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Foundations of Statistical Natural
Language Processing:
A Case Study of Text Input System




P = o . e

/Who should be here?

Interested in statistical Natural Language Processing
e What is NLP? NLP = AI? What is the role of Prin NLP?
Want to develop a simple and useful NLP system by

yourself
 For fun, course project, mind exercise?

Look for topics for your master/PhD thesis
e A difficult topic: very hard to beat simple baseline
e An easy topic: others cannot beat it either

Start NLP/IME business and compete with MS
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/Outline

Probability: a brief refresher

Input Method Editor (IME): problems and solutions
Modeling: capture language structure

Training: learn model parameters from data

Search: predict using model (won’t discuss in detail)
Do It Yourself (DIY) tips
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Probability: a brief refresher (1/2)

Probability space: xeX
e P(x) € [o, 1]
* 2 xP(x) =1
e Cannot say P(x) > P(y) if ygX
Joint probability: P(x, y)
e Probability that x and y are both true
Conditional probability: P(y|x)
e Probability that y is true when we already know x is true
Independence: P(x, y) = P(x)P(y)

e x and y are independent

Gao and Suzuki, Weihan-2007 4
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Probability: a brief refresher (2/2)

H: assumptions on which the probabilities are based

Product rule —-from the def of conditional probability
o P(x, y|H) = P(x|y, H)P(y|H) = P(y|x, H)P(x|H)

Sum rule - a rewrite of the marginal probability def
» P(x|H) = X, P(x, y|H) = =, P(x]y, H)P(y|H)

Bayes rule — from the product rule
 Ply|x, H) = P(x|y, H)P(y|H) / P(x|H)

Gao and Suzuki, Weihan-2007 5
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Input method editor (IME)

Gaoan

Software to convert keystrokes (Pinyin) to text output

mafangnitryyixoazegefanfa

Xla z fan
ma fain n| tryyl ze ge 1a fa

ma fang nit YU X|a zhe e fang fa

JBR =l X %
Ma nitu I Xla zen
. fan . yl J fang

ma fan tl |X|a zhe e fang fa
Fﬁa'ﬁ% & XJF izg\ﬁgif
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A Bayesian approach to IME

Find the best output W of a given input A via

W = argmax, P(W|A)
P(A|W)P(W)
P(A)

W = argmax,,P(A|W)P (W)

W = argmax,,

P(A|W): typing (translation) model
Dealing with typing error, e.g., zh = z
P(W): language model (LM), e.g., trigram model
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Three fundamental research tasks

Modeling: capture language structure/dependencies via the
probabilistic model

e Pr(W|A) = Py(W|A) = P(W|A, 6)
Training: estimation of free parameters using training data
e O =argmax,P(W|A, 0)
Search: finding “best” conversion given the model
e W =argmax, P(W|A, 0)
Additional important tasks
e Data/dict acquisition and processing (word segmentation)

e Evaluation methodology

Gao and Suzuki, Weihan-2007 8 Mﬁg;ea rch
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Development of IME: data

Dictionary - mapping from Pinyin to Chinese words
Training data, (W) and (W, A)
e Chinese text — LM training
» Obtained from Chinese web pages

e Pinyin and Chinese text pairs — discriminative training
» Check our website

Data processing
e Word segmentation
e Training/dev/test split (cross-validation)
e Gold standard

Gao and Suzuki, Weihan-2007 9 Mﬁz;ea rch
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P
Development of IME: evaluation

Perplexity — quality of LM
e Geometric average inverse probability
e Branching factor of a doc: predicting power of LM
e Lower perplexities are better
e Character perplexity for Chinese

1
pplx = 2% where H = Wlog P(W)

Character error rate (CER) - quality of IME
Test set (A, W)
CER = edit distance between converted W and W*
Correlation with perplexity

Gao and Suzuki, Weihan-2007 10 Mﬁz;ea rch
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Development of IME: build it bit by bit

Baseline

e Straw-man versus state-of-the-art
e IME: Trigram LM, MLE, Viterbi search

Improve the baseline via

e Better training data: dictionary (OOV), segmentation,
balanced corpus etc.

e Better modeling: capture richer linguistic information?
 Better training: lead to better CER/perplexity?
* Better search (decoding): less search error and faster

Gao and Suzuki, Weihan-2007 1 Mﬁoégea rCh
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Modeling

Goal: how to incorporate language structure into a
probabilistic model
Task: next word prediction

e Fill in the blank: “The dog of our neighbor ___”

Starting point: word n-gram model
e Very simple, yet surprisingly effective
e Words are generated from left-to-right

e Assumes no other structure than words themselves

Gao and Suzuki, Weihan-2007 12 Mﬁg;ea rch
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Word N-gram model

Word based model

e Using chain rule on its history (=preceding words)

P(the dog of our neighbor barks) = P(the | <s>)
XP(dog | <s>, the)
X P(of | <s>, the, dog)

XP(barks | <s>, the, dog, of, our, neighbor)
XP(</s> | <s>, the, dog, or, our, neighbor, barks)

Pw,w,..w )=P(w,|<s>)
X P(w, | <s>w,)
XP(w, | <s>w,w,)

X Pw, | <s>w,w,..w, )
XP(</s> | <s>w,w,...w,)

Gao and Suzuki, Weihan-2007 13 Mﬁz;ea rch
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Word n-gram model

How do we get probability estimates?
e Get text and count! P(the|<s>) = C(<s> the)/C(<s>)
Problem of using the whole history

e Rare events: unreliable probability estimates
e Assuming a vocabulary of 20,000 words,

model # parameters
unigram P(w,) 20,000
bigram  P(w,|w,) 400M

trigram  P(w,|lww,) 8 x 10'
fourgram P(w_ |ww,w, 1.6 X 10"7

From Manning and Schiitze 1999: 194



Word N-gram model

Markov independence assumption
e A word depends only on N-1 preceding words
e N=3 — word trigram model

Reduce the number of parameters in the model

e By forming equivalence classes

Word trigram model
Pw; | <s>w, w,..w_w._)=Pw, |w_ ,w_)

Pw,w,..w )=P(w,|<s>)
XP(w, | <s>w,)
X P(w3 lw,w,)

XP(Wn | WnoWn,
XP(</S> | W Wn)

Gao and Suzuki, Weihan-2007 15 Mﬁz;ea rCh


http://research.microsoft.com/

But language has structure!

Other ways to form equivalence classes
e Morphological
- Stemming: bark~barked~barks~barking
* Syntactic VP-barks

NP-dog-SUBJ
VP-barks Constituent

—

PP-neighbor

/\ structure
W NP-neighbor AV%ht

DET NNPREP DET NN V ADJ NN
the dog of our neighbor barks every night

T W Dependency
structure

Gao and Suzuki, Weihan-2007 16 Mﬁggea rCh
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But language has structure!

Other ways to form equivalence classes

e Semantic

 Cluster semantically related words: dog~husky~poodle

Challenge

e How to incorporate linguistic structure in a probabilistic
model effectively

Gao and Suzuki, Weihan-2007 17 Mﬁggea rCh
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Modeling: basic idea

Introduce language structure s as hidden variable
e Assignment of s must be predicted given h
P(w | h) ZP (w,s|h) ZP |h)P(w|s,h)

—ZP | 1)P(w | ©(s, 1))

Define mapping function ®
e ® maps word history into equivalence classes
P(W, | W,..W,) = P(w]| h) = P(w| d(h))
Word trigram if ®(h) = (w._,w._,)

Gao and Suzuki, Weihan-2007 18 Mﬁz;ea rCh
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Finding all possible assighnment of s

Detect s via parsing: an independent NLP problem
e POS tagging, dependency graph, word clusters...
e Traditional NLP tasks: tools available
e Finding all possible assignment of s is often not realistic

N-best and Viterbi approximation
P(w|h) ZP s|h)P(w|®(s,h))

h)
= Z Z PS L 1) P(w|®(s,h)) «N-bestapproximation

~max P(w | ®(s,h)), wheres = arg max P(s | h) < Viterbi
: s approx1mat10n
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Defining @
s is a chunk sequence
e ®(s) = two previous headword
e Headword trigram model (Gao et al., 2002b)
s is a dependency graph

e O(s) =2 linked word to its left
* Dependency LM (Gao and Suzuki, 2003)

s is a word cluster sequence
» ®(s) > two previous word clusters
e Cluster LM (Gao et al., 2002¢)

Gao and Suzuki, Weihan-2007 20 M'(Ruggea rch
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eadword trigram model (HTM)

s is a chunk sequence

Chunk (Abney, 1991)

e Base phrase, typically contains one content word
(headword) plus any number of function words.

e Flat, non-hierarchical and span the word sequence
 Closely related to the notion of bunsetsu in Japanese
e Define ®(s) as two previous headwords

Example
e [The dog] |of our neighbor] |barks]| [every night]

Gao and Suzuki, Weihan-2007 21 Mﬁoégea rch
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Headword trigram model (HTM)

s is a chunk sequence

Chunk (Abney, 1991)

e Base phrase, typically contains one content word
(headword) plus any number of function words.

e Flat, non-hierarchical and span the word sequence
e Closely related to the notion of bunsetsu in Japanese
e Define ®(s) as two previous headwords

Example
e [The dog] |of our neighbor] [barks] [every night]
hi-z hi—1 W,

Gao and Suzuki, Weihan-2007 22 Mﬁz;ea rch
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Headword trigram model

Using headword H and function word F

/

(HTM)

 2-step model: generate class first, then generate words
given the class (chain rule)
P(w, | ®(w,..w; 1)) = P(H, | ®(w,..w, ,))x P(w, | ®(w,...w, ,)H,)
+ P(E | ®(w,...w, ,))x P(w, | D(w;,...w, ,)F)

Incorporating assumptions using headword

e Dependency between headwords (dog~barks)

e Headword dependency is permutable (barks~dogs)

P(w, | ®(w,..w, ;)H,;) =

Gao and Suzuki, Weihan-2007

A

(A P(w; | h,_h,_H,)

_|_

(1_ﬂg)P(wi |hi—1hi—2Hi))_

+(1 A )P(w; |w,_,w,; H,)
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Detecting Headwords

Assumed a one-to-one mapping between POS and
word category (H/F)

Generated a mapping table from POS-tagged text
e Chose the more frequent category in case of ambiguity

Accuracy of H/F detection: 98.5%
e This is good enough

Gao and Suzuki, Weihan-2007 24 Mﬁz;ea rch
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Dependency language model (DLM)

s is a dependency graph among headwords

Constraint on dependency structure D
e Planar: no line crossing
e Acyclic: contains no cycle
e Define ®(s) as the linked word on the left

Example

- -

* [The dog] |of our neighbor] |barks] |every night]

Gao and Suzuki, Weihan-2007 25 Mﬁz;ea rCh
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Dependency language model (DLM)

s is a dependency graph among headwords

Constraint on dependency structure D
e Planar: no line crossing
e Acyclic: contains no cycle
e Define ®(s) as the linked word on the left

Example

- -

* [The dog] |of our neighbor] |barks] |every night]

W, W;
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Dependency language model (DLM)

s is a dependency graph among headwords

Constraint on dependency structure D
e Planar: no line crossing
e Acyclic: contains no cycle
e Define ®(s) as the linked word on the left

Example

- -

* [The dog] |of our neighbor] |barks] |every night]

w; w;

Advantage

e Capture long-distance dependency
Gao and Suzuki, Weihan-2007 27 M'(Ruz;ea rch
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Dependency parsing

The most probably dependency D is generated by
D* =argmaxP(D|W) =argmax | | P(d |W)
D

D deD
Parsing algorithm (approximation algorithm)

e Operates L to R

e Link w; to each of its previous words w;, and push the generated
dependency d;; into a stack

 Violation of syntactic constraints (planar and acyclic): resolved by
removing the dependency with the lowest probability in conflict

o Efficient: O(n?)
» Traditional parser is O(n5)

« Modified version of Yuret (1998)

Gao and Suzuki, Weihan-2007 28 M'(Ruzgea rch
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Dependency language model (DLM)

P(w; |OW;_4,D; ) =

-
A(PW, [w,R))
< +(1-A4)P(w; [wj_,,wWj4) | w;:headword

| P(W [wy o, W) w;: function word

|The dog] |of our neighbor] |barks] [every night]

w; w;
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Cluster language model (CLM)

® s is a set of word clusters

* Goal: group similar words
e Syntactic similarity: POS
e Semantic similarity

- WEEKDAY {Monday, Tuesday, Wednesday...}
« DOG {poodle, husky, lab, dog ... }

e Define ®(s) as two previous word clusters
* Example
e The poodle barks every night

« Estimate of P (barks | poodle) may be inaccurate

o

» Estimate of P (barks | DOG) may be more reliable

Gao and Suzuki, Weihan-2007 30 Mﬁoé)gea rCh
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CLM: forms

Predicted and conditional words in P(w; | w,w,)
* w,: predicted word

e w,and w,: conditional words

Three basic cluster trigram models

e Predictive cluster model
(w |w1 Zwll) (W|w1 2w11)xp(w |w1 Zwl 1W)

e Conditional cluster model
(w|w12w11) (wlw W )

e Combined cluster model
P(w, |w, ,w, ;)= PO, |W._,W. [ )xP(w, | W._,\W._ W)

Gao and Suzuki, Weihan-2007 31 Mﬁggea rch
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Finding word clusters (Goodman, 2001)

Objective function: maximize probability

* In the case of predictive clustering, maximize

HP(\N | Wi ;) x P(w; |W,)
_H P(w;_ Wi)>< P(W,w,)

2 P(wy)  PW)

T PWiw)  P(w W)
H P(WI 1) P(\N)
= P(w)
HP( = x P(w;_; W)

N
o Sufficient to maximize |]_ PW.,|W)
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Data for Evaluation

Task: Japanese IME

e Baseline: word trigram model

e N-best re-scoring task (N=100)
Corpus: Newspaper (word-segmented)
e Training: Nikkei (36 million words)

e Test: Yomiuri (100,000 words)

Metric: Character Error Rate (CER)

#chars wrongly converted

#chars in the target sentence

Gao and Suzuki, Weihan-2007 33 Mﬁg;ea rch
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Results on Japanese IME (6ao and suzuki, 2004)

Model Description CER % CER Reduction
Baseline  Word trigram model 3.73 ——
Oracle In the 100-best list with the minimum number of errors 1.51 59.5%

Microsoft
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Modeling: summary
Motivation

e Incorporate linguistic structure in a probabilistic model

e Word trigram model cannot capture long-distance
dependency

Three types of structures
e Chunks, dependency, clusters
e Substantial improvement over trigram model

Challenge
e Model simplicity vs. capturing structure
e Modeling vs. training data size
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Training: parameter estimation

Bayesian estimation paradigm
Maximum likelihood estimation (MLE)
Smoothing in N-gram language models

Discriminative training (overview)

Gao and Suzuki, Weihan-2007 36 Mﬁzgea rCh
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The Bayesian paradigm
P(model|data) = P(data|model)xP(model) / P(data)

e P(model|data) — Posterior

e P(data|model) - Likelihood

e P(model) - Prior

e P(data) - Marginal
Likelihood versus probability

e P(n | u, N), for fixed u, P defines a probability over n; for fixed
n, P defines the likelihood of u.

Never say “the likelihood of the data”
Always say “the likelihood of the parameters given the data”
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aximum likelihood estimation

0: model; X: data
0 = argmaxP(0|X) = argmaxP(X|0)P(0)/P(X)
e Assume a uniform prior P(0) = Const
e P(X) is independent of 0, and is dropped
0 = argmax P(0|X) ~ argmax P(X|0)
e Where P(X|0) is the likelihood of parameter
Key difference between MLE and Bayesian Estimation
e MLE assume that 0 is fixed but unknown,

e Bayesian estimation assumes that 0 itself is a random
variable with a prior distribution P(0).
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MLE for trigram LM

Py (w,|w, w,) = Count(w, w, w,)/Count(w, w,)

P, (w,|w,) = Count(w, w,)/Count(w,)

P,;; (w) = Count(w)/N

It is easy - let us get real Chinese text and start counting

Count(the,dog,barked)
Count(the,dog)

Py, (barked|the,dog) =

But why this is the MLE solution?

Gao and Suzuki, Weihan-2007 39 Mﬁz;ea rch
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The derivation of MLE for N-gram

 Homework - an interview question of MSR ©

Hints
e This is a constrained optimization problem
e Use log likelihood as objective function
e Assume a multinomial distribution of LM

e Introduce Lagrange multiplier for the constraints
e Y exP(x) =1,and P(x) > 0

Gao and Suzuki, Weihan-2007 40 Mﬁz;ea rch
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/Sparse data problems

Say our vocabulary size is |V|
There are |V|3 parameters in the trigram LM

e |V| =20,000 = 20,0003 = 8 x 102 parameters

Most trigrams have a zero count even in a large text
corpus

 Count(w,w,w,) =0

° Py (w,|lw, w,) = Count(w, w, w,)/Count(w, w,) = 0

© P(W) = Py (w,) Py (w,|w) TPy (Wi|wi, wi,) = 0

e W=argmax,, P(A|W)P(W) =... oops
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Smoothing: adding one

Add one smoothing (from Bayesian paradigm)
But works very badly - do not use this

Count(wy,w,,w3) + 1
Count(wy,w,) + |V|

P(ws|w,,wy) =

Add delta smoothing
Still very bad - do not use this

Count(wy,w,,w3) + &

P e
L, ;] Count(w,,w,) + |V|S

Gao and Suzuki, Weihan-2007 42
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Smoothing: linear interpolation

Linearly interpolate trigram, bigram and unigram prob
P(ws|wy, wy) = Ay Py (W |wy, o) +25 Py (Wa[w,) + A3 Py (Ws)

where A, + 4, +4; =1

Allow A’s to vary - value of A is a function of Count(.)

P(ws|wy, wy) = 44 (C(Wp Wy, WE))PML (w3 |wy, wy)
+2,(C(w,, w3)) Py (W3 |w,)
+43(C(w3)) Py (W53)

where ?Ll(C(wl, W,, w3)) +1,(C(w,,w3)) + 15(C(wz)) =1

Gao and Suzuki, Weihan-2007 43 Mﬁggea rch
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How to estimate A’s

Split data into training, dev, test
Optimize A’s on dev data (i.e., pick the best value of A)

A= argmaxlz log P(ws|wyw,)
(wq,ws,w3)indev data

Can use EM (expectation maximization) algorithm to

find the A’s

Or use ageneralized numerical optimization
algorithm (e.g., Powell search)

The objective function is concave

Gao and Suzuki, Weihan-2007 44 M'(Ruzgea rch
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Smoothing: backoff

Backoft trigram to bigram, bigram to unigram

C(erwzst) =i

P(wz|wy, wy) = { Clwy, wy)

{I(WIJWE)P(W3|WE):Ef C(WIJWEJWS) =0

,ifC(Wl,Wg,Wg) >0

De(o,1) is a discount constant — absolute discount
« is calculated so probabilities sum to1 (homework®)

1= Z P(ws|wy,w,)

(wi,w3)
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Smoothing: improved backoff

Allow D to vary
e Different D’s for different N-gram
e Value of D’s as a function of Count(.)
» Modified absolute discount

Optimizing D’s on dev data using e.g., Powell search
D= argmazxxnz log P(wsz|wyws)
(wy,w,,wy)in dev data

Using word type probabilities rather than token
probability for backoff models

Kneser-Ney smoothing
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'What is the best smoothing?

It varies from task to task

e Chen and Goodman (1999) gives a very thorough
evaluation and descriptions of a number of methods

My favorite smoothing methods
e Modified absolute discount (Gao et al., 2001)

 Simple to implement and use
« Good performance across many tasks, e.g., IME, SMT, ASR
e Interpolated Kneser-Ney

» Recommended by Chen and Goodman (1999)
« Best performance on our SMT system (trickier to use, though)
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Google’s stupid smoothing®©

Simply set D=o,and A = 0.4  os]

+0.51BP =2

B R =1 S
Refer to (Brant et al., 2007) e ooy L3082
a sl .'- .|'.'i
m 04 . mm
g " *0.TOBPH2
( ) : :
Clwy, wy,wy 2 0.38 [+0.62BP2
if C(Wl, Wz,w:}) >0 % s target KM +
P(walw, w,) = . = * +dcnsws KM
( 3| 1, 2) { C(Wlf Wz) 2 025 | ' —— ﬂuehnnta_w:HE +
i ret 5 o
0.4P (wslws), if C(wy, wp,ws) =0 +0.66BPHC Hocnews B m
o.ag | +webnews SB
L L T | L L il L L Ll L -'.llﬁl'lElb S|E L |
10 100 1000 10000 100000  1e+06

LM training data size in millian tokens

Figure 5: BLEU scores for varving amounts of data
using Kneser-Ney (KIN) and Stupid Backoff (5B).

Do not do research until you run out of data (Eric Brill)

Microsoft
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Discriminative training

MLE - maximizing P(X|6)
Discriminative training - maximizing P(6|X)

pong. 2 TR

P(X) Yo P(X|0)P(p)) assumea uniform prior P(6) = C
P(X|0)
argmaxP(0|X) = argmax
e o e
1
— argmax
: 1 _I_EEI’iEI P(Xlef)
P(X|0)
P(X|06)
= argmax

Y70 P(X]|0")

E.g., Maximum Entropy (Rosenfeld, 1994), Perceptron
(Roark et al., 2004)
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‘Search: basic algorithms

Search space: lattice

Find 1-best conversion
e Time-synchronous Viterbi decoder (left to right)
e Efficiency - the use of beam

Find N-best conversions

e Time-asynchronous A* decoder (best-first search + heuristic
function)

e How to estimate future cost (heuristic function)
2-pass search

e First pass: left-to-right search find the 1-best

e Second pass: A* search using 1-best scores as future cost
A good text book — (Huang et al., 2001)
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Search: an example (homework®)

A D
T T PP
B E <s>, A, D, </s>
c - 2 <s> A, E, </s> 2.5
3 <s>, B, D, </s> 2.6
4 <s>, C, D, </s> 2.7
P(A] <s>)=0.2 P(DIC) =0.1
P(B| <s>) =015 P(EIC) = 0.1 5 <s>, B, E, </s> 2.8
P(C =01 P(FIC)=015
= L 6 <s>, C, F, </s> 2.8
P(DIA) = 0.2 P(</s>|D) = 0.2
P(E|4) = 0.15 P(</s>|E} = 0.1 7 <s>, C, E, </s> 3.0
P(F4) = 0.01 P(</s>|F) =0.1
P(DIE) = 0.08 8 <s>, B, F, </s> 3.1
P(E|B) = 0.1
P(F|B) = 0.05 9 <s> A F </s> 3.7

Microsoft
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lY: tools and data
.M Toolkit

e CMU SLM (probably out-of-date, still usable)
e SRILM (most popular, implementation of KN smoothing)
e MSR SLM (forthcoming, check our website)
Training data
e Crawl Chinese web pages
e Discriminative training data, check our website
Word segmentation
e LDC word breaker
e MSRSeg, check our website
Visual Studio 2005
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DIY: get your hands dirty

Data preparation

e Dictionary, pinyin-to-word mapping?

e Training data acquisition and processing
Baseline IME system

e Train a trigram model using existing SLM toolkit

e Code a Viterbi decoder

 Access dictionary to generate lattice (define search space)

 Access trigram probability to find the best word string given input:
W = argmax P(W|A) ~ argmax P(W)

Evaluation
e Quality of LM: perplexity
e Quality of IME: CER
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DIY: your research topics

Better modeling

e Latent semantic LM (Bellegarda, 2004)

e Structured language model (Chelba and Jelinek, 2000)
Better training

A Bayesian approach (Teh, 2006)

e Discriminative training (Gao et al., 2007)
Best IME system

e Keep it as simple as possible

e Excellent Engineering

e Data, data, data!
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e %
What we did at MSR

Better training data: 1999-2001

e unified approach to Chinese SLM

e Gaoetal,, (2002a)
Better model form: 2002-2004

e introduce language structure into SLM

e Gaoetal., (2002b, 2002c¢), Gao and Suzuki (2003, 2004)
Better training method: 2005-present

e directly minimize error rate

e Gaoetal., (2006, 2007)

YOU CAN DO BETTER THAN US!
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(Gao et al., 2002a)
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% e  , e
~Better training data: Chinese IME results
(Gao et al., 2002a)
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15 30 100 200
Memory (MB)
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~Better modeling: Japanese IME results
(Gao and Suzuki, 2004)

Model Description CER %  CER Reduction
Baseline ~ Word trigram model 3.73 —
Oracle In the 100-best list with the minimum number of errors 1.51 59.5%
HTM Equation (3) with 4,=0.2 and /,=1 3.41 8.6%
PHTM Equation (3) with 4,=0.2 and 4,=0.7 3.34 10.5%
C-PHTM Equation (3) with 4,=0.3 and 4,=0.7 3.17 15.0%
4-gram Higher-order n-gram model with a modified version of 371 0.5%
>-gram Kneser-Ney interpolation smoothing 3.71 0.5%
6-gram 3.73 0.1%
ATR-I Equation (6) 4.75 —27.3%
ATR-I+ ATR-I interpolated with Baseline 3.67 1.6%
ATR-II Equation (7) 3.65 2.1%
DLM-1 Equation (8) with 4;,=0.1 and 4,=0 3.49 6.4%
DILM-2 Equation (8) with 4,=0.3 and 4,=0.7 3.33 10.7%
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(Gao et al., 2007)

etter training: Japanese IME results

| kR | #features| time (min)| 4 trainiter_

Baseline (MAP)
MaxEnt/L2
MaxEnt/L1
AvePerceptron
Boosting

BLasso
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7.98%
6.99%
7.01%
7.23%
7-54%0

7.20%

295,337
53,342
167,501

32,994
33,126

29

27
25

175
238

665
864
56
71,000

250,000
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Contact information
Jianfeng Gao,

Hisami Suzuki,

The latest version of the slides and papers/tools can
be found on our website.
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