes eventually always output non-⊥ values.
Formally, ∃t0 ∈ T , ∀p ∈ correct(F), ∀t ≥ t0, H(p, t).cid 6= ⊥.

(ΠC2) The non-⊥ cid outputs distinguish different components. Formally, ∀t1, t2 ∈
T , ∀p1 6∈ F (t1), ∀p2 6∈ F (t2), (H(p1, t1).cid 6= ⊥ ∧ H(p2, t2).cid 6= ⊥) ⇒
((H(p1, t1).cid = H(p2, t2).cid) ⇔ (π[p1] = π[p2])).

Next, the isLeader and lbound outputs satisfy the following set of safety and liveness
properties. The safety property is:

(ΠΩ1) The sum of the maximum lbound outputs in all partitioned components does
not exceed k. Formally,

∑s

j=1 lbound(Pj) ≤ k.

The liveness part specifies that there exists one partitioned component Pj such that:

(ΠΩ2) Eventually lbound outputs by all processes in Pj are the same. Formally,
∃t0 ∈ T , ∀t1, t2 ≥ t0, ∀p1 ∈ Pj \ F (t1), ∀p2 ∈ Pj \ F (t2), H(p1, t1).lbound =
H(p2, t2).lbound.

(ΠΩ3) Eventually the isLeader outputs on any correct process in Pj do not
change. Formally, ∃t0 ∈ T , ∀t > t0, ∀p ∈ Pj \ F (t), H(p, t).isLeader =
H(p, t0).isLeader.

(ΠΩ4) There is at least one eventual leader. Formally, |Leaders(Pj)| ≥ 1.
(ΠΩ5) The number of eventual leaders is eventually bounded by the lbound outputs.

Formally, ∃t0 ∈ T , ∀t ≥ t0, |Leaders(Pj)| ≤ H(p, t).lbound.

We call a component that satisfies the liveness properties (ΠΩ2–5) a live compo-
nent, and other components non-live components. Let ki = lbound(Pi). Intuitively,
each component Pi has a failure detector with the safety properties of Ωki

restricted to
Pi,3 while at least one component Pj also satisfies all liveness properties of Ωkj

. Intu-
itively, this is to guarantee that when running a k-set agreement algorithm with ΠΩk,
each component Pi may decide on at most ki values, so with (ΠΩ1) there are at most
k decisions, while the live component Pj can make progress and decide eventually.

2 As a convention, max ∅ = 0.
3 In [6] we show that a variation of failure detectors that output isLeader and lbound, named
Ω′′

k , is equivalent to Ωk failure detectors.

The strength of ΠΩk is fully characterized by Figure 1. We defer to Section 5 as
a central place to study and compare the strength of all proposed failure detectors and
avoid repetitions. We summarize the strength of ΠΩk comparing with Ωk and Υ in the
following theorem.

Theorem 1. The followings hold regarding the strength of ΠΩk. (1) ΠΩ1 ≡ Ω1. (2)
ΠΩk ≺ Ωj for all k ≥ 2, j ≥ 1, and k ≥ j. (3) ΠΩk 6� Ωj and Ωj 6� ΠΩk for all
k ≥ 2 and k < j ≤ n. (4) ΠΩk ≺ ΠΩk−1 for all k ≥ 2. (5) ΠΩk 6� Υ and Υ 6� ΠΩk,
for all k ≥ 2.

The key result is that ΠΩk is incomparable with Υ for all k ≥ 2. Therefore, ΠΩk

is a new class of failure detectors that is strictly weaker than Ωk, but is strong enough
to solve k-set agreement in shared-memory systems with arbitrary failure patterns. It is
the only class known (to our best knowledge) that solves k-set agreement with arbitrary
failure patterns and is strictly weaker than Ωk and is incomparable with Υ .4

3.2 Solving k-set agreement with ΠΩk

The algorithm using ΠΩk to solve k-set agreement is based on an extension of the
k–converge algorithm presented in [21]. The original k–converge algorithm forces
every participant to use the same value of “k”. With ΠΩk failure detectors, we need
processes in each component to try to converge on some decisions, the number of
which is bounded by the lbound output of the failure detector. Therefore we extend
the k–converge algorithm by moving “k” into the parameter of the routine and rename
the routine to converge(). We adjust the specification of converge() as follows.

Routine converge() takes in three parameters: ` is the upper bound on the number
of values can be committed (this parameter corresponds to the “k” in k–converge), p

is the process identifier, and v is the input value of the process. It outputs a pair (c, v ′),
where c is a boolean and v′ is one of the input value. When p outputs (c, v′), we say
that p picks v′, and if c = True, we say that p commits to v′. The routine satisfies the
following properties: (1) C-Termination: Every correct process picks some value. (2)
C-Validity: If a process p picks value v, then some process q invoked converge() with
parameter v. (3) C-Agreement: If a process p commits to a value, then at most `max

values are picked, where `max is the maximum ` that processes pass into converge().
(4) Convergence: If all processes use the same value in the ` parameter (` > 0), and
if there are no more than ` distinct input values, then every process that picks a value
commits. The first two properties are the same as in [21], while the last two properties
are adjusted to accommodate different input values of `. Although the interface and the
specification are changed, the algorithm is exactly the same as in [21], and the proof
only needs some minor adjustment. The algorithm and its proof are included in [5].

Based on the converge() routine, we provide an algorithm to solve k-set agreement
using ΠΩk in Figure 2. The algorithm is straightforward. We use cid output of failure
detectors to isolate each component and make sure only processes in the same com-
ponent could run the same instance of converge() routine. Within a component, only

4 The Υ k failure detector proposed in [10] only solves k-set agreement in systems with at most
k failures.

Shared variables:
Register D, initially⊥
converge() instances: converge[][]

Output of failure detector ΠΩk on process pi:
isLeaderi, lboundi , cidi

Code for process pi :
1 v ← the input value of pi

2 repeat
3 cid← cidi

4 until cid 6= ⊥
5 r ← 0
6 repeat
7 c← False
8 if isLeaderi = True then
9 r ← r + 1
10 (c, v)← converge[cid][r](lboundi, i, v)
11 if c = True then
12 D ← v; return (D)
13 until D 6= ⊥
14 return (D)

Fig. 2. k-set agreement algorithm using ΠΩk

those processes with isLeader output being True can run converge() instances. Each
converge() instance only uses the output of the previous converge() instance as the
input, which is important to guarantee the safety of the algorithm. In any converge()
instance if some process p commits to a value v, then p writes v to a shared variable
D and decides on v, and eventually all correct processes will see a non-⊥ D value and
decide. The following theorem summarizes the correctness of the algorithm.

Theorem 2. Algorithm in Figure 2 solves k-set agreement using failure detectors in
ΠΩk, for any k ≥ 1.

Proof. It’s obvious that k-set Validity holds.
For Uniform k-Agreement, we only need to consider decisions made in line 12,

since decisions made in line 14 do not generate new decision values. Consider every
component Pi. If some process decides in line 12, we consider the earliest such deci-
sion, say by a process p ∈ Pi. Process p decides v because it commits to v in an instance
converge[cid][r](). By the C-Agreement property of converge(), at most `max values
can be picked in this converge[cid][r]() instance, where `max is the maximum lbound
values in the input of this instance. Since the algorithm guarantees for any r′ > r, in-
stances converge[cid][r′]() only uses the values picked in instance converge[cid][r](),
we know that there are at most `max values can be decided in line 12 by processes in
component Pi. By definition, `max ≤ lbound(Pi). Then, by property (ΠΩ1), there are
at most k values that can be decided. So Uniform k-Agreement holds.

For k-set Termination, first by property (ΠC2) all correct processes eventually exit
the loop in lines 2–4. In the live component Pj that satisfies (ΠΩ2–5), eventually there
is at least one correct process and at most ` processes in Pj invoking converge(),
where ` is the eventually converged lbound output value. Moreover, all these processes
invoke converge() with the same first parameter value `. Thus, the C-Termination and
Convergence properties guarantee that all correct processes in Pj eventually commit to

some value in some converge() instance. Therefore, eventually D is written. Once D

is written, all correct processes eventually decide. 2

4 Failure Detector ΠΩΥ k

After defining ΠΩk, our next step is to find a mixture of ΠΩk and Υ such that the
new failure detectors are weaker than both and are still strong enough to solve n-set
agreement. Since we know that ΠΩk and Υ are not comparable, it immediately means
that the new failure detectors are strictly weaker than both ΠΩk and Υ . This leads us to
the discovery of failure detectors ΠΩΥ k.

The output of ΠΩΥ k for process p is a tuple (S, lbound, cid), where S is a subset
of P that informally matches the output of Υ , and lbound and cid outputs have the
same value range and same informal meaning as the ones in ΠΩk. For a component Pj ,
let correct(Pj) = correct(F) ∩ Pj , the set of correct processes in Pj (under a failure
pattern F).

A failure detector D is in the class ΠΩΥ k if for any failure pattern F and any failure
detector history H ∈ D(F), there exists a partition π = {P1, . . . , Ps} of P , such that
the following properties hold. The cid properties and safety properties are the same as
ΠΩk, namely (ΠC1), (ΠC2), and (ΠΩ1). The liveness part specifies that there exists
one partitioned component Pj such that (ΠΩ2) of ΠΩk and the following property
hold:

(ΠΥ1) Pj contains at least one correct process, and eventually all correct processes
in Pj output the same S ⊆ Pj such that S is not the set of correct processes
in Pj and either S 6= ∅ or the number of correct processes is bounded by
the eventual lbound output. Formally, correct(Pj) 6= ∅ ∧ ∃S0 ⊆ Pj , S0 6=
correct(Pj), ∃t0, (∀p ∈ correct(Pj), ∀t > t0, (H(p, t).S = S0 ∧ (S0 6= ∅ ∨
|correct(Pj)| ≤ H(p, t).lbound))).

We call a component that satisfies the liveness properties (ΠΩ2) and (ΠΥ1) a live
component, and other components non-live components. Intuitively, in the live compo-
nent Pj , the S output behaves almost the same as the output of Υ , except that S may
eventually stabilize to ∅, in which case the number of correct processes in Pj must be
bounded by the eventual lbound output. This mixture is important in making ΠΩΥ k

strictly weaker than Υ . In particular, ΠΩΥ 0 is well-defined since lbound outputs could
always be 0. However, in ΠΩΥ 0 the above mixture of requirements on S and on lbound
is gone, and we will show that ΠΩΥ 0 is equivalent to Υ (the proof is not straightforward
though).

The follow theorem summarizes the results on the strength of ΠΩΥ k comparing
with ΠΩk and Υ , which is captured in Figure 1 and will be studied in Section 5. The
key result is that ΠΩΥ k is strictly weaker than Υ for any k ≥ 1, and as k increases, its
strength is strictly weakened. Therefore, we found a new family of n classes of failure
detectors that are all strictly weaker than Υ . It not only shows that Υ is not the weakest
failure detector ever, but also suggests that there are still quite some room under Υ to fit
in non-trivial failure detectors.

Theorem 3. The followings hold regarding the strength of ΠΩΥ k. (1) ΠΩΥ 0 ≡ Υ . (2)
ΠΩΥ k ≺ ΠΩΥ k−1 for all k ≥ 1. (3) ΠΩj 6� ΠΩΥ k for all 1 ≤ k ≤ n and 1 ≤ j ≤ n.
(4) ΠΩΥ k � ΠΩj for all k ≥ j ≥ 1. (5) ΠΩΥ k 6� ΠΩj for all j ≥ k + 2 and k ≥ 1.

The algorithm that solves n-set agreement using ΠΩΥ k is based on the algorithm
using Υ in [10], with modifications to (a) isolate the algorithm for each individual com-
ponent; (b) obtain the size of each component; and (c) deal with the case that S = ∅ in
the live component. The full algorithm and its proof are included in [5].

5 Comparing failure detectors

This section is the central place to show all the results captured in Figure 1 and stated
in Theorems 1 and 3. Since Υ is already a very weak failure detector, one can imagine
that it would be a subtle and delicate task to show that under Υ there are still such
structure in which a series of failure detectors have various strengths. Indeed, besides
those obvious transformations, other results on possible or impossible transformations
are quite delicate and require subtle techniques to prove them (and a few of them are still
open). These proofs really show the subtle relationship between the failure detectors.
Unfortunately, due to the space constraint, we can only include the full proofs in [5]. To
compensate, we provide intuitive ideas and proof outlines for some key proofs.

5.1 Possible transformations

For possible transformations, we need to prove all the arrows in Figure 1. Most trans-
formations are obvious from the failure detector definitions.

Lemma 1. (1) ΠΩk � ΠΩk−1; (2) ΠΩΥ k � ΠΩΥ k−1; (3) ΠΩk � Ωk; (4) ΠΩΥ k �
Υ .

Proof. The first two parts hold directly by the definition of failure detectors. The last
two parts hold because we can treat Ωk and Υ as a special case of partitioned failure
detectors with only a single component P . 2

Lemma 2. ΠΩΥ k � ΠΩk for all k ≥ 1.

Proof Outline. For the transformation from ΠΩk to ΠΩΥ k, the idea is for each com-
ponent to come up with the set of at most lbound leaders, then the S output of ΠΩΥ k

is the complement of the leader set with respect to the component, and lbound and
cid outputs of ΠΩΥ k are copied from ΠΩk. The key is that for a live component, the
leader set stabilizes and contains at least one correct process. Therefore, its complement
S cannot be the set of correct processes. Moreover, if S = ∅, it means that all processes
in the component are eventual leaders, in which case the lbound must be at least the
number of correct processes in the component. The transformation still needs to solve
the problem of estimating the membership of each component, which is addressed in
the full transformation algorithm and its proof in [5]. 2

Lemma 3. (1) Ω1 � ΠΩ1; (2) Υ � ΠΩΥ 0

The transformations for the above lemma are not straigthforward [5].

5.2 Impossible transformations

Proving the impossible transformations is the critical step to establish the results of this
paper. For these proofs, it is sometimes convenient to view it as an adversary trying
to defeat any possible transformations. The adversary can (a) see the current output
generated by a transformation; (b) manipulate the outputs of the failure detector to be
transformed; (c) schedule the executions of processes; and (d) crash processes to prevent
the transformation from succeeding.

Among all the impossible transformations captured by the non-existent directed
path in Figure 1, several of them are critical ones, meaning that their impossibility
implies the rest impossible transformations. This is based on the fact that if we show
that C1 6� C2, then for all C3 � C1 and all C4 � C2, we have C3 6� C4. The following
lemma shows one such critical impossible transformations.

Lemma 4. ΠΩ2 cannot be transformed into Υ , i.e., ΠΩ2 6� Υ .

Proof Outline. We know that Ωn can be transformed to Υ easily by taking the comple-
ment of the Ωn output. The reason that this transformation cannot be adapted to ΠΩk

is that ΠΩk allows a live component Pj in which all processes are eventual leaders and
lbound stabilizes to |Pj |. If we take the complement of the leader set in Pj with respect
to Pj we get an empty set. The proof explores this basic idea.

In the case of ΠΩ2, suppose for a contradiction that there is a transformation T

from ΠΩ2 to Υ . The adversary constructs a run in which the ΠΩ2 has a partition
π = {P1, P2}, where P1 = {p}. It sets lbound of every process to 1 and p’s isLeader
always to True, making P1 a live component of ΠΩ2. It will manipulate the isLeader
outputs for processes in P2 to create a contradiction. Whenever the S output of Υ in P

stabilizes to some subset Si, the adversary suppresses all processes in P \ Si (i.e., pro-
hibit these processes from taking any steps) for long enough time to force T to stabilize
the S output to a different set Si+1 6= Si, because Si appears to be the exact set of
correct processes. Once T changes the S output, the adversary releases the suppressed
processes so that they take some steps, and then it repeats the procedure for Si+1, and
so on. The adversary can keep doing so because P \Si contains either p or some process
in P2, and thus it can always set isLeader of some process in P \ Si to True without
violating the ΠΩ2 requirement. The result is that the adversary forces T into an infinite
run in which the S output never stabilizes, a contradiction. 2

Lemma 4 implies that for all ΠΩk with k ≥ 2, ΠΩk cannot be transformed into
Υ . This is the first key result. Moreover, because ΠΩk can be transformed into ΠΩΥ k,
Lemma 4 further implies that ΠΩΥ k is strictly weaker than Υ , the second key result of
the paper. Next lemma shows another key result of the paper.

Lemma 5. Υ cannot be transformed into ΠΩn when n ≥ 2.

Proof Outline. Suppose there is a transformation T . If the partition of ΠΩn generated
by transformation T contains only a single component, then the proof is the same as
proving Υ cannot be transformed into Ωn in [10]. If the partition of ΠΩn has at least
two components, let P1 be one of the components. The adversary first sets the Υ output
to P \ P1, and then repeatedly suppress the leader processes in all components that

are potentially live components for ΠΩn (these are called quasi-live components in the
proofs), the purpose of which is to construct an infinite run in which there is no live
component. The only way the transformation can counter this measure is by setting
the lbound outputs of processes in P1 to |P1|. But the adversary can counter this again
by crashing all processes in P1, setting Υ output to P1, and re-apply the suppression
technique. The result is a run in which no live component exists. The key is that the
adversary need to wait until the lbound output on P1 is at least the size of a component
to crash the component. This guarantees that the transformation cannot set lbound on
P \ P1 to |P \ P1| to defeat the adversary. 2

Lemmata 4 and 5 establish that Υ and ΠΩk with k ≥ 2 are not comparable. Together
with the possible transformations of Lemma 2, they immediately imply that ΠΩΥ k is
strictly weaker than both Υ and ΠΩk for any k ≥ 2.

Next lemma summarizes all other critical impossible transformations proven so far.
The proofs to these results are technically involved and can be found in [5].

Lemma 6. The following results hold: (1) Ωk 6� ΠΩk−1 for any k ≥ 2. (2) ΠΩΥ k 6�
ΠΩΥ k−1 for any k ≥ 1. (3) ΠΩk+1 6� ΠΩΥ k−1 for any k ≥ 2.

In conclusion, Theorem 1 is implied by Lemma 1(1)(3), Lemma 3(1), Lemma 4,
Lemma 5 and Lemma 6(1). Theorem 3 is implied by Lemma 1(2)(4), Lemma 3(2) and
Lemma 6(2)(3).

There are still an open problem left before we can completely characterize all re-
lationships in Figure 1. It is whether ΠΩk can be transformed into ΠΩΥ k−1 for any
k ≥ 2. We conjecture that this transformation is impossible. If so, Figure 1 is indeed a
full characterization of all relationships.

6 Results in the Message-Passing Model

Partition approach can also be applied in the message-passing model to define weaker
failure detectors for k-set agreement. We briefly summarize some of the results we
obtained in the message-passing model. The complete results are included in [7].

In the message-passing model, it is shown in [17] that besides Ωk a majority of
correct processes is required to solve k-set agreement. The majority requirement can be
generalized to the class of quorum failure detectors Σ defined in [8]: a failure detector in
Σ outputs a set of processes called quorum such that: (Σ1) any two quorums intersect;
and (Σ2) eventually all quorums contain only correct processes. Thus, we applied the
partition approach to the class of failure detectors Ωk × Σ to define weaker failure
detectors.5

We first applies static partitions to Ωk ×Σ and define Πk, which is similar to ΠΩk

but replacing the cid output with the quorum output. More specifically, the output of
a failure detector D in Πk for process p is a tuple (isLeader, lbound, Quorum), where
isLeader is a Boolean value indicating whether this process is a leader, lbound is a
non-negative integer indicating the upper bound on the number of possible leaders in

5 Given two classes of failure detectors C1 and C2, class C1 ×C2 is the cross-product of the two,
i.e., C1 × C2 = {(D1,D2) | D1 ∈ C1,D2 ∈ C2}.

ΠS
1

Π2

Π1

Ωk × Σ

Πk

ΠS

k

Πk−1

Ωk−1 × Σ

Ω2 × Σ

Ω1 × Σ

ΠS

k−1

ΠS
2

Fig. 3. Relationship diagram for failure detectors in the message-passing model. All failure de-
tector classes in the diagram can be used to solve k-set agreement (n ≥ 2k − 2 is required to
show that transformations from Ωk × Σ to ΠS

k−1 and stronger classes are impossible).

p’s partitioned component, and Quorum ⊆ P . A failure detector D is in the class Πk

if for any failure pattern F and any failure detector history H ∈ D(F), there exists a
partition π = {P1, . . . , Ps} of P , such that H satisfies the following set of safety and
liveness properties. The safety properties are (ΠΩ1) as for ΠΩk and the following two
properties related to the quorum outputs:

(ΠΣ1) The quorum output of a process p is always contained within p’s partitioned
component. Formally, ∀t ∈ T , ∀p 6∈ F (t), H(p, t).Quorum ⊆ π[p].

(ΠΣ2) The quorum outputs in the same partitioned component always intersect.
Formally, ∀t1, t2 ∈ T , ∀p1 6∈ F (t1), ∀p2 6∈ F (t2), π[p1] = π[p2] ⇒
H(p1, t1).Quorum ∩ H(p2, t2).Quorum 6= ∅.

The liveness part specifies that there exists one partitioned component Pj such that the
properties (ΠΩ2–5) of ΠΩk hold plus the following:

(ΠΣ3) Eventually the quorum outputs by all processes in Pj contain only correct pro-
cesses. Formally ∃t0 ∈ T , ∀t ≥ t0, ∀p ∈ Pj\F (t), H(p, t).Quorum ⊆ correct(F).

From the definition, we can see that Πk follows the partition approach and is a
static partitioning of Ωk × Σ: each component Pi has a failure detector with all the
safety properties of Ωki

× Σ resticted to Pi where ki = lbound(Pi) and
∑

ki ≤ k,
while at least one component Pj also satisfies all liveness properties of Ωkj

× Σ.
Next we further weaken Πk by allowing dynamic splitting of components during

the run, which leads to the definition of ΠS
k . Failure detectors in ΠS

k output a tuple
(isLeader, lbound, Quorum, cid). Informally, a failure detector in ΠS

k allows partitioned
components to further split during the run, but it uses cid to differenciate different com-
ponents and requires the quorum outputs in a component after the splitting intersects
with all quorum outputs before the splitting. The formal definition is included in [7].

With the new families of failure detectors {Πz}1≤z≤k, and {ΠS
z }1≤z≤k, we com-

pare their strengths with {Ωz × Σ}1≤z≤k. Based on a siginificant amount of proof
work, we summarize their relationship with a nice lattice structure shown in Figure 3.
Several important results are summarized by the lattice. First, as we expected Πk weak-
ens Ωk ×Σ,6 and ΠS

k further weakens Πk for all k > 1. Second, even failure detectors
in Π2 with just two components is not strong enough to be transformed into Ωk × Σ,
and even failure detectors in ΠS

2 with only one dynamic split is not strong enough to be
transformed into Πk. This shows that partitioning and dynamic splitting are indeed ef-
ficient techniques that weaken failure detectors. Third, for all z ≥ 2, none of the classes
Ωz ×Σ, Πz, and ΠS

z can be transformed into Ωz−1×Σ, Πz−1, or ΠS
z−1. In fact, using

a result in [17] we further show that Ωz×Σ, Πz, and ΠS
z are not strong enough to solve

(z − 1)-set agreement. In [7], we further show that the lattice structure in Figure 3 still
holds (under certain mild assumptions) even if we assume that a majority of processes
are correct in the system model.

Finally, we design a new algorithm in the message-passing model that solves k-set
agreement using ΠS

k . The algorithm is based on the Paxos algorithm structure [15],
but has significant new additions with much more complicated proofs to deal with the
subtleties introduced by dynamic splittings of partitioned failure detectors.

7 Concluding Remarks

In [5] we further demonstrate the partition approach by defining a new failure detector
ΠΥ , which is the result of applying the approach directly to Υ . We show that ΠΥ is
enough to solve n-set agreement but is strictly weaker than Υ . ΠΥ is stronger than
ΠΩΥ n−1 but is incomparable with ΠΩΥ k for k ≤ n − 2.

We have shown that the partition approach is effective in weakening a number of
failure detectors for k-set agreement. However, the partition approach proposed is still
an informal method, and sometimes it requires ad-hoc adjustments. One future direc-
tion is to see how the approach and the partitioned failure detectors can be formally
treated. In particular, it would be interesting to see if one could formally define a gen-
eral class of partitioned failure detectors and define the weakest failure detectors among
all partitioned failure detectors for k-set agreement.

The discovery of failure detectors even weaker than Υ may suggest that the con-
jecture made in [10] that n-set agreement is the minimum decision task in terms of
minimum information required might not be true. This is another research direction to
see if there is any other decision task strictly weaker than n-set agreement in terms of
failure information needed to solve the problem.

References

1. E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilient asynchronous
computations. In Proceedings of the 25th ACM Symposium on Theory of Computing, pages
91–100. ACM Press, May 1993.

6 Actually, Πk weakens Σ in all cases, and weakens Ωk in most cases.

2. T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving con-
sensus. Journal of the ACM, 43(4):685–722, July 1996.

3. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225–267, Mar. 1996.

4. S. Chaudhuri. More choices allow more faults: Set consensus problems in totally asyn-
chronous systems. Information and Computation, 105(1):132–158, July 1993.

5. W. Chen, Y. Chen, and J. Zhang. On failure detectors weaker than ever. Technical Report
TR-2007-50, Microsoft Research, May 2007.

6. W. Chen, J. Zhang, Y. Chen, and X. Liu. Failure detectors and extended Paxos for k-set
agreement. Technical Report TR-2007-48, Microsoft Research, May 2007.

7. W. Chen, J. Zhang, Y. Chen, and X. Liu. Partition approach to failure detectors for k-set
agreement. Technical Report TR-2007-49, Microsoft Research, May 2007.

8. C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V. Hadzilacos, P. Kouznetsov, and S. Toueg.
The weakest failure detectors to solve certain fundamental problems in distributed comput-
ing. In Proceedings of the 23rd ACM Symposium on Principles of Distributed Computing,
pages 338–346, July 2004.

9. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374–382, Apr. 1985.

10. R. Guerraoui, M. Herlihy, P. Kouznetsov, N. Lynch, and C. Newport. On the weakest failure
detector ever. In Proceedings of the 26th ACM Symposium on Principles of Distributed
Computing, Aug. 2007.

11. M. Herlihy and L. D. Penso. Tight bounds for k-set agreement with limited scope accuracy
failure detectors. Distributed Computing, 18(2):157–166, 2005.

12. M. Herlihy and N. Shavit. The topological structure of asynchronous computability. Journal
of the ACM, 46(6):858–923, 1999.

13. M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Trans. Prog. Lang. Syst., 12(3):463–492, July 1990.

14. P. Jayanti. Robust wait-free hierarchies. J. ACM, 44(4):592–614, 1997.
15. L. Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133–

169, 1998.
16. A. Mostefaoui, S. Rajsbaum, and M. Raynal. The combined power of conditions and failure

detectors to solve asynchronous set agreement. In Proceedings of the 24th ACM Symposium
on Principles of Distributed Computing, pages 179–188, July 2005.

17. A. Mostefaoui, S. Rajsbaum, M. Raynal, and C. Travers. Irreducibility and additivity of set
agreement-oriented failure detector classes. In Proceedings of the 25th ACM Symposium on
Principles of Distributed Computing, pages 153–162, July 2006.

18. A. Mostefaoui and M. Raynal. k-set agreement with limited accuracy failure detectors. In
Proceedings of the 19th ACM Symposium on Principles of Distributed Computing, pages
143–152, July 2000.

19. M. Raynal and C. Travers. In search of the holy grail: Looking for the weakest failure detec-
tor for wait-free set agreement (Invited talk). In Proc. 10th Int’l Conference On Principles
Of Distributed Systems (OPODIS’06), pages 1–17, Dec. 2006.

20. M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology of public
knowledge. SIAM Journal on Computing, 29(5):1449–1483, 2000.

21. J. Yang, G. Neiger, and E. Gafni. Structured derivations of consensus algorithms for failure
detectors. In Proceedings of the 17th ACM Symposium on Principles of Distributed Comput-
ing, pages 297–306, June 1998.

