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Abstract 
A new statistical confidence measure, Context Constrained-
Generalized Posterior probability (CC-GPP), is proposed for 
verifying phone transcriptions in speech databases. Different 
from generalized posterior probability (GPP), CC-GPP is 
computed by considering string hypotheses that bear a 
focused phone with partially matched left and right contexts. 
Parameters used for CC-GPP include context window length, 
a minimal number of matched context phones, and 
verification thresholds. They are determined by minimizing 
verification errors in a development set. Evaluated on a test 
set of 500 sentences that consist of 2.1% phone errors, CC-
GPP achieves 99.6% accuracy and 78.7% recall when 90% of 
the phones are accepted.   
Index Terms: Context Constrained pattern, posterior 
probability, CC-GPP, confidence measure 

1. Introduction 
Large, well-annotated speech corpora have become almost 
indispensable for speech research and product/service 
development. Take the concatenation-based Text-to-Speech 
(TTS) synthesis as an example [1]. The quality of the 
synthesized speech depends on the accuracy of annotated 
phonetic labels and corresponding contexts for selecting  
good acoustic units from a pre-recorded corpus. However,  
annotation of a large corpus usually requires extensive 
manual work, which can be time-consuming, costly, and 
remains prone to human errors. Recourse to automatic or 
semiautomatic annotation of speech data is therefore desirable, 
such as  forced recognition (forced alignment). These 
techniques are more efficient than human checking but 
annotation errors can still be made for the following reasons: 
• Reading errors, or orthographic pronunciation errors, 

occur; 
• Incomplete lists of all possible pronunciations of a word 

in the lexicon and letter-to-sound errors for out-of-
vocabulary words may occur; 

• Idiosyncratic pronunciations of individual speakers 
cause inaccuracies. 
Confidence measures are useful for verifying speech 

transcriptions by assessing the reliability of a focused unit, 
e.g., word or phone. Various approaches for measuring  
confidence of speech transcription have been attempted 
[3][4][5] . They can be roughly classified into three categories: 
i) feature based; ii) explicit model based; and, iii) posterior 
probability based. Feature-based approaches try to assess the 
confidence based on selected features (e.g., word duration, 
part-of-speech, acoustic and language model back-off, word 
graph density, or the like) using trained classifiers. Explicit 
model-based approaches employ a candidate class model with 

competing models (e.g., an anti-model or a filler model) and a 
likelihood ratio test is applied. The posterior probability-
based approach tries to estimate the posterior probabilities of 
a recognized entity given all acoustic observations [2].  

In this study we propose a new confidence measure, 
Context Constrained-Generalized Posterior Probability (CC-
GPP), for verifying phone transcriptions in speech databases.  
A flexible but cogent, context constrained pattern, is 
incorporated in  computing CC-GPP. Tested on an English 
TTS corpus, we show that confidence and robustness against 
incorrect phone boundaries are improved as compared to the 
standard GPP.  

The rest of the paper is organized as follows. In section 2 
we review briefly the Generalized Posterior Probability (GPP). 
In section 3, CC-GPP is proposed. In section 4, CC-GPP is 
used in verifying phone transcriptions. In section 5 we present 
our experimental results. In section 6 a conclusions are drawn. 

2. Generalized Posterior Probability 
Generalized posterior probability (GPP) is a probabilistic 
confidence measure for verifying recognized (hypothesized) 
entities at a subword, word or string level [2]. It was applied 
to utterance verification under various testing conditions, e.g., 
[6][7]. GPP at word level assesses the reliability of a focused 
word by “counting” its reappearances in the word graph and 
weighting the corresponding acoustic and language model 
likelihoods exponentially and then normalizing the weighted 
reappearances by the total acoustic probability. Word level 
GPP is defined as 
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where the triple [w; s, t] is the focused word w with its 
starting time s and ending time t; x1T is the whole sequence of 
acoustic observations; N is the number of words of a string in 
the graph; α and β are the exponential weights for the acoustic 
and language model likelihoods, respectively. P(x1T), the 
acoustic probability of all observations, can be computed by 
summing the likelihoods that are similarly weighted as in the 
numerator, of all paths in a word graph.  

3. Context Constrained-Generalized 
Posterior Probability (CC-GPP) 

3.1. Overview 
A string hypothesis is an ordered sequence of recognized 
entities, e.g., phones or words. Let R represent the search 
space, which includes all possible string hypotheses for a 
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given sequence of acoustic observations x1T. In practice, the 
search space R is usually reduced to a pruned space like a 
decoded word graph. H, a subset of R, contains all string 
hypotheses that contain the focused word “w” with a given 
time range of starting and ending points. The posterior 
probability of “w” can be obtained in Equation (2), i.e., the 
quotient of the sum of the probabilities of string hypotheses in 
H divided by the sum of probabilities of  string hypotheses in 
R.  Therefore, finding the right hypothesis subset H of R is a 
critical step in computing posterior probability P(w|x1T) for 
verification.  
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In standard GPP computation, the correct hypotheses set 
H for [w; s, t], defined in equation (1), is obtained by finding 
every string hypothesis that contains the focused entity “w” 
and intersects with the specified time interval [s, t]. This 
method selects the correct hypothesis only based on the 
focused entity, which may cause problems when the start/end 
time of the focused entity is incorrect or the reappearance of a 
competing word grows up when the graph gets rich. 

To avoid these problems, we propose a context 
constrained pattern as a template to sift out the string 
hypotheses that carry information of the decoded entity and 
its contexts for H. Different from the standard GPP, the 
context constrained pattern selects a string hypothesis based 
upon not only the focused entity, but also the partially 
matched, left and right contexts. The advantages are: 1) the 
tolerance to time boundary variation is improved when the 
string hypothesis is evaluated on a wider context window, 
hence its time range; 2) confidence is enhanced because a 
string hypothesis bearing the focused entity along with its 
neighboring, partially matched contexts is more reliable than 
that with the focused entity alone. The GPP calculated upon 
H thus becomes the Context Constrained Generalized 
Posterior Probability (CC-GPP).  

3.2. Context constrained pattern 
Here we use word as the decoded entity to demonstrate the 
CC-GPP approach, which is readily applicable to other entity 
levels, such as phone, or subword.  

Let ∑ be a finite word vocabulary, and let *∑ be the set 
of all strings over ∑ . Denote |v| the length of a string v. String 

*
1 pv v v= ∈∑L is called a substring of string *

1 nh h h= ∈∑L if 

there exists 1 ( 1)i n p≤ ≤ − + such that 1j i jv h + −= for 1 j p≤ ≤ . 
e.g.: “w3w4w5” is a substring of “w1w6w3w4w5w8w7”. 
Definition of Context Constrained Pattern: A context 
constrained pattern is a triple [ ; ; ]k k L k k Lw w w w m− +L L , where 

kw ∈∑ is the focused word, *
k L k k Lw w w− + ∈∑L L is a word 

string covering the L context words to its left and right, 
respectively, m is a non-negative integer ( 2m L≤ ), the 
minimal matched word number among the 2L context words. 
A context constraint pattern [ ; ; ]k k L k k Lw w w w m− +L L  matches a 

string hypothesis *h∈∑ if a substring v of h can be made 
from k L k k Lw w w− +L L with (2L-m) or less substitutions among 
the 2L context words of wk. In other words, more than (m+1) 
words, including the wk, in the substring v are the same as the 
corresponding (m+1) words in k L k k Lw w w− +L L . 

To illustrate this we use Figure 1, a string hypothesis that 
matches [wk;wk-3wk-2wk-1wkwk+1wk+2wk+3;3] satisfies two 

conditions: 1) the focused word wk is matched; 2) at least 
three  context words, which can be either left or right 
contexts , need to be matched at the correct context positions.  

For example: [w4;w1w2w3ww44w5w6w7;3] matches 
“w1w6w3w4w9w8w7”, but does not match “w1w3w2  ww44w5w8w6”, 
whereas, [w4;w1w2w3w4w5w8w7;3] will match 
“w1w3w2w4w5w8w6”.  

 

 
Figure 1:  Illustration of context constrained pattern, where * 
is a “don’t care” symbol, which can match any word. 

The context constrained pattern incorporates the 
contextual information in a constrained but still flexible way. 
On the one hand, altogether 2L context words before and after 
the focused center word are considered; on the other hand, 
only partial, not fully matched 2L context words are required. 
The matching template is intentionally designed with some 
“don’t cares” to relax the context constraint. 

3.3. Context Constrained GPP 

All string hypotheses that match [ ; ; ]k k L k k Lw w w w m− +L L  forms 
the hypothesis set H, denoted as ([ ; ; ])k k L k k LH w w w w m− +L L . 
The Context Constrained-Generalized Posterior Probability 
(CC-GPP) of wk is the generalized posterior probability sum 
of all the string hypotheses in ([ ; ; ])k k L k k LH w w w w m− +L L .  
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where x1T is the whole sequence of acoustic observations, α 
and β are the exponential weights for the acoustic and 
language model likelihoods, respectively. 

The Context Constrained GPP calculation is similar to 
that in [6]. The reduced search space, the time relaxation 
registration, and the weighted acoustic and language model 
likelihood are handled as follows. 

• A decoded hypotheses graph is served as the reduced 
search space. 

• It is desirable to relax the time registrations in finding 
out all matched string hypotheses. If a substring of h 
that matches [ ; ; ]k k L k k Lw w w w m− +L L exists and intersects 
the time interval [sk-L, tk+L], the string hypothesis is 
included in CC-GPP calculation. 

• The acoustic and language model likelihood weightings 
are adjusted to prevent the posterior probability from 
being dominated by just a few high likelihood strings, 
and to accommodate the modeling discrepancies in the 
practical implementations. 

3.4. Advantages of CC-GPP 
The main idea in the proposed CC-GPP is that a context 
constrained pattern template is used to select appropriate 
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string hypotheses.  Not only the focused entity, but the 
partially matched contexts to its left and right are considered. 
The advantages of CC-GPP are on two aspects: 
discrimination against competing words and robustness 
against incorrect given time boundaries.  

3.4.1. Discrimination against competing words 

Competing words in a graph usually weaken the confidence 
of GPP, especially for a large graph. A good confidence 
measure should suppress the competing words to improve 
correct verification of the true words. A string hypothesis 
bearing a competing word has less possibility of containing 
partially matched context than it does of bearing the true 
word. So, it is more possible that a context constrained 
pattern template will sift out string hypotheses that bear the 
true word as a center entity, while rejecting those hypotheses 
bearing the competing word as the center. As a result, 
hypotheses bearing a competing word will be less likely to be 
included in CC-GPP calculation. Therefore, the confidence of 
CC-GPP is enhanced over that of GPP.  

3.4.2. Robustness against incorrect boundaries 

Given a speech transcription containing substitution, insertion, 
and deletion errors, it is inevitable that incorrect phone 
boundary exists. So, making the confidence measure to be 
robust against incorrect time boundaries is important. Using 
CC-GPP, the desired robustness is improved when evaluating 
a string hypothesis on a wider context, and hence a larger 
time range. In standard GPP, when a focused word [wk; sk, tk] 
is given, the time registration is relaxed to overlap with [sk, tk]. 
However, in CC-GPP, the time registration is further relaxed 
to overlap with [sk-L, tk+L], where 2L+1 is the context window 
length in the CC-GPP calculation. Therefore, the time range 
in CC-GPP calculation is much wider than that in GPP.  

4. Phonetic Transcription Verification 
with Context Constrained-GPP 

The proposed CC-GPP is a general confidence measure for 
verifying the hypothesized entities at phone, syllable or word, 
levels. Here, we test CC-GPP in phone transcription 
verification. 

4.1. Phone verification with CC-GPP 
Phone level CC-GPP is used as the confidence measure to 

assess the reliability of each phone in transcriptions. The 
search space is reduced to a phone graph. As defined in 3.2, 
all phone string hypotheses that match [ ; ; ]k k L k k Lp p p p m− +L L  
are added to the hypothesis set H, i.e., 

([ ; ; ])k k L k k LH p p p p m− +L L . CC-GPP of pk can thus be 
computed by summing up GPP’s of all string hypotheses 
in ([ ; ; ])k k L k k LH p p p p m− +L L . To minimize phone verification 
errors, the optimal context window length (2L+1), the 
minimal number of matched context phone m, and the 
decision threshold T are optimized on a development set. 
With the optimized configuration, the phone level CC-GPP is 
calculated. A phone is accepted when its CC-GPP is higher 
than the threshold T; otherwise, it will be rejected. 

4.2. Data preparation 
The speech corpus for our experiments is an English database, 
recorded by a professional male speaker for constructing a 

TTS system. It consists of 4,273 read utterances and various 
phonetic contexts are covered.  

There are two manual transcriptions of the corpus, initial 
transcription with 10.5% sentence error rate and 0.65% phone 
error rate, and a proofread transcription which is manually 
verified by several transcribers. The proofread transcription is 
served as a correct reference during the phone verification. 

In particular, a development set and a test set, each 
consisting of 500 sentences, are used to evaluate CC-GPP. All 
errors are evenly distributed into the development set and the 
test set, as shown in Table 1. Other than the initial 
transcription and its proofread version, an artificially created 
transcription with substitution errors is generated and used for 
optimizing the parameters of the context constrained pattern. 
The artificial transcription is generated from the proofread 
transcription, by substituting one phone at a time in each 
sentence with all other phones in the set. 

4.3. Phone graph generation 
The whole corpus, with its initial transcription, is used to train 
the speaker dependent acoustic HMMs. We chose 39 acoustic 
features (12MFCC+12ΔMFCC+12ΔΔMFCC+logE+ΔlogE+ 
ΔΔlogE). Four Gaussian components per mixture are used for 
modeling the output probability density function of each state 
of a tied tri-phone. A position dependent phone bigram 
language model is used to generate a rather dense phone 
graphs with a wide-beam in Viterbi search. The phone graph 
density (GD) and graph error rate (GER) and string and phone 
error rates of two initial and artificial, transcriptions, are listed 
in Table 1. 

Table 1: Development set and test set. 
Phone Graph Initial 

Transcription 
Artificial 

Transcription Data Set Phone 
number GD GER% SER% PER% SER% PER% 

Development Set 25,794 9,450 1.73 44.8 2.12 100 1.51 
Test Set 26,745 9,321 1.66 45.0 1.91 -- -- 

4.4. Evaluation method and Baseline 
Given a decision threshold, each phone in transcription is 
either accepted or rejected according to its CC-GPP. False 
Acceptance Rate (FAR) and False Rejection Rate (FRR) are 
used to evaluate CC-GPP performance. Equal Error Rate 
(EER) is defined as the point where FAR and FRR are equal. 

Acceptance ratio is defined as the ratio of accepted 
phones to total phones. Recall is the percentage of rejected 
error phones in the total error phones. Accuracy is the 
percentage of correct findings in accepted phones.  

Phone verification using standard phone level GPP is 
applied to the baseline system described  in section 2.  

5. Experimental Results 
In the first experiment, we study various parameters for the 
context constrained pattern on the development set. Then, we 
compare CC-GPP with GPP on the robustness on incorrect 
phone boundaries. In the third experiment, phonetic 
verification using CC-GPP is evaluated on the test set. 

5.1. Optimal context window length and minimal 
number of matched context phones 
In a context constrained pattern, appropriate context window 
length 2L+1 and minimal number of matched context phones 
m are two  parameters to be determined. CC-GPP configured 
with different (2L+1, m) combinations was evaluated on the 
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development set using artificially created substitution errors. 
Under different (2L+1, m) settings, the Equal Error Rate 
(EER) is depicted in Figure 2. It shows that a context window 
length 2L+1=7 and minimal number of matched context 
phones m=3 yield a good EER point. This configuration is 
then used in the following experiments.  

We assessed the confusion between each phone pair (pa, 
pb) defined in Equation (4).  In the top 10 confusable phone 
pairs, which are not symmetrical, as presented in Table 2, the 
confusion rate of all phone pairs is consistently reduced, by 
7%~37%, relatively. This result confirms the CC-GPP 
capability for discriminating competing phones. 

No. of  accepted  that substitued ( ; )
No. of all  that substitued 

b a
a b

b a

p pConfusion p p
p p

=       (4) 

 
Figure 2: EER of CC-GPP with different context window 
length and minimal matched phone number. 

Table 2: Improved Discrimination of CC-GPP over GPP in 
confusable phone pairs. 

Top 10 confusable phone pairs Confusion 
rate ch;t ch;sh th;s aa;ah th;t ae;eh uh;ax m;n s;z d;t 
GPP 0.63 0.54 0.49 0.49 0.42 0.41 0.38 0.43 0.34 0.37 

CC-GPP 0.57 0.34 0.38 0.41 0.39 0.36 0.25 0.23 0.22 0.31 
Relative 
reduction 10% 37% 22% 16% 7% 12% 34% 32% 35% 16% 

5.2. Robustness against Incorrect Boundaries 
This experiment is designed to test the robustness of CC-GPP 
when the given phone boundaries are perturbed. In the 
development set, the correct phone boundaries are perturbed 
by a specified value and corresponding EER is evaluated. As 
shown in Figure 3,  EER of GPP increases rapidly as the 
boundary is perturbed by more than 30ms, while CC-GPP 
maintains its high performance over a broad range of 
perturbation (<300ms). The results show that with a long, 
constrained context window and the requirement of matched 
context positions, the proposed CC-GPP is more relaxed in its 
boundary precision requirement than the standard GPP. 

 
Figure 3: EER of CC-GPP and GPP given perturbed  
incorrect boundary. 

5.3. Performance on test set 
We performed phone verification experiments by using GPP 
and CC-GPP on the test set. The EER of CC-GPP is 15.3%, 
which is better than that of GPP 18.1%, by 15.5%. Recall and 
accuracy at different acceptance ratios are presented in Figure 
4. Using CC-GPP, when 90% of data are accepted, the recall 
and accuracy are 78.7% and 99.6%, respectively. 

Figure 4: Recall and accuracy of CC-GPP and GPP at 
different acceptance ratio. 

6. Conclusions 
A new confidence measure, CC-CPP, is proposed for 
verifying phone errors in transcription. Different from the 
standard GPP where the string hypotheses bearing 
reappearance of the focused center phone are used,  an 
additional constraint of partially matched neighboring 
contexts is imposed. Context window length, minimal 
matched phones, and decision threshold are determined by 
minimizing verification errors in a development set.  
Evaluated on a test set from an English TTS corpus, which 
contains 2.1% phone errors, 99.6% and 78.7% of accuracy 
and recall are obtained, respectively, when 90% phones are 
accepted.  These findings indicate that using CC-GPP for 
verifying phone transcriptions in speech databases can 
provide superior confidence and robustness against incorrect 
phone boundaries as compared to the standard GPP.  Next, we 
will use CC-GPP to bootstrap speech recognition systems. 
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