
Selecting On-Topic Sentences from Natural Language Corpora

Michael Levit1, Elizabeth Boschee, Marjorie Freedman

BBN Technologies, 10 Moulton st, Cambridge, MA
{mlevit,eboschee,mfreedma}@bbn.com

Abstract
We describe a system that examines input sentences with re-
spect to arbitrary topics formulated as natural language expres-
sions. It extracts predicate-argument structures from text in-
tervals and links them into semantically organized proposition
trees. By instantiating trees constructed for topic descriptions in
trees representing input sentences or parts thereof, we are able
to assess degree of “topicality” for each sentence. The presented
strategy was used in the BBN distillation system for the GALE
Year 1 evaluation and achieved outstanding results compared to
other systems and human participants.
Index Terms: machine learning, question answering, topicality.

1. Introduction
One of the best studied problems of machine learning is topic
classification. Its applications to natural language processing
are numerous and can be viewed as multiclass multi-label clas-
sification tasks [1]. While topic classification can deal with
fairly large number of topics, this number remains finite and
the topics must be known in advance. However, if these pre-
conditions are not satisfied, and topics are allowed to be speci-
fied at run-time via natural language formulations, the classifi-
cation paradigm can not be straightforwardly applied anymore
and other solutions must be searched for.

We formulate the topicality problem as this: given a free-
text formulation of a topic and a natural language document,
determine the extent to which the document is relevant for the
topic. It is not difficult to imagine how knowledge of this type
could be beneficial for several application domains, such as
mixed-initiative dialog systems and story segmentation, but we
see its biggest advantage for the question answering task and,
in particular, for the kinds of queries that either are focused
entirely on a topic or event (e.g. “List facts about events de-
scribed as follows: [EVENT]”) or inquire about a particular
aspect of a topic or the reaction an event elicited (e.g. “How
did [COUNTRY] react to [EVENT]?”). In the example queries
above, [EVENT] is a slot filled with a free-text description of
some event. To select passages from a corpus that answer such
queries we need to be able to say how “on topic” they are with
respect to such free-text formulations, that is, we need to solve
the topicality problem.

Matching a slot can be trivial if the slot consists of a sin-
gle name or very specific term, but it can also require consid-
erable effort when the slot contains a lengthy or complex de-
scription of some topic or event. One example of a difficult
case is the following query from the GALE Distillation task
[2]: “List facts about [the looting of Iraqi museums after the
U.S. invasion]”. Another difficulty in dealing with queries that

1Michael Levit is currently affiliated with International Computer
Science Institute, Berkeley, CA

have topic and event slots comes from the fact that human lan-
guage makes it possible to convey on-topic information with-
out using the words that were used in the actual topic formula-
tion: “Many works of art were stolen from Baghdad galleries
in 2003”. Neither does the presence of the topic words in a sen-
tence guarantee that it will be relevant: “There were no known
instances of looting of Iraqi museums before the U.S. invasion”.
The topic-based GALE Year 1 templates frequently posed such
problems. In this paper we explain how free-text query slots
can be represented as predicate-argument “proposition trees”,
and how responses to queries involving free-text arguments can
be found using a matching algorithm to approximately instan-
tiate the query proposition tree in the proposition trees of the
candidate responses.

2. Related Work
One example of semantic predicate-argument structures are de-
pendency relations. In [3] it was shown how to construct hi-
erarchies of typed dependency relations using a collection of
handcrafted rules. Each relation connects a semantic head with
its dependent. Relations connect individual words, and the set
of relation types is also hierarchically organized but not lexical-
ized. These are the two major differences between dependency
relations and our predicate-argument structures, where text in-
tervals spanning entire mentions are connected and some lexical
items (e.g. prepositions) give rise to separate argument types.

Predicate-argument structures have been previously used to
answer questions with difficult semantics. Moldovan at al. [4]
suggested transforming question and answer sentences into log-
ical representations and using first order logic to produce an in-
ference between them. They used world knowledge and NLP
axioms to facilitate derivation. Logical representation of a sen-
tence was built upon a number of semantic predicates extracted
from its syntactic parse.

In [5] one piece of evidence used to determine the expected
semantic role of a potential answer in a sentence came from
PROPBANK predicate-argument structures [6] extracted from
unstructured questions, and in [7] hierarchies of lexical, syntac-
tic and semantic sentence representations (of which predicate-
argument structures were a part) were employed to decide if one
sentence entailed (implied) another. A number of transforma-
tions such as genitive replacement (“Z’s W” is equivalent to “W
of Z”) was incrementally applied in order to match structures
using unification. Semantic role labeling of relation arguments
was trained on PROPBANK and, in the reported experiments,
restricted to verb frames only.

3. Propositions and Proposition Trees
We used BBN’s state-of-the-art information extraction system
SERIF [8] that automatically extracts predicate-argument struc-

<ref>

older sister

visit

decided

Bob

Englandhis
Bob

younger brother

[verb]

[verb] [name]

[name] [set] [name]

[noun][noun]

yesterday

<member>
<ref>

<sub> <obj>

<sub>

<mod> <ref> <mod> <ref>

<member>

<poss>

in

to <temp>

<ref>

Figure 1: Proposition tree for sentence “Yesterday, Bob decided
to visit his younger brother and older sister in England”.

tures (called propositions) from syntactic parses. Each proposi-
tion has a type (e.g. VERB, NOUN, MODIFIER, SET and others),
a head predicate and a non-zero number of arguments. Each
argument refers to another proposition or a mention (associated
with a subtree of the sentence’s syntactic parse). Each argument
also has a role, where the lexicon of roles consists of a closed
set of grammatical functions such as subject, object, indirect ob-
ject and others, as well as a “lexicalized” set of preposition- and
conjunction-based roles (e.g. to, of, that). Mention arguments
are by far the most common type of argument. Consider the
sentence: “John throws the ball”. The following three proposi-
tions can be extracted from it:
p1 = throws <verb> (<sub>: m1, <obj>: m2)
p2 =<name> (<ref>: m1, ”John”)
p3 = ball <noun> (<ref>: m2)

The first proposition is of type VERB and has head predicate
throws. Two arguments, both mentions, are attached to it: the
first one referring to John as the subject of the proposition and
the second one to the ball as its object. Furthermore, two propo-
sitions (a NAME proposition and a NOUN proposition) are cre-
ated to represent each of these entities.

Because of the way propositions are extracted from syntac-
tic parse trees, it should be possible to assemble the individual
propositions extracted from a sentence into one coherent tree
structure representing the semantic interpretation of the sen-
tence, abstracted from its exact syntactic realization. In prac-
tice, a sentence may consist of either one or several such propo-
sition trees, created by replacing mention arguments of propo-
sitions with propositions referencing those mentions as their
predicate head. We use the notation proposition forest to re-
fer to all proposition trees extracted for a sentence (or any other
interval of text). Figure 1 shows a proposition tree that repre-
sents this sentence: “Yesterday, Bob decided to visit his younger
brother and older sister in England”. In this diagram, box la-
bels in bold indicate proposition types and labels in italics sig-
nify words or word phrases associated with each tree node. Arc
labels are argument roles. Note that because of the way proposi-
tion trees are built, it doesn’t matter if verbs are used in active or
passive form, so “John throws the ball” and “The ball is thrown
by John” would result in the same proposition tree.

In practice, the basic strategy for creating proposition trees
from sentences is this:

1. for each proposition extracted from the sentence, create
a proposition tree rooted in that proposition, then recur-
sively expand the tree by replacing its arguments by ap-

propriate propositions, where possible;

2. if the resulting tree is already subsumed by another, big-
ger proposition tree, ignore it;

3. use appropriate criteria to select one proposition tree to
represent the sentence, or return the entire proposition
forest.

Note that proposition trees can also be extracted from spans of
text that are not well-formed sentences. By analyzing all propo-
sitions contained within any text interval, we can represent that
interval as a proposition forest. In particular, this holds for the
query slots as described above, which are almost always sen-
tence fragments.

4. Topic Matching with Proposition Trees
In order to estimate the extent to which a sentence is “on topic”
with respect to a free-text slot, we extract proposition forests
from both the slot and the sentence. We then try to instanti-
ate each of the slot proposition trees τi in each of the sentence
proposition trees tj . If an instantiation is possible, its score θij

is compared with other instantiation scores for this slot propo-
sition tree, and the non-negative maximum is saved:

θi := max (max
j

θij , 0). (1)

Finally, the topicality measure is defined as:

θ :=

P
i wi ∗ (θi/θmax

i)P
i wi

. (2)

Here wi is the weight of the proposition tree τi (usually reflect-
ing its number of nodes) and θmax

i is its pre-computed highest
possible instantiation score.

4.1. Exact Instantiation of Proposition Trees

Next we describe how one proposition tree (pattern tree) can
be instantiated in another (subject tree). We are only inter-
ested in tree containment: the nodes and links of the pattern
must be present in the subject, but not vice versa. This prob-
lem is equivalent to the classical subtree matching problem [9],
and can therefore be solved in time linear in pattern and sub-
ject size. Because in practice the trees we consider are rather
small, we are not concerned with theoretical complexity, and
therefore adopt a modification of a depth-first recursive match-
ing algorithm with optimistic cost estimation and other lossless
heuristics.

In the exact match formulation, two nodes are considered a
match for each other if they are labeled with the same word (or
phrase), and if they can be reached from their parents over links
with identical roles, whereby the parent nodes themselves have
already been found to be a match. The tree matching score θij

in the exact case is either 0 or 1. Figure 2 shows a pattern tree
(a) and a subject tree (b) in which it can be instantiated exactly.

4.2. Extensions

If we allow only exact matches in our instantiation scheme, we
will miss most of the relevant sentences. For instance, none of
the following trivial sentences would be identified as relevant
for the pattern expression in Figure 2: “the plane flew”, “the
plane goes to England”, “plane’s flight”, “it [the plane] takes
off and flies”.

To handle these kinds of variations, we developed several
extensions to the exact instantiation scheme. To support them,

Maryto

(a) (b)

<sub>that

<ref><mod>

<ref>
<sub>

<ref>

<ref>

<sub>

flies

saysflies

[verb]

[noun] [verb]

[verb]

[name]

[name][noun]

New−Yorknextplane

plane

Figure 2: Proposition tree created for expression “The plane
flies” (a) can be instantiated in the proposition tree for “Mary
says that the next plane flies to New-York” (b).

we need to allow not one but possibly many words or word
phrases to be associated with each tree node, forming word
pools. Then, the word matching condition for two nodes is re-
laxed so that two nodes match if the intersection of their word
pools is not the empty set. Furthermore, the tree instantiation
score θij , formerly a binary function, is now computed accord-
ing to:

θij = #matched ∗ γmatch − γ− (3)

where γmatch is a constant score awarded to each node-to-node
match, #matched is the number of such matches in a tree
instantiation and γ− is the cumulative cost of these matches.
There are several factors that influence the cost of a match.
First, each word in a word pool can have a cost associated with
it, so that if several matching word pairs are possible, we would
select the one with the lowest sum of word costs. We will also
in some instances relax the constraint that the matching nodes
must be reached via links with identical roles, and this relax-
ation will incur additional cost.

We now describe matching extensions in detail.

4.2.1. Mentions of the Same Entity

Before proposition trees are created from a sentence, SERIF ex-
tracts ACE-entities from it [10]. If a node of a proposition tree
can be associated with a mention that belongs to an entity, then
all mentions of this entity (even if they occur in other sentences)
can contribute to the word pool of the node2. Thus, even if a
sentence says “it flies”, but it and the plane are mentions of the
same ACE-entity, then plane will be added to the word pool of
the tree node containing it.

4.2.2. WordNet Stemming and Synonyms

For each word in a word pool of a tree node, we use WORD-
NET [11] to add its stemmed version as well as synonyms and
directly connected hypernyms and hyponyms to the pool. The
cost of the new words is computed as the cost of the original
word incremented by empirically estimated stemming and/or
synonym costs respectively. This extension will allow us to in-
stantiate “the plane flies” in “the plane goes to England”.

4.2.3. External Dictionaries

In a similar manner we can use other sources to expand word
pools of tree nodes. For instance, we can add trained alternative
spellings for names or use gazetteers to add nationalities and
capitals to country names. All of the additions must be accom-
panied with appropriate costs.

2In the present implementation, pre-terminal syntactic heads of the
mentions are used for this purpose.

4.2.4. Role Mismatch and Other Structural Transformations

Earlier, we explained how synonyms can be added to node word
pools. Along the same lines of thought, we argue that some ar-
gument roles are more similar than others. For example, propo-
sition trees for “Abu Abbas’s arrest” and “the arrest of Abu Ab-
bas” differ only because the link between arrest and Abu Abbas
is labeled <possessive> in the first case and of in the second.
We can allow for certain role confusions to take place while
penalizing them with appropriate costs.

This extension is particularly relevant for the distillation
task where query writers often choose to express topics or
events as nominalizations, but candidate responses might de-
scribe the same events in their verbal forms. For instance, the
passage “Bush talked to Blair” is a perfect match for the event
slot “Bush’s communications with Blair”. In order to account
for this transformation, relaxed argument role matching is nec-
essary. We also allow additional word pool matching between
verbs and their nominalizations (e.g. communication for com-
municate, which will subsequently evoke synonym talk).

Finally, if there is a set-proposition on the subject tree side
(“Bush went to England and talked to Blair”), one should be
able to “fall through” down the link to one of its members. This
operation incurs a small penalty.

4.2.5. Missing Arguments

While it is always preferable to instantiate all nodes of a pattern
proposition tree, many relevant sentences will contain only a
partial match. It will be highly unlikely to find many sentences
where we can fully instantiate the proposition tree for “the loot-
ing of Iraqi museums after the U.S. invasion”. On the other
hand, the subtree “the looting of Iraqi museums” has a much
better chance of being fully instantiated (especially with the
above extensions to the matching algorithm). Thus, we might
allow a pattern tree to “match” a subject tree even if not all of its
subtrees can be instantiated therein, as long as a significant por-
tion of the pattern tree is in fact instantiated with a sufficiently
high score. The incurred penalty in this case is proportional to
the size of the non-instantiated subtree of the pattern tree.

4.3. Name-Aware Instantiation

Some instantiation mismatches should be considered more se-
rious than others. For instance, if a topic description contains
a name, this name should be in the word pool of at least one
node of the proposition forest of the sentence (or its neighbors).
This way we significantly reduce the risk of finding “the looting
of Afghani museums after the U.S. invasion” when asked about
looting in Iraq. We call this strategy name-aware proposition
tree instantiation. Our experiments showed that it dramatically
improved the precision of found passages.

5. Back-off Strategies
A non-negative topicality measure θ can only come about if
there is at least some significant structural similarity between
the pattern proposition tree and some proposition (sub)trees of
the subject. However, humans can express the same information
in ways that share virtually no semantic structure. It is conceiv-
able (in fact very likely) that most of the “good” answers to the
looting query will not have exactly the same structure as the
slot itself. For instance, “In 2001 U.S. troops invaded Iraq, and
subsequently many Iraqi museums were looted”. While both
facts (invasion and looting) are present in the sentence, they are

 50

recall, subtrees
recall, full trees

precision, subtrees
precision, full trees

precision, nodes

 60 70 80 90

 instantiation costs
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 20 30 40

recall, nodes

Figure 3: Dependency of precision and recall of three topicality
measures on costs.

not connected in the same way they are connected in the slot
proposition tree.

We decided to introduce a modified topicality measure η
based on subtrees of (full) proposition trees. While computing
subtrees we allow for only a minimum amount of proposition
expansion (see Section 3), so that each slot is represented by a
number of such proposition subtrees (for instance, in the “loot-
ing” query we’d build one subtree for “the U.S. invasion” and
one for “looted museums”). The rest of the computation scheme
remains the same as presented in eqs. (3), (1) and (2), with the
only exception that the weights wi of the proposition subtrees
in eq. (2) also depend on the size of the original full trees that
contain them. A subject will have high relevance if many of
the subtrees of the query slot are instantiated in it, even if these
subtrees are not connected to each other.

Finally, there is yet another even more generous topicality
measure µ that indicates the percentage of tree nodes in the slot
forest whose word pools have at least one match in the word
pools of the tree nodes of the sentence forest. This is anal-
ogous to an advanced “bag-of-words” matching strategy that
treats tree nodes rather than words, and incorporates the word
pool cost structure of the proposition trees to allow for more
sophisticated matching.

In practice, we say that a sentence is relevant on the given
topic if one of the three measures (θ,η or µ) exceeds its respec-
tive, empirically determined threshold.

6. Results
Quite intuitively, all three topicality measures complement each
other in terms of their precision/recall characteristics. While
topicality with full trees is especially useful to produce high
precision answers, the tree node topicality operates in a high
recall area, and subtree topicality lies between the two. Fig-
ure 3 illustrates this fact using first query template (“List facts
about events described as follows: [EVENT]”) of GALE
Year 1 evaluation. It shows how the fractions of n-grams in
reference/found answer snippets that could be instantiated in
found/reference snippets (measures that we associate with recall
and precision) depend on cut-off for instantiation cost threshold.
Our GALE Year 1 evaluation system operated downstream of a
TF-IDF document retrieval engine and used a combination of
all three of the topicality measures. For the template above it
achieved information content F-measure of 0.46, about 3 times

higher than other systems and 1.5 times higher than an aver-
age human (restrained in time). Our system was also clearly
the highest ranking in terms of proficiency, an information-
theoretical measure defined as a mutual information normalized
to the [0,1] interval [2]. For the other two query templates rely-
ing primarily on topicality (“Find statements made or attributed
to [PERSON] on [TOPIC]” and “How did [COUNTRY] react
to [EVENT]?”) we achieved information content F-measures of
0.42 and 0.23 respectively, almost twice as high as the closest
competitor system.

7. Conclusion
We described a system that answers the “on-topic” question
for natural language documents and arbitrary free-text topic
descriptions. The approach is based on creating proposition
trees, semantically organized hierarchies of predicate-argument
structures, for topic formulation and document sentences and
an error-tolerant tree instantiation mechanism. We success-
fully used the approach in BBN’s distillation system for GALE
Year 1 evaluation where it achieved outstanding extraction re-
sults.

8. References
[1] Levit, M.: “Spoken Language Understanding without

Transcriptions in a Call Canter Scenario”; Ph.D. thesis,
Logos Verlag, Berlin, Germany, 2005.

[2] BAE Systems: “Go/No-Go Formal Distilla-
tion Evaluation Plan For GALE”, 2006, URL:
https://www.sainc.com/GALE-BAA/public/.

[3] M.-C. de Marneffe, B. MacCartney and C. D. Man-
ning: “Generating Typed Dependency Parses from Phrase
Structure Parses”; in Proc. of LREC, Genoa, Italy, 2006.

[4] D. Moldovan, C. Clark and S. Harabagiu: “COGEX: A
Logic Prover for Question Answering”; in Proc. of HLT-
NAACL, Edmonton, Canada, 2003.

[5] S. Narayanan and S. Harabagiu: “Question Answering
Based on Semantic Structures”; in Proc. of the 20th.
Int. Conf. on Computational Linguistics (COLING 2004),
Morgan Kaufmann, San Francisco, CA, 2004.

[6] P. Kingsbury, M. Palmer and M. Marcus: “Adding Se-
mantic Annotation to the Penn TreeBank”; in Proc. of the
Human Language Technology Conference (HLT’02), San
Diego, CA, 2002.

[7] R.de Salvo Braz, R. Girju., V. Punyakanok, D. Roth and
M. Sammons: “Knowledge Representation for Semantic
Entailment and Question Answering”; in Proc. of IJCAI-
05 Workshop on Knowledge and Reasoning for Question
Answering.

[8] L. Ramshaw, E. Boschee, S. Bratus, S. Miller, R. Stone,
R. Weischedel and A. Zamanian: “Experiments in Multi-
Modal Automatic Content Extraction”; in Proc. of HLT-
01, San Diego, CA, 2001.

[9] C. M. Hoffmann and M. J. O’Donnell: “Pattern Matching
in Trees”; in Journal of the ACM, 29(1), pp.68–95, 1982.

[10] LDC: “ACE English Annotation Guidelines for Entities”;
2005, URL: http://www.ldc.upenn.edu/Projects/ACE/.

[11] C. Fellbaum: “WordNet, an Electronic Lexical
Database”; MIT Press, 1998.

