Inferring Locks for Atomic Sections

Sigmund Cherem *

Department of Computer Science
Cornell University
Ithaca, NY 14853

siggi@cs.cornell.edu

Abstract

Atomic sections are a recent and popular idiom to support the
development of concurrent programs. Updates performed within
an atomic section should not be visible to other threads until the
atomic section has been executed entirely. Traditionally, atomic
sections are supported through the use of optimistic concurrency,
either using a transactional memory hardware, or an equivalent
software emulation (STM).

This paper explores automatically supporting atomic sections
using pessimistic concurrency. We present a system that combines
compiler and runtime techniques to automatically transform pro-
grams written with atomic sections into programs that only use
locking primitives. To minimize contention in the transformed pro-
grams, our compiler chooses from several lock granularities, using
fine-grain locks whenever it is possible.

This paper formally presents our framework, shows that our
compiler is sound (i.e., it protects all shared locations accessed
within atomic sections), and reports experimental results.

1. Introduction

One of the main problems when developing concurrent software is
to maintain a consistent view of the shared state among all the con-
current threads. For many years programmers have used pessimistic
concurrency to develop these applications. Pessimistic concurrency
consists of blocking the execution of some threads in order to avoid
generating an inconsistent shared state, for instance preventing data
races. However, developing reliable and efficient applications with
pessimistic concurrency is an arduous task. (a) Programmers need
to use fine-grain locks to minimize contention, and ensure that the
used locks are sufficient to eliminate the possibility of a harm-
ful data race. (b) Also programmers need to carefully order their
operations to avoid dead-locks since pessimistic locking does not
lend itself to easy compositionality. Since locks might be present
in both library code as well as client code, reasoning about dead-
locks requires analyzing the composition of library and client code.
(In particular, absence of deadlocks in the library code and in the
client code does not guarantee absence of deadlock in the compo-
sition of the library and client code). Even after mastering all these
challenges, programmers do not always have a guarantee that the
written locks yield the intended program semantics.

In recent years, researchers have adopted the concept of atomic
sections from the Database community as a possible alternative.
Atomic sections allow users to give a high level specification of the
concurrency semantics. A section of code protected by a keyword
atomic in some thread must be executed atomically with respect to
any other atomic section in any other thread. This is, for any pro-
gram execution, there exists some other execution where all atomic

* This work was developed while the author was an intern at MSR.

Trishul Chilimbi

Microsoft Research
One Microsoft Way
Redmond, WA 98052

{trishulc, sumitg}@microsoft.com

Sumit Gulwani

sections are executed in some serial order, and the final state of
both executions is the same. This is commonly referred to as weak
atomicity. These semantics are enforced by the underlying system
without the intervention of the programmer. For programmers this
is a very attractive alternative, since all the difficulties of manual
pessimistic concurrency are abstracted away.

A natural implementation of atomic sections is to use optimistic
concurrency. Via the use of specialized transactional memory hard-
ware (TM) [8, 7], or a software transactional memory (STM) that
emulates such hardware [16, 6, 12]. These systems treat atomic sec-
tions like transactions and allow them to run concurrently. When-
ever a conflict occurs, one of the conflicting transactions is rolled-
back and re-executed. Some systems [15, 4] would prevent conflicts
using locks, but roll-back transactions when a deadlock occurs. An
optimistic system is typically desired when conflicts are rare and
hence rollbacks seldom occur.

However, optimistic concurrency has several disadvantages.
First, supporting rollbacks and detecting conflicts can impose a
considerable amount of runtime overhead. Second, not all atomic
sections can be rolled-back, for example after observable actions
are performed. A well designed pessimistic approach could avoid
all these disadvantages.

This paper presents an automated system to support atomic sec-
tions using pessimistic locking. Our system consists of a compiler
framework and a runtime library. The compiler performs a source to
source transformation that reads programs with atomic sections and
produces new programs that use locks to implement such sections.
The transformed programs can be run with the use of a special lock
runtime library. This approach allows users to run programs writ-
ten with atomic sections without the need of specialized hardware
or an STM.

Our compiler provides several guarantees about the transformed
programs. The generated programs must: (a) satisfy the semantics
specified by the atomic sections, (b) be deadlock free, and (c)
avoid unnecessary thread contention introduced by locks. The last
property is necessary to avoid using trivial locking schemes that
will induce a large runtime overhead, for example, using a single
global lock to protect all atomic sections.

This paper discusses in detail how we generate programs satis-
fying these properties. First, to satisfy the atomic semantics we for-
mally show that locks introduced by the compiler protect all shared
objects used inside an atomic section. Second, to enforce the lack
of deadlocks we borrow a locking protocol from the database com-
munity. Third, to reduce contention we introduce locks of multiple
granularities, and we attempt to use fine-grained locks as much as
possible.

The following summarizes our contributions:

e We introduce a set of formal definitions to reason about locks.
We define the notion of abstract lock schemes, that allows us

1: void move (list* from, list* to) {
2 atomic { acquire(to.head) ; acquireAll({to.head, from.head, R});
3 elem* x = to->head; elem* x = to->head; elem*x x = to->head;
4: acquire(from.head) ;
5: elem* y = from->head; elem* y = from->head; elem* y = from->head;
6: from->head = null; from->head = null; from->head = null;
7 if (x == null) { if (x == null) { if (x == null) {
8: to->head = y; to->head = y; to->head = y;
9: } else { } else { } else {
10: acquire(x.next) ;
11: while(x->next != null) while(x->next != null) while(x->next != null)
12: X = x->next; X = x->next; X = x->next;
13: x->next = y; x->next = y; x->next = y;
14: } } }
15: } releaseAll () ; releaseAll) ;
16: }
(@) (b) (©)

Figure 1. Example program: moves list elements between from and to. (a) Original program with atomic section. (b) Fine-grain locking
scheme susceptible to deadlock. (¢) Multi-grain locking scheme avoiding deadlock. R is a coarse lock protecting all elements in the to list.

to represent locks and the relation between locks of different
granularities.

e We present a formal analysis framework to infer locks for an
atomic section, given a lock scheme specification as input.

e We show that our analysis is sound. This is, if at the entry of
an atomic section each thread acquires the locks inferred by
our analysis, then the execution of the program is guaranteed to
respect the weak atomicity semantics.

e We present a runtime library required to support our locks of
multiple granularities.

e We show experimental results for an instance of our framework.
Showing that the analysis scales well to medium size applica-
tions, and yields a performance overhead sometimes competi-
tive to an STM approach.

The rest of this document is organized as follows. Section 2
illustrates the ideas behind our system using several examples.
Section 3 introduces our formalisms for locks and abstract locks
schemes. Section 4 formalizes the analysis framework that in-
fers locks, and discusses how we implemented an instance of this
framework. Section 5 discusses a multi-grain locking runtime li-
brary used to support the transformations enabled by our analysis.
We present our experimental results in Section 6. Finally, we dis-
cuss related work in Section 7 and conclude in Section 8.

2. Example

This section presents two examples to illustrate the features of our
system. The examples use a list data-structure defined in terms of
two datatypes:

typedef struct elem_t {
struct elem_t* next; int* data; } elem;
typedef struct list_t { elem* head; } list;

Atomic sections with locks Figure 1(a) presents a code that
moves elements from one list to another. By the end of the func-
tion, the list from will be empty, and the list to will contain the
concatenation of the to and from lists. The code is wrapped in a
atomic keyword, so the entire body of the function should appear
to execute atomically. The goal of our system is to introduce locks
to enforce the semantics of the atomic section.

A first attempt to write the code using locks would be to acquire
a global lock at the entry of the atomic section, and release it by

the end of the section. Such approach could introduce a lot of con-
tention: no two threads could run the move function concurrently.

A second attempt would be to use fine-grain locks, one lock
for each location accessed within the move function. Figure 1(b)
shows the result of this approach. Before accessing a location we
request a lock to protect it. A fine-grain lock that protects a location
v is acquired by a call to acquire(e), where e is an expression that
evaluates to v. By the end of the atomic section we release all locks.
Unfortunately, this code is susceptible to deadlocks. For example, if
we run two threads, one calling move (11,12) and the other calling
move (12,11). If after the first thread locks 11 .head on line 2, the
second thread locks 12.head on the same line, then both threads
will be blocked in line 4.

Our system uses a third approach, which consist in avoiding
deadlocks by using a locking protocol. The protocol is imple-
mented by acquiring all locks at the entry of the atomic section.
To use the protocol, our compiler needs to estimate what locations
are accessed within the atomic section, and then introduce locks at
the entry of the section to protect each accessed location.

Fine-grain locks can still be used to protect shared locations,
as long as the compiler can determine an expression that protects
the desired location. However, when atomic sections access un-
bounded locations, or when there is no expression in scope to pro-
tect a shared location, our system introduces coarse-grain locks.
Figure 1(c) shows the transformation our system generates for our
example. The acquireAll instruction applies the locking protocol on
the input set of locks. The locks on to.head and from.head are
fine-grain locks. The lock R is a coarse-grain lock used to protect
every element of the to list.

Finding fine-grain locks Our compiler tries to use fine-grain
locks as much as possible. To achieve this goal, the compiler needs
to describe the locations accessed in the atomic sections, but in
terms of expressions that are in scope by the entry of the atomic
block. We use the example in Figure 2 to illustrate how our com-
piler computes these expressions.

We will focus our attention on the shared location pointed by
z in line 10. Note that the expression z is not in scope at the
entry of the section, because z is defined later in line 9. The
compiler performs a backward tracing to deduce what expressions
are equivalent to z at the entry of the section. At line 9 the compiler
determines that z is equivalent to y->data. At line 8 the analysis
notices that a store assignment on x->data is being performed. At
this point the compiler needs to carefully consider if the expression

1: elem* y,x;

2: int* w;

3: -

4: if (...0) o

5: X =y;

6: }

7: atomic { {y->data, w}
8: x->data = w; {y->data, w}
9: int* z = y->data; {y->data}
10: *z = null; {z}

11: }

Figure 2. Analysis example: finding fine-grain protecting locks.

begin traced may be affected by the assignment, which can happen
if x aliases y. In fact x will alias y if the code in line 5 outside
the atomic section is executed. So our compiler must consider both
cases: when x and y are aliases and when they are not. If they were
aliases, x->data will replace the value of y->data, and hence the
location pointed by z in line 10 would be equivalent to w at the
entry of the atomic section. In the other case, when x and y are not
aliases, the assigment in line 8 has no effect on y->data, and thus
y->data would point to the location that z points to in line 10.
Finally, when replacing the atomic section by lock instructions, our
compiler acquires both a lock on y->data and w. This will ensure
that the access on line 10 is always protected by some lock.

During this backward tracing, the compiler bounds the size of
the expressions it collects. When some expression size exceeds the
bound, it is replaced by a coarse-grain lock.

3. Formalizing Locks

This section formalizes our notion of locks. The formalization will
be useful to answer questions about locks and atomic sections. For
example: What shared locations are protected by a lock? Are two
locks protecting a common location? Does a set of locks protect all
shared locations accessed in an atomic section?

After introducing our input language, we will proceed by giving
a definition of concrete locks semantics. We will show how this
formal semantics can be used to answer some of the questions
above. Then we will instantiate our general semantics definition
to give examples of commonly used locks.

In the last part of this section we will introduce the notion of an
abstract lock scheme. Abstract locks are essentially an approxima-
tion of concrete locks that we use to formalize our inference analy-
sis. The formalization will allows us to show that our tool produces
programs that respect the atomic semantics.

3.1 Language

Our input language is presented in Figure 3. The language contains
standard constructs such as heap allocation, standard assignments
and control-flow constructs. The language also includes atomic
sections. Expressions used by the statements include variables, def-
erences, address-of variables, offsets (indicated by a field offset
i € F), allocations, and null values. All values in this language
are locations or null, no pointer arithmetic is allowed. Array deref-
erences and structure dereferences are not distinguished, they are
all modeled using field offsets in F'. Return statements return
x are modeled by an assignment ref; = x, where rety is a spe-
cial variable modeling the return value of f. For simplicity, nested
atomic sections are not allowed. Our output language is the same
as the input language, except that atomic sections are replaced by
two instructions: acquireAll(L), that receives a set of locks L, and
releaseAll, that releases all locks held by a thread.

st € Stmt :: r=ec|xx=¢
if(b) st else st | while(b) st

st; st | atomic{st}

ecE: z| x| &x|z+1i|new(n)|null
flao, ..., an
beB: =y |bVb|bAb|-b

Figure 3. Input Language

3.2 Concrete Lock Semantics

A lock is simply a name [in some domain LNames that implicitly
protects a set of memory locations. We introduce a lock semantics
to make this relation between locks and locations more explicit. We
write the semantics of a lock [using the denotational function in the
domain:

[] : LNames — 2°¢ x Eff

where Loc is the domain of memory locations and Eff = {ro, rw}
is the domain of access effects (reads and writes).

When (P,) = [l] we say that [is a lock that, when acquired,
protects all locations in the set P, but only to allow the accesses
described by e. For example ({v},ro) = [!] then [ensures that v
is protected to be able to read its value, but it is not protected to
update its value.

With this definition, we can distinguish fine-grain and coarse-
grain locks. A fine-grain lock is a lock that protects a single mem-
ory location at all times, formally,

3v. 1] = ({o},-)
A coarse-grain lock is a lock that may protect more than one
memory location.

The domain 2°° and the subset relation C form a lattice. We
also define a simple two point lattice (Eff, C) for the set of effects,
where the read-write effect is the top element (ro T rw). The
domain used in the lock semantics (21°¢ x Eff) forms a lattice as
well, which is defined as the product of the two lattices (2L°C, <)
and (Eff, C). We can use the lock lattice to reason about the relation
between locks, for example:

e Conflict: two locks conflict if they protect a common location,
and at least one of them allows write effects:

conflict(lq, 1) <

Lad T[] # (2, A [l U] # (— rw)

e Coarser-than: alock [y, is coarser-than a lock [, if it protects all
locations protected by [,, and allows at least the same access
effects:

coarser(ly,la) < [la] T [lb]

3.2.1 Examples

We now give several example of locks, characterized using our
semantics definition.

Expression Locks Program expressions can be used to define
fine-grain locks. Let o denote a program state in our concrete
semantics, and consider a program expression e. Whenever the
program reaches the state o, the runtime value of e is always a
single location v. This can be written formally using the following
relation (o, e) — v. To protect v for any read or write access, we
can define a fine-grain lock [with the following semantics:

[l = (vl (o) = v}, rw)

Global lock A global lock [, is simply a lock that protects all
memory locations:

[ls] = (Loc, rw)

Type-based locks 1In a type-safe language, we could use types to
protect all values of such type:

[I-] = ({v | typeOf (v) = 7' AT <: 7}, rw)

where typeOf returns the runtime type of a value, and <: is a
subtyping relation. In the presence of subtyping, for example with
class inheritance in object oriented languages, the super-type is a
coarser lock than a sub-type, i.e. 7 <: 7" = [I-] C [l,-].

Pointer analysis locks Consider a flow-insensitive and context-
insensitive pointer analysis. The analysis abstraction is a set of
allocation sites, called points-to set. We can define a lock for each
points-to set p as follows:

[i] = ({v] allocOf (v) € p},rw)

where allocOf is a function that returns the site where v was
allocated. The lock [, protects all memory locations allocated in
any of the allocation sites in p.

Read and Write Locks A global read lock /,- and a global write
lock [, have the following semantics:

[i-] = (Loc, ro) [lw] = (Loc, rw)

Locks Pairs We can also combine the power of two locks sets by
computing their Cartesian product. Let /1 and /> be two lock names,
we define the concrete pair lock (I1,[2) as:

[(11,12)] = [L] M [l2]

This means, the pair lock protects the intersection of the location
protected by the individual locks. For example, we can combine
expression locks and global read and write locks to obtain a new
set of fine-grain locks that protect locations either for read-only or
read-write accesses.

3.3 Abstract Lock Schemes

We are now able to reason about locks using their semantics. In this
section we explore reasoning about locks in abstract manner, but
ensuring that our reasoning is a safe approximation of the concrete
locks semantics.

We define an abstract lock scheme ¥ as a tuple

Y= (‘Cv S,T,T;” +;7 *;)

where elements in £ C LNames are lock names, (£,<,T) is a
join-semilattice with top element T. Since (£, <) is a join semi-
lattice, the relation < is reflexive, transitive and anti-symmetric.
For any pair of elements of £, the join LI, that returns their least
upper-bound, is defined. For convenience we write a < b to say
thata < bAa #b.

The operators domains are the following:

V=L +p LXF — L

where p is a program point in the domain PP and ¢ is an effect
in Eff. The operator =, takes a variable symbol and returns a lock
name | = T}; the operations +;, and *;, are used to relate different
locks in L. Together they can be used to express what locations are
protected by each abstract lock. We further discuss the semantic
meaning of these operators below.

Abstract lock schemes will be used by our lock inference algo-
rithm to compute locks that protect atomic sections. To guarantee
that our inference terminates, we require £ to be bounded. Alter-
natively, we could use widening operators in our formalisms. We
decided to make £ bounded to simplify our presentation.

#p, 1 L — L

Relation with concrete locks We say that an abstract lock scheme
is a sound approximation of the concrete semantics, if for any
program point p and effect ¢, the following conditions are satisfied:

e The top element T represents a global lock,
[T] = (Loc, rw)
e If two locks 1 and [satisfy [; < l2, then l> must be coarser
than /;:
Vll,lz, <= [[llﬂ C IUQ]]

A lock 7, protects the address of « to be used with the effect &
at the program point p, formally:

Vo,z.0Q@pA (0,&z) —v = ({v},e) C[z,]

where o@p is used to denote that o is a state that reaches the
program point p, and (o, &x) — v says that the address of x is
the location v in the state o.

If a location v is protected by [and v’ is a location pointed by
the field ¢ of v, then [+;, ¢ must protect v', formally
Vie Lyov, v =v+s1.
{vhr)E = ({v'}he)Cli+i]
where +, performs an offset operation in the concrete seman-
tics of the state o.

The operation *;, satisfies a similar condition:

Vie L, o,0,v =x*50.
{vhr) Tl = ({v}he) Tl]
where *, performs a value dereference in the concrete state o.

The combination of =5, +; and *; allows us to inductively

construct a lock that protects the value of any expression e at a
program point p to perform an access €. Let € , be such lock, then:

—~c _ —¢ — 7% _ ~vo ,e : ——¢e _ g ~r0
Ty, =717, eti,=¢€, tp1 xep, =k, €,

Notice that all subexpressions of e only need to be protected for
read effects (ro).

3.3.1 Examples

The following are examples of abstract lock schemes, similar to the
examples of concrete locks that we gave in the previous section.

Expression locks with k-limiting Expression locks as presented
so far can’t be used in an abstract lock scheme because the set of
locks is not bounded. We introduce k-limiting to bound the set of
expression locks, and define a scheme X, as follows:

L = {i%|length(e) <k Ap € PPYU{T}
< = {02, T)|EeLy
. 2oifk>1
z = .
P T ifk=0
lp/ 45 = li_H- length.(e + 7,) <kA p= p/
e P T otherwise
w P _ 5. length(xe) <kAp=7p
pre - T otherwise

The scheme allows to construct locks l. for any expression of
length k or less. All longer expressions are represented by the T
element. Note that the effect € is not used in the definitions, hence
all locks protect locations for read-write effects (rw).

Unification-based pointer analysis Consider a flow-insensitive
unification-based pointer analysis like Steensgard’s [17]. Let A be
the points-to sets returned by the analysis, such that: each set s € A
is disjoint from the others; each program expression is associated
with a points to set (which we write as e : s); and points-to relations
are denoted by edges s — s’. A sound abstract lock scheme Y=

based on the result of this analysis would be:

L = {ls|se€e Ay U{T}

S = {(lsvls)v (lsv—l—) ‘ lS € C}
Ty = s,where &z : s

ls+,1 = s

x5 Ls = s, where s — s’

Read and Write locks We can define a lock scheme 3. that
protects locations by the kind of accesses performed in them:

L = Eff T = &
< = LC l+51 = ¢
T = rw *5 0 = ¢

Field based locks We can define a lock scheme X; that protects
locations by the offset in which they are accessed, as follows:

L = {s|sCF} T = T
< - ¢ si = i)
T = F x5 = T

Cartesian product The Cartesian product 3; X 35 of two abstract
schemes X, and X2, can be constructed by taking the Cartesian
product of the domains and functions:

L = L1 X Lo

< = {((avb)7(c?d))‘agb/\cgd}
T, = (Tp1,Th2

(a,0) +51 = (a+p18,b+p0)

IEJ (CL, b) = (;1av *;2b)

If two abstract lock schemes are sound approximations of the
concrete semantics, so is their Cartesian product.

4. Lock Inference Analysis

This section presents the analysis that deduces a set of locks to
protect an atomic section. We first present our formal framework,
that will allows us to formally show that the analysis is sound. Then
we discuss how we implemented an instance of this framework.

4.1 Analysis Formalization

The analysis receives two external inputs: an abstract lock scheme
(2) and the results of an alias analysis. The alias analysis is useful
to understand the effects of store assignments, as in the example
from Figure 2. The results of the alias analysis is given by a relation
mayAlias(es, ez, p) that answers whether two expressions e; and
e may point to the same location at a program point p.

For each program point p inside the atomic section, we will
compute a set of lock names N, C L. To ensure soundness, the
analysis result should satisty the following property: the set of locks
N,, protects all the locations used from the point p and forward
until the thread reaches the end of the atomic section. Additionally
no lock in N}, is redundant in two ways: (a) For any lock | € N,
there is some location protected by the lock [that is referenced
inside the corresponding atomic section (during some run of the
program) under the assumption that all program paths are feasible
(since our analysis is path-insensitive). (b) For any pair of locks
l1,l2 € Ny neither [; < Iz norl2 < l3.

We formalize the analysis using a dataflow formulation. The
algorithm is a backward dataflow analysis that starting at the end of
an atomic section, computes the locks for each point until we reach
the entry of the atomic section.

Initialization The analysis starts with an empty set No = @ of
locks at the end of the atomic section.

Transfer functions Figure 4 presents the intra-procedural analy-
sis rules. Given a set /N of lock names at the program point after a

For any assignment e; = e2, the transfer function is:
transfer(er = e2, N) = {U'| (,I') € Te,=e, ANl € N}
U G UGE,

T is the underlying transfer function relation:

Tei=ec, = closure(Se;—e, U Id) — closure(Qe,)
closure(S) = S
U (I +4,1" +4)| (1,1 € closure(S)}
U ({(x,=l") | (1,1 € closure(S)}
Id = {(z2z)|zeV}

S is a set of core changes induced by the statement:

Se—ey ={(+7,)} Se—sy = {(xT, *(xy))}
Sz:new = Pz=null = {} S*g;:y = {(*(l)7 *g) | [~ *f}

@ are trivial mappings violated by the statement:
Qe ={(+7,%2)} Que = {(x(x@), x(x7))}
G are new locks to protect the accesses in the current statement:
G, ={"7°7°) GR.={1"} L. ={}
G ={z°} Grew ={} ot = {3

Figure 4. Transfer functions. Annotations on operators are omitted
to simplify the presentation.

statement st, the analysis computes a new set N’ for the program
point before st. The new set N’ must protect all locations protected
by NN and all locations accessed directly by the statement. Note the
rules are formulated using closure operators which are not meant
to be used in an implementation. Section 4.3 discusses how this
analysis is implemented in practice.

The figure omits program point and effect annotations to sim-
plify the presentation. The reader should note that every operation
~, x and + on the first component of a pair corresponds to the
program point a after the assignment, i.e., ~ 4, %o and +,; and, ev-
ery operation on the second component corresponds to the program
point b before the assignment. However, both use the same effects
€. For example, the relation S;—, must be read as:

Sa=y = {(xa" &, %" 7))}

For any assignment e; = ez we describe the transfer function
as a combination of two basic relations Se,—e, and Q.,. The
relation Se,—e, includes a minimal set of locks that are changed
by the statement. For example, in S;—, any lock that protects *T
after the statement, is protected by *y before the statement. We
express how other locks are transformed using the closure operator
closure(.S). For instance, the transfer function maps *(+Z+1) after
the statement to *(«g +) before the statement.

The closure of Id allows us to express that any expression not
affected by the assignment will remain unchanged by the transfer
function. The closure of Q., are those expressions in closure(Id)
that are affected by the statement, and thus must be excluded from
the transfer function. For example, the transfer function of T,—,
maps *(*Z) to *(*Z), but *(+T) is not mapped to *(+Z) because
(x(xT), *(xT)) € closure(Qy).

Finally, all transfer functions include a new set of locks G that
protect the locations accessed by the assignment.

The transfer function of xx = y uses a may alias relation ~. We
construct ~ from the results of a pointer analysis, which was given
as input to this algorithm. If two expressions e; and e2 may alias at
a program point p, written mayAlias(e1, ez, p). Then the relation
~ holds on their abstract locks, i.e. €17 ~ é3P.

We define the transfer of x = f(ao, ...

transfer(z = f(ao, ...,an), N) =
trans™ (po = @o; ...; Pn = Gn; Stf—body; T = retm, N)

, ar) as follows:

where stf_pody i the body of f, and trans™ is defined as the least
solution to the following recursive formulation:

trans* (st, N) =
trans™ (st1, N) U trans™ (st2, N)
trans* (st1, trans™(stz, N))
N U trans™(st; while(b) st, N)
transfer(st, N)

st = if(b) sty else sto
st = st1; sta

st = while(b) st, N
otherwise

Figure 5. Inter-procedural equations

To illustrate how this formalization works, consider our ear-
lier example from Figure 2. The program’s atomic section can be
rewritten in our simplified language as follows:

atomic {
tl = x + data; *tl = w;
t2 y + data; z = *t2;
*Z null;

}

Initially, our analysis starts with an empty set of locks at the
end of the section. The transfer function of *z = null uses G to
introduce two new locks *z and z. Lets focus on what happens to *z
only. The previous statement z = *t2 defines z in terms of ¢z, our
transfer function uses the relation S.—.., to transform *Z into sxto.
Notice that the pair (*z,*Zz) is mentioned in the set @), and thus
xZ is no longer included in the set of locks. Similarly, the transfer
function for t2 = y + data transforms * * 5 into *(*y + data),
which we wrote as y->data in Figure 2. The assignment *t1 = w
requires us to look at the may alias information. Assume that the
may analysis indicates that mayAlias(t1,y + data, -) holds at that
point, then the following relation also holds *t; ~ xy + data. This
enables the transformer S.;, —., to introduce 2 in the set of locks.
Additionally, *(*y + data) remains in the set of locks because it is
in closure(Id) and it is not listed in closure(Q). Finally, the first
assignment t1 = x + data doesn’t remove any of our locks and
we conclude that to protect the access in the last line, we need both
*(xy + data) and *w.

Merge operation At merge points we compute the join of two set
of locks N1 and N> as follows:

NluNQ:{l€N1UN2|39l'€N1uN2.l<l’}

all locks are combined together, but we exclude locks protecting
locations that are already protected by other locks in the set.

Function calls Figure 5 formulates how to reason about function
calls. Essentially we model function calls as a composition of three
group of statements: a first group assigns actual arguments to the
formal arguments used in the callee, a second group is the body of
the callee, and a final group consist of assigning the return value
of the callee to the left hand side of the call. The formulation uses
trans™ to define the transfer function for compound statements.
These are essentially summaries of the transfer functions of several
statements. As mentioned earlier, these rules are meant as formal
declaration of our system, not as an implementation.

Transformation From the analysis solution we retrieve the set
of locks N inferred for the entry point of each atomic section.
We replace each atomic section with two statements: a statement
acquireAll(N) at the entry point of the atomic section, and a state-
ment releaseAll at the end of the atomic section.

4.2 Soundness

To ensure that our algorithm is correct, we need to connect our
abstract domain with the program semantics. Our operational se-
mantics consist of states o, that contain a shared heap and a set of
locks L; held by each thread ¢. Additionally, our semantics keeps
track of the state of each thread, whether it is inside or outside an
atomic section. Using our concrete locks semantics [-], our opera-
tional semantics check that any shared location accessed inside an
atomic section is protected by a lock in L;. In particular, a step in
the semantics (o, st) — o’ will get stuck, if the check doesn’t hold.

THEOREM 1. Let o be a reachable state, where thread i is about to
execute a statement st within an atomic section. Let N be the result
of our analysis for such atomic section. If at the entry of the atomic
section, the thread i acquired all locks in N, then there exists some
o' such that {0, st} — o', i.e. the program doesn’t get stuck.

Proof. Our proof is based on the assumption that both, the ab-
stract lock scheme and the mayAlias query, are sound. The theorem
proof is based on induction on the program structure, and it uses
the lemmas below to show each step of the proof.

LEMMA 1. The locks before any assignment protect the locations
accessed directly by the statement. Formally,

Vo, st . ocQ(est) = 3l € transfer(xe; = ez, N) .
(0,€1) = v = ({v},rw) E [I]A
V(xe) € subs(e;) . {o,e) — v = ({v},ro) C [I]

where c@Q(est) is any state that reaches the program point before
st, subs(e;) returns all dereference subexpressions of e1 and ea,
e1 ranges over {&x, x&x}.

LEMMA 2. Assume N is a set of locks protecting all locations
accessed after a statement st. Except for unreachable locations,
the locks inferred by transfer(st, N') protect all the locations that
were protected by N after the statement:

Vst,l € N,o,v € Loc.
c@Q(est) A reach(o,v) A ({v},e) C] =
3’ € transfer(st,N) . ({v},e) C [I']

where reach(o,v) holds if the location v is reachable from some
program variables in state o.

Due to lack of space our semantic rules and proofs are omitted
here, they can be found in a companion technical report [3].

4.3 Implementation

Our framework is parameterized on an abstract lock scheme, and
a pointer analysis. We implemented an instance of this analysis
framework for a fixed lock scheme and pointer analysis. Our for-
mulation uses constructs that are can’t be implemented in practice,
for example the closure operator, and the trans™ function. We now
describe how to implement the rules described in our formalisms.

We chose an abstract lock scheme consisting of k-limited ex-
pressions, points-to sets and read/write effects (X5 X Y= x X.). We
use Steensgard’s pointer analysis [17] to compute both, the points-
to sets in X=, and the mayAlias relation.

Our implementation keeps a set of locks for each program
point, and uses standard worklist algorithm to compute solutions
to the dataflow equations. The algorithm operates at the level of
individual locks, not at the level of set of locks that is used in
the formalisms. The worklist contains pairs of locks and program
points (I, p). Given an atomic section, we initialize the worklist by
inspecting each assignment e; = e within the atomic section, and
adding a pair (I,p), if I € G} U G, and p is the program point
before e; = e2. We only omit a lock I = T if we can tell that x is a
thread local variable, whose address is never stored.

When an element (I, p) is taken from the worklist, the statement
st before p is analyzed. We use the transfer function for st to
compute the effects of the statement on the lock /, without explicitly
computing the closure operations used in our formalisms. The
result of the transfer function is a set of locks I1, ..., [, that we
merge at the program point p’ before st. If the set of locks at p’
changes, the pairs (I;,p’) and are added back to the worklist. This
process is repeated until the worklist is empty.

The analysis implementation is specialized to take advantage
of the abstract lock scheme we have chosen. In particular, we
noticed that from all possible pairs of expressions and points-to
set locks, only few combinations need to be manipulated by the
analysis. For example, if an expression e belongs to a points-to set
P, then the analysis will never consider a pair of e with P’ # P.
This is because e and P’ protect disjoint sets of locations, and
thus their combination protects no memory location. In fact, the
relevant pairs of expressions and points-to sets implicitly define a
tree hierarchy, instead of a general lattice. This tree consist of a
root node (T, T) that protects all locations. The root’s immediate
children are points-to set locks (T, P) that protect a partition of
the memory. Finally, each points-to set has k-limited expressions
locks (e, P) as children. These children protect a location within
the memory partition protected by (T, P).

The backward analysis traces these pairs (e, P) through the
program, updating the pair lock on each statement. In practice,
only the first component e is updated by the analysis. The transfer
functions will always conclude that P remains unchanged. This
is because P is a flow-insensitive lock, and thus the same lock
protects the same set of locations before and after each statement.
Once an expression reaches the k-limit and becomes T the analysis
will never change the first component either. Therefore, we exploit
these observations in our implementation: our tool only tracks k-
limited expressions until they become T, at which point the tracing
is stopped, and the corresponding points-to set lock is added to the
analysis solution.

We analyze function calls using a standard technique based
on function summaries [14]. A function summary fs essentially
summarizes the analysis results for the body of a function f. Given
a lock [at the end of the function f, fs(1) is the set of locks that
protect the same locations as [at the beginning of the function f.
Summaries are similar to the function trans™ in our formalisms,
but they are only computed for function blocks.

When analyzing a lock [after a function call z = f(a1, .., an),
we perform the following steps:

e First, we map the lock to the context of the callee by modeling
the assignment z = rety. The assignment simulates returning
from the call to f and setting the return value to x. Let [; be a
lock resulting of analyzing such assignment.

Second, we check if we have a summary for /5 in f;. If there is
no summary defined, we add (I, exity) to the worklist, where
exity is the program point by the end of the function f. If a
summary for /; is found, then let l2 be one such lock in the
result of the summary (I2 € fs(11)).

Third, we unmap the lock > back to the context of the caller
by modeling how actual arguments are passed as formals to the
callee, i.e. p; = a;. To handle recursive calls, we add shadow
variables to avoid naming conflicts between the actuals and
the formals of the call. Let I3 be a resulting lock from these
assignments, then we merge [3 at the point p before the call and
add (I3, p) in the worklist if the set of locks has changed.

Additionally, to build function summaries, the analysis keeps
track of the origin of a lock [, denoted by src(l). For example,
if I € transfer(st,l), then they have the same source src(l) =

X S ‘ X I, SI, S I,
X X
IS v I v v v v
S, v
S v v
1. v v
(a) (b)

Figure 6. Compatibility of access modes: (a) traditional modes,
(b) with intention modes.

src(l’). Sources are initialized at the exit point of a function. When
the algorithm reaches the entry point of the function (/, entry ;), the
analysis updates the function summary by adding [to fs(src(l)).
After updating the summary, the analysis also unmaps the lock [to
all callers of the current function.

5. Runtime System

We run the transformed programs using a library that supports the
locks generated by our analysis. This section describes how the
runtime library is designed and discusses how our transformation
is integrated with this library.

5.1 Multi-granularity Locking Library

Our locking schemes define a structure of multi-granularity locks.
Unlike traditional locks, there are pairs of locks that cannot be held
concurrently. For this reason, using a simple linear order of the
locks does not guarantee that locking is deadlock free.

To support multi-grain locks, we implemented a library based
on ideas introduced by Gray et al. [11, 10] from the database com-
munity. To illustrate the key ideas of a multi-grain locking protocol,
consider the following example. Suppose we have a simple lock
structure of three locks lq,l,, and T, where [, < T and [, < T.
We would like to allow [, and [, to be held concurrently. But if a
thread acquires T, no other thread can get [, or . Suppose a first
thread wants to acquire /. The protocol must ensure that before re-
questing l,, T is not taken by any other thread. One way to do this
is to acquire T and then [,, but this will not allow another thread to
request . Instead, a multi-grain protocol marks T with an inten-
tion. This intention says that somewhere lower in the structure, this
thread holds a lock. When some other thread wishes to acquire T, it
must wait until the infention mark is removed. However, intention
marks are compatible, hence a second thread can also mark T with
his intention, and acquire [;, concurrently with [,.

More generally, a protocol for multi-grain locks operates based
on three basic ideas: (a) lock relationships are structured, (b) locks
are requested in a top-down fashion, and (c) dependences between
locks are made explicit during the protocol using intention modes.

Traditionally, locks can be acquired in two modes: read-only
or shared (S), and read-write or exclusive (X). Adding intentions
introduces three new modes: intention to read ([;), intention to
write (), and read-only with the intention to write some children
nodes (SI;). Figure 6 shows the compatibility between these ac-
cess modes. A pair of access modes marked with v' can be held
concurrently.

If the lock structure is a tree, the following deadlock free proto-
col guarantees that no conflicting locks are held concurrently:

e Before acquiring ! for reads (S) or intention to read (/;), all
ancestors I’ (I < I”) must be held by this thread in I, or I.

e Before acquiring [for X, ST, or I, all ancestor I’ (I < I’) must
be held by this thread in ST, or I, mode.

e Locks are released bottom up or at the end of the transaction.

This protocol can be extended to deal with general lattice struc-
tures (not only trees), but we omit this for simplicity. Since our im-
plementation uses a locking scheme that has a tree-like structure,
the protocol presented here is sufficient.

5.2 Lock Runtime API

We implemented the multi-grain protocol in a runtime library. Our
runtime library API consists of three functions: to-acquire, acquire-
all, release-all. The function to-acquire takes a lock descriptor and
adds it to a list of pending locks. We define lock descriptors further
below. The function acquire-all proceeds to request all pending
locks using the protocol presented above, and moves the locks from
the pending list to a list of granted locks. Finally release-all unlocks
all the locks in the granted list and clears the list.

In order to acquire locks using the protocol, our library requires
knowledge of the lock structure: for every lock [the protocol
accesses all locks in the path from the root T to the lock [. We
provide this structure information to the runtime library in the
lock descriptors. A lock descriptor for a lock [is the path p =
(T,l1,...,In, 1) toreach [from T. Thus, we avoid storing the entire
lock structure in the runtime library, but instead, we provide the
library with the relevant portion of the locking structure using the
lock descriptors.

The transformation we presented in Section 4 inserts statements
acquireAll(N) for a set of locks N = {l1, ..., l» }, and releaseAll to
release all locks. To integrate our transformed programs with our
runtime library, our implementation translates a releaseAll state-
ment into a call to release-all, and an acquireAll(N) statement
to the sequence to-acquire(p1);...; to-acquire(py); acquire-all();
where p; is the lock descriptor of a lock /;.

6. Results

This section describes our experimental results. We first discuss our
experiment setup. Then, we present an evaluation of our compiler.
Finally, we show runtime statistics of the transformed programs.

6.1 Experiment Setup

Our implementation is divided in three phases. A first phase reads
C/C++ programs and outputs each function in a simplified interme-
diate representation (IR). A second phase reads the IR and performs
the whole program analysis as described in Section 4.3. Finally, a
third phase compiles the C/C++ programs from scratch, using the
results of the previous phase to instrument the programs. All phases
are implemented in C#, the first and third phase use the Phoenix
compiler infrastructure [1] as a frond and back end. We used several
values for k, between 0 and 9, to build the k-limited expressions.

Testing environment We performed all experiments on a 1.66Ghz
Dual Core, 2 GB RAM machine, running Windows XP SP2.

We used several benchmarks to evaluate our tool, including
programs from the SPECint2000 benchmarks [18], the STAMP
benchmarks [2] and a hashtable micro-benchmark we wrote. The
STAMP and hashtable programs are concurrent applications that
contain atomic sections protecting shared memory accesses. The
hashtable program is designed to perform several hashtable opera-
tions (put, get and remove). Each operation is enclosed in an atomic
section. Each atomic section contains a loop with additional nop in-
structions to make the program spend more time inside the atomic
sections. The SPECint2000 programs are not concurrent, but they
were used to measure the scalability of the analysis. We wrapped
the main function of these programs inside an atomic section, and
analyzed them in the same fashion as the concurrent programs.

We used the TL2 software transactional memory [4], distributed
with the STAMP benchmarks, to compare the runtime performance
of our approach against an optimistic alternative. To make our

Program KLOC Num Analysis Time (s) Total
atomic Time(s)
sections k=10 k=9 k=9

SPEC

mcf 2.8 1 1.0 1.2 110.7

bzip2 4.6 1 1.5 4.2 44.7

gzip 10.3 1 1.6 34 164.2

parser 14.2 1 4.2 11.0 178.8

vpr 20.4 1 5.0 32.6 872.7

crafty 21.2 1 5.3 111.3 636.8

twolf 23.1 1 6.2 15.4 951.4

gap 71.4 1 3.0 76.6 908.0

vortex 71.5 1 10.6 193.7 806.6

STAMP

vacation 14.1 1 1.1 1.5 175.6

genome 13.1 5 1.5 1.6 153.4

kmeans 11.9 3 0.9 0.9 108.2

[hashtable 0.4 4 0.7 0.7 23.6]

Table 1. Program size and analysis time in seconds. The analysis
takes less than a fifth of the total compilation time.

comparison fair, we used the same compiler to build both, the
programs with TL2, and the transformed programs with our multi-
grain locking runtime library. The TL2 STM can be compiled under
Windows using Cygwin and gcc-3.4.4. We took the results of our
analysis and manually extended the benchmarks in order to compile
them with gcc. Our manual intervention is minimal, it consists of
adding calls to our multi-granularity locking library as they would
be generated by our compiler.

6.2 Compiler Statistics

Table 1 shows the size of each program analyzed, the analysis
time, and the total compilation time. The analysis time includes the
time for the unification-based points-to analysis and the backward
dataflow analysis. As mentioned earlier in Section 4.3, the dataflow
analysis is only performed for expression locks until they become
T. Thus, the analysis with & = 0 doesn’t perform any dataflow
computation, so the column of analysis time with & = 0 can be
used as a rough estimate of the time spent in the pointer analy-
sis. The total compilation time includes the first and third phase of
our compiler: parsing the source files, generating the simplified in-
termediate representation, compiling to native code, and any other
phase performed by the Phoenix infrastructure.

The time spent by the dataflow analysis depends on the size of
the atomic sections, and the number of shared memory accesses
within the atomic sections. Only in the SPEC benchmarks the size
of the atomic sections, and therefore the analysis time, is corre-
lated with the program size. For this reason, the SPEC benchmarks
use more analysis time than the other programs. Both the STAMP
benchmarks and hashtable contain small atomic sections; thus the
analysis cost is fairly low. The numbers observed are quite promis-
ing; they show that our technique can scale to analyze large atomic
sections of up to 80 KLOC. The analysis time is less than a fifth of
the total compilation time.

Lock Distribution For each value of k we counted the number of
locks chosen by our analysis to protect each atomic section. We
divide the locks in four categories: (a) expressions or fine-grain
read-only locks, (b) fine-grain read-write locks, (c) points-to set
or coarse-grain read-only locks, (d) and coarse-grain read-write
locks. Figure 7 shows the overall results. Each column shows the
combined total number of locks in each category from all atomic
sections of every program.

700
%]
X - - - -
3 600 [] Fine-grain ro
< 500 - - |- - -1 |-l | - O Fine-grain rw
N . _| I Coarse-grain ro
g 400 B Coarse—grain rw
§ 300 -l |- - B R B
e
T 200 - - I R O
SEETGIEEE B I B B B B

k=0 k=1 k=2 k=3 k=4 k=5

Figure 7. Combined total number of fine-grain and coarse-grain
locks from all programs. Increasing the analysis precision reduces
the number of coarse locks and possibly reduces contention.

As expected, all locks chosen by the analysis with £ = 0 are
coarse-grain locks. As we increase the value of k we observe that
coarse-grain locks can be replaced by one or more fine-grain locks,
and sometimes coarse-locks can be removed altogether. The former
is illustrated in the column of k£ = 1, where individual coarse-grain
locks are replaced by several fine-grain locks (thus the increase in
the number of locks). The latter is illustrated when & = 3, where
the total number of locks is reduced. We expect this decrease is due
to objects allocated within the atomic sections: these objects are
not reachable by the entry of the atomic section, and thus, they are
not shared unless they become explicitly stored in another location.
Locks protecting the other location can be used to implicitly protect
the allocated cells. The dataflow analysis deduces this when tracing
fine-grain locks up to their allocation site.

Beyond £ = 5 there is no apparent benefit of increasing the
value of k. This is because our k-limited locks are used to protect
locations in non-recursive structures, for example in globals, struc-
ture fields or array entries. Non-recursive structures have a bounded
depth, and typically programmers use a depth of 2 or 3 heap deref-
erences. Recall that both offset operations and heap dereferences
contribute to the length of an expression, thus many expressions
with 3 heap dereferences may have length k = 5.

6.3 Runtime Statistics

We now focus on the STAMP benchmarks and hashtable to eval-
uate the runtime performance of the transformed programs. For
most programs we experimented with two parameters configura-
tions: high and low. The high setting is designed to produce more
conflicts between transactions, for example, performing more put
operations than get operations in hashtable. The low setting intro-
duces less contention by performing more read-only operations.

Table 2 shows the running time of the evaluated benchmarks.
The first column shows the running time using a single thread. The
next three columns show the running time when using 2 threads.
We didn’t collect the running time with more than 2 threads since
we evaluated our tool on a 2-core machine. The second column
contains the running time when using the TL2 STM to support
atomic sections. The last two columns show the time consumed
by the transformed applications, when using the locks chosen by
the analysis with k = 0 and with k = 9.

The entries of TL2 for the program vacation often failed valida-
tion checks when running under TL2. We haven’t determined the
reason for these violations. The checks were always satisfied by
our transformed programs. The reported time for TL2 are instances
when the checks didn’t fail.

Runtime impact of multi-granularity locks. Our compiler chose
coarse-grain locks for most atomic sections in the STAMP pro-
grams, except for one atomic section in genome. This explains that
the running time is very similar for k = 0 and k = 9. The applica-
tion genome spends most of its time in atomic sections where our

Program Running time (s)

Sequential TL2 k=0 k=9
genome 541 16.77 29.87 35.87
vacation-high 0.29 10.97* 0.35 0.36
vacation-low 046 11.28* 0.52 0.51
kmeans-high 2.96 14.64 3138 33.11
kmeans-low 4.72 12.58 2645 27.05
hashtable-high 23.88 14.66 26.85 18.08
hashtable-low 23.84 1477 1777 17.73

Table 2. Runtime statistics. Entries marked with * failed validation
checks on some executions.

analysis uses coarse-grain locks. The fine-grain locks added with
k = 9 protect short lived transactions, and hence introduce more
runtime overhead than coarse-grain locks.

The opposite situation was observed in hashtable. In this pro-
gram, the put operation only updates a single bucket in the table.
The analysis with £ = 9 assigns put operations a single fine-grain
lock to protect that bucket entry. In our experiments, the high con-
figuration makes put operations 8 times more frequent than get and
remove operations. Thus, using fine-grain locks makes the program
run 1.48 times faster than using coarse-grain locks (k = 0). The
low configuration makes get operations 8 times more frequent than
the others. In this case, fine-grain locks bring no benefit over the
coarse grain locks.

In hashtable we can also observe the benefits of tracking read
and write effects. The analysis determined that get only performs
memory reads. Hence, multiple get operations can run concur-
rently. Since the low configuration introduces more get operations,
the transformation with coarse-locks runs 1.51 times faster in the
low setting than in the high setting.

Comparison with TL2 On average the TL2 system ran 35% faster
than the coarse-grain lock alternative (k = 0), and 31% faster than
the fine-grain lock alternative (k = 9). However, the numbers fluc-
tuate a lot across the evaluated benchmarks. In genome and kmeans
the TL2 system ran approximately twice as fast as any of our lock-
ing solutions. The reason for this is that our analysis was unable to
find additional parallelism from fine-grain locks. This imprecision
of our analysis can be improved by choosing a different locking
scheme, for example one based on a more precise pointer analysis
technique. Additionally, our locking library implementation, which
is not optimized, introduces additional runtime overhead.

The hashtable program ran 1.2 times faster using TL2 than us-
ing fine-grain locks. The additional speed comes from parallelism
between put and get operations. Our technique was able to enable
parallelism between pairs of put operations (using fine-grain locks)
and between pairs of ger operations (using coarse-grain read-only
locks), but put and get still have contention with each other.

In vacation, on the other hand, our locking approach was up
to 30 times faster. We noticed that this happens because conflicts
are very common in this application. Most transactions in vacation
access a common global structure, and thus, many transactions are
aborted. We instrumented the programs and observed that each
atomic section was being executed 4 times on average using TL2.

Final Comments The experimental results show that the analysis
scales well, and the transformed programs run at most a factor
of 2 slower than the TL2 system. Yet, there is a large room for
improvement. For example, our transformed version of kmeans,
using two threads ran 12 times slower than the sequential version
of the program. The slowdown we have observed can be attributed
mainly to two issues: most atomic sections are protected by coarse-
grain locks, and our runtime system is not optimized. The former
can be attributed in part to our analysis, and in part to the non-

parallelizable nature of the benchmark. For some applications, like
the STAMP benchmarks, our analysis cannot deduce a set of fine-
grain locks to protect the atomic sections. For other applications,
like hashtable or some of the SPEC benchmarks, the analysis gives
better results. We need a better set of benchmarks to measure the
benefits of our approach.

We believe the results can be improved by proposing a differ-
ent scheme to select locks, for example using a more sophisticated
memory abstraction. We also believe the analysis framework intro-
duced in this paper is a good starting point to explore more sophis-
ticated schemes and to deduce good optimizations that minimize
the set of locks used to protect atomic sections (such as in [5]).

7. Related Work

Multi-granularity locking inference for shared databases The
problem of multi-granularity locking and its related tradeoff be-
tween concurrency and overhead was first considered in the con-
text of database management system [11]. The choice of locking
granularity considered in the context of databases was based on the
hierarchical structure of the data storage, e.g., fields, records, files,
indices, areas and the entire database. The choice of locking gran-
ularity in our case is more challenging because of lack of any nat-
ural hierarchical scheme over the (possibly unbounded number of)
memory locations accessed by a program. This requires creation of
more sophisticated locking abstractions.

Hierarchical locking (simultaneous locking at various granulari-
ties) requires sophisticated locking protocols (as opposed to simply
locking entities according to some total order on locks). Such pro-
tocols have been discussed in the context of data-base management
systems [10]. In our work, we adapt these protocols for deadlock
avoidance.

Lock inference for atomic sections There has been some recent
work on compiler based lock inference from atomic section specifi-
cations. Some of these approaches either require programmer anno-
tations or operate over a fixed (and finite) granularity of locks. On
the contrary, our approach is completely automatic with support for
multi-granularity locks.

The granularity of locks considered in [13] is one that is speci-
fied by programmer annotations. Our approach is completely auto-
matic requiring no annotations from the programmer.

The granularity of locks considered in [9] is based on the (finite
number of) abstract locations in the points-to graph. The lock asso-
ciated with each abstraction location locks all (possibly unbounded
number of) memory locations that are represented by that abstract
location. Our more general multi-granularity locking scheme can
use this abstraction as an instance of our locks. However, we also
allow more fine-grained locking abstractions like expression locks.

The granularity of locks considered in [5] is based on path ex-
pressions (as described by a variable followed by a finite sequence
of field accesses). The lock associated with each path expression
locks all locations that the expression can ever evaluate to in any
run and at any point of the program. Such a scheme is too coarse-
grained compared to our seemingly similar, but quite different, ex-
pression locks. Our expression locks at a given program point p and
in a given program run 7, lock only the memory location to which
the corresponding expression evaluates to at the program point p
in the run r. Moreover, our expression locks are just an instance of
our general multi-granularity locking scheme. However, the issue
addressed in [5] is more about optimizing the set of locks that need
to be acquired (since the cost of acquiring a lock is non-trivial) by
phrasing it as an optimization problem. For example, if whenever x
is accessed, y is also accessed, then we only need to acquire lock on
y. This is an orthogonal issue and our work can also use leverage
such an optimization.

8. Conclusions

We have presented general framework that infer locks to protect
atomic sections. This framework is attractive for three main rea-
sons. First, it provides an automatic implementation of atomic sec-
tions based on locking primitives, avoiding the disadvantages of
optimistic concurrency. Second, it guarantees that the transformed
programs respect the atomic semantics. And third, it is parame-
terized. It can be instantiated with different abstract lock schemes
that better fit a user needs. We presented an implementation of our
framework for a fixed lock scheme, and reported our experience
when analyzing several benchmarks.

References

[1] Phoenix compiler infrastructure. http://research.microsoft.com/phoenix/.

[2] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen
McDonald, Nathan Bronson, Jared Casper, Christos Kozyrakis, and
Kunle Olukotun. An effective hybrid transactional memory system
with strong isolation guarantees. In ISCA. Jun 2007.

[3

[t}

Sigmund Cherem, Trishul Chilimbi, and Sumit Gulwani. Inferring

locks for atomic sections. (http://www.cs.cornell.edu/~siggi/papers/msr-

tr07.pdf). Technical Report MSR-TR-2007-111, MSR, August 2007.

[4] Nir Shavit Dave Dice, Ori Shalev. Transactional locking ii. In
Proceedings of the 20th International Symposium on Distributed
Computing (DISC), Stockholm, Sweeden, September 2006.

[5] Michael Emmi, Jeffrey S. Fischer, Ranjit Jhala, and Rupak Majumdar.
Lock allocation. In POPL, pages 291-296, 2007.

[6] Keir Fraser and Tim Harris. Concurrent programming without locks.
ACM Transactions on Computer Systems, 25(2):5, 2007.

[7] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom,
John D. Davis, Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya,
Christos Kozyrakis, and Kunle Olukotun. Transactional memory
coherence and consistency. In ISCA, page 102, 2004.

[8] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: ar-
chitectural support for lock-free data structures. In ISCA '93: Pro-
ceedings of the 20th annual international symposium on Computer
architecture, pages 289-300, New York, NY, USA, 1993. ACM Press.

[9] Michael Hicks, Jeffrey S. Foster, and Polyvios Prattikakis. Lock
inference for atomic sections. In TRANSACT. June 2006.

[10] R. Lorie J. Gray and G.F. Putzolu. Granularity of locks in a shared
database. In VLDB, pages 231-248, 1975.

[11] R. Lorie J. Gray, G.F. Putzolu, and L.L. Traiger. Granularity of locks
and degrees of consistency. In Modeling in Data Base Management
Systems, pages 364-394, 1976.

[12] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul
Acharya, David Eisenstat, William N. Scherer III, and Michael L.
Scott. Lowering the overhead of software transactional memory. In
TRANSACT. Jun 2006.

[13] Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. Autolocker:
synchronization inference for atomic sections. In POPL, pages 346—
358, 2006.

[14] T. Reps, S. Horowitz, and M. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In POPL. ACM, January 1995.

[15] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao
Minh, and Benjamin Hertzberg. Mecrt-stm: a high performance
software transactional memory system for a multi-core runtime. In
PPoPP, pages 187-197, 2006.

[16] Nir Shavit and Dan Touitou. Software transactional memory. In
PODC, pages 204-213, 1995.

[17] Bjarne Steensgaard. Points-to analysis in almost linear time. In
POPL, St. Petersburg Beach, FL, Jan 1996.

[18] Joseph Uniejewski. SPEC Benchmark Suite: Designed for today’s
advanced systems. SPEC Newsletter Vol 1, Issue 1, SPEC, Fall 1989.

A. Program Semantics

We describe a program semantics using small step operational
semantics relations. We use o = (H, L, P,in) to represent a
state consisting of a shared store H : Loc — Loc, a set of held
locks L; C LNames per thread, a command P; per thread, and a
boolean in; telling whether the thread 7 is inside an atomic section.
We abuse notation and also use o to represent thread-local states
(H, L, st, in). Essentially the program and in state are local, the
heap and set of locks are global. We use Loc D {&=zx |z € V}
to denote the domain of all program locations, which includes all
stack locations too. The set LNames is the domain of lock names.
We use an operator + : Loc X N — Loc to compute the offset
of a location, we assume that arbitrary pointer arithmetic is not
supported, we omit these details for simplicity.

Figure 8 shows the semantic rules. The semantics non deter-
ministically chooses a thread to perform a single step in the system.
The language contains the constructs acquireAll and releaseAll that
change the state of a thread to be inside and outside an atomic sec-
tion. The acquireAll(N) command also acquires the locks in N,
ensuring that N can be acquired concurrently with the locks held
by the other threads. When reading expression values and perform-
ing assignments, the semantics first check whether the thread is
inside an atomic section. If the thread is inside an atomic section,
the semantics also check that all accesses are protected by a lock in
L; (see last rules in assignments and side-effect free expressions).

Cells allocated within an atomic section are automatically pro-
tected by the thread that creates them (using the runtime lock).

B. Soundness Proof

Here we include the proofs the soundness theorem presented in
Section 4.2. All proofs assume we are given a sound abstract lock
scheme 32 and a sound pointer analysis query mayAlias.

Definitions Our proofs use two functions subs and reaches,
which we define in turn. The function subs(e) returns, for a given
expression e, all dereference subexpressions of e:

1) e= &z
_ {x&x} e=zx
subs(e) = {xe'} U subs(e’) e=xe
subs(e’) e=¢ +i

The predicate reaches(o, v) answers if there exists a path in the
state o that reaches the location v from some program variable:

true (0,&z) — v

reaches(o, v) = { reaches(o,v’) H(') =wv

We write c@p to say that o is a state that reaches the pro-
gram point p. If p is the point before a statement st, then 0 =
(H,L,P,in)and 3st’ . P; = st; st’.

Given a thread local state o, we write (o, st) — o’ to denote
a transition between states s.t. ¢ is at the program point before st
(c@b) and o’ is at the program point right after st (¢'@a). This
transition may involve several small steps in our semantics.

Lemmas We proceed to prove the lemmas used in our theorem.

LEMMA 1. The locks before any assignment protect the locations
accessed directly by the statement. Formally,

Vo, st . cQ(est) = 3l € transfer(xe; = ez, N) .
(0,e1) = v = ({v},rw) C [I]A
Ve € subs(e;) . (o,e) —v= ({v},ro) C[I]
where cQ(est) is any state that reaches the program point before

st, subs(ei) returns all dereference subexpressions of e1 and es,
e1 ranges over {&x, x&x}.

Proof. The proof follows from the definition of transfer and the
sets GG included on each assignment. We show this holds for each
assignment statement in our language: (a) z = y, (b) x = *y, (¢)
*x = y, (d) all other assignments.

(a) The assignment x = y can be written as *&x = y. To check
the first condition, we consider e; = &z. The transfer function
includes " from the generating set G'. Since our abstract
lock scheme ¥ is sound, Z™ protects the value of &z for writes.

To check the second condition we evaluate subs(e;) = {*&y},
so we need to check that the value &y is protected for reads.
This is the case since §"° € G

(b) This case, x = *y, is similar than the above. The first condition
is proved in the same way. The second condition includes a new
element since subs(e;) = {*&y,* * &y}. The lemma holds
because both ™ and *y" are included in G,

(c) On assignments *x = y the first condition is slightly different,
we check that x&x is protected for writes, which is the case
because *™ T € GY,. Additionally, for the second condition
we have subs(e;) = {x&z,*&y}, so we need to check that
&z and &y are protected for reads. The former is protected by

T'° € GYy, the latter is protected by 7° € G

(d) All other assignments, i.e. ¢ = &y, x = y + i, = new,
x = null, include a subset of the memory accesses seen in
x = y. Thus, the proof is similar.

This concludes the proof of this lemma.

LEMMA 2. Assume N is a set of locks protecting all locations
accessed after a statement st. Except for unreachable locations,
the locks inferred by transfer(st, N') protect all the locations that
were protected by N after the statement:

Vst,l € N,o,v € Loc.
c@Q(est) A reach(o,v) A ({v},e) C] =
A’ € transfer(st,N) . ({v},e) C [I']

where reach(o,v) holds if the location v is reachable from some
program variables in state o.

Proof. Consider an assignment statement e; = ez. Let [be a
lock in N, let e be an expression such that [= €,, where a is the
program point after the statement. We need to consider two cases:
(a) when e is not changed by the assignment, and (b) when the
value of e changed.

(a) When e is unchanged we consider two more cases: some subex-
pression of e aliases e or not. The first case yields that the as-
signment was a trivial assignment preserving the values in the
store, we can consider this case as an instance of case (b) below.
Hence, consider the other case, this is, e; is not aliased with any
subexpression of e. Then (8%, €®) appears in closure(Id) and
not in closure(Q). Thus, I’ = €® makes the lemma satisfiable.

(b) The value of e changes by the assignment, then consider two
cases: (bl) e; = z, and (b2) e; = *x

(bl) In this case e must start with the variable x, otherwise the
assignment wouldn’t change e. Then we must consider three
cases: (bla) ez is one of the following y, &y, y + ¢ or *y.
(blb) e2 = new, (blc) ez = null

(bla) In this case, e[ez/z] is an expression that before the

assignment has the same value as e after the assignment.
b

Moreover, (€%, e[ez/x]) appears in closure(Id) and

—

not in closure(Q), thus I’ = e[e2/z] makes the lemma
satisfiable.

System step (step a single thread)

(H,L, P;,in(i)) — (H', L, P/,V)
P =Pli— P/ i =inli— b

(H,L,P,in) — (H',L,P',in)

Transformed atomic sections

atomic

Vj,l € N,I' € L; . —~conflict(l,1")
(H, L, acquireAll(N), false) — (H, L[i — N], skip, true)

(H, L, releaseAll, true) — (H, L[i —], skip, false)

st; st, if, while

(H,L,st1,in) — (H/,f,stll, in')
(H, L, sty; sta, in) — (H', L', st}; sta, in’)

Control statements

(H, L, skip; st2, in) — (H, L, stz, in)

(0,b) =0, H' T’

o = (H,L,if(b)sty else sta, in) — (H',L,if(b')st1 else sty, in)

(H, L, if(true)st; else st, in) — (H, L, st1,in)

(H, L, if(false)st; else sta, in) — (H, L, st2, in)

(H, L,while(b)st, in) — (H, L,if(b)st; while(b)st else skip, in)

Assignments er = e
Small step evaluation rules:
=
(0,e2) — €5, H', L
— A - €2 # new
o= (H,L,e1 =eaz,in) — (H',L ,e1 = eb, in)
=
(o,e1) = ¢4, H', T ,
e1 # xv

o= (H,Liei =v,in) — (H'7f,e'1 =v,in)
Add locks for allocations within atomic sections:
H' = HW{v1 — null,...,v, — null}
I { L, U{l{}s.t. {v1,...,on},rw) C [If] in
[3 Ll —n

o= (H,L,ex =new(n),in) — (H',L,ex = v1,in)
Writes are protected within atomic sections.
in= (A e€L;. {n},mw) T[]
o= (H,L,*v1 = v2,in) — (H[v1 — va], L, skip, in)

Side-effect free expressions (o,€e) — €
Small step evaluation:

o,e) — ¢ o,e) — e

< > e#v % e#v

(o,e+14) — € +1i (o, x€) — *e

Values retrived, dereferences need read protection within
atomic sections:

v =v4s1i

(0, &z) — &z

(o,v+1) — v

in= (A €L.{v}ro) T
(o0 = (H,L, P,in),*v) — H(v)

Figure 8. Small-step semantics of output language.

(blb) In this case, e represents a heap path that doesn’t exist
before the assignment. This is because e is a sequence of
dereferences, and its first dereference is a heap location
allocated by this statement.

But we wonder if a location protected by €“, is still
protected by some I’ before the assignment. We claim
that this is true. Since e’s value is reachable before the
assignment, i.e. reach(o,v), it means that there is a
non-empty set of expressions I, where each expression
e’ € E reaches v at the point before the assignment. All
expressions in I don’t go through the location allocated,
otherwise they wouldn’t reach v.

At some point later within the atomic section, an assign-
ment must occur to make e reach the value v for the first
time. Such assignment would have to be a store opera-
tion *z = w, where z is aliased with some subexpres-
sion es of e. At that point, the analysis must have in-
cluded a lock that protects v using e[w/e;]. Our lemma
assumptions guarantee that w is protected/b}iome lock
I = w' in N, then e[w’/es] € E, and e[w’ /e, makes
the lemma satisfiable.

(blc) In this case, e is essentially an invalid expression since

its source is and z is null. But we have the same
concern as with the previous case. The proof is identical.

(b2) In this case, the assignment is of the form xx = y. Some
subexpression of e must alias , otherwise the expression
wouldn’t change when updating *z. Let e’ be the subexpres-
sion of e that aliases z. Then e[y/e’] before the assignment
has the same value as e after the assignment. Since mayAlias

—
is sound, (€%, e[y/e’]) appears in closure(S«z=y) and not
b

in closure(Q), thus I’ = eE—/? | makes the lemma satisfi-
able.

THEOREM 1. Let o be a reachable state, where thread i is about to
execute a statement st within an atomic section. Let N be the result
of our analysis for such atomic section. If at the entry of the atomic
section, the thread i acquired all locks in N, then there exists some
o' such that {0, st} — o', i.e. the program doesn’t get stuck.

Proof. The proof follows directly from the lemmas. The proof
is a simple inductive argument on the structure of commands an
atomic section. Our base case is when the atomic section is empty,
which is trivially true with N = &. Each inductive case assumes
that some sequence st already satisfies the theorem. The locks N’
computed after adding new assigment st’ before st still protect
the accesses in st because of Lemma 2, but also the accesses
in st’ because of Lemma 1. Adding control structures, such as
conditionals and while loops, uses the standard proof.

