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Abstract 

The automated directory assistance system (ADAS) is 

traditionally formulated as an automatic speech recognition 

(ASR) problem. Recently, it has been formulated as a voice 

search problem, where a spoken utterance is firstly converted 

into text, which in turn is used to search for the listing. In this 

paper, we focus on the design and development of the 

utterance-to-listing component of ADAS. We show that many 

theoretical and practical issues need to be resolved when 

applying the basic idea of voice search to the development of 

ADAS. We share our experiences in addressing these issues, 

especially in pre-processing the listing database, generating a 

high performance LM, and developing efficient, accurate, and 

robust search algorithms. Field tests of our prototype system 

indicate that an 81% task completion rate can be achieved.  

Index Terms: speech recognition, directory assistance, voice 

search, TFIDF, spoken dialog system, vector space model 

1. Introduction 

An automated directory assistance system (ADAS) [1] [2] [3] 

[5] [6] is a spoken dialog system that provides the caller with 

the phone number and/or address of the business or residential 

listing he/she requests. It is a very complicated system that 

involves automatic speech recognition (ASR), listing lookup, 

disambiguation, and dialog design. The core element of the 

ADAS is the utterance-to-listing (U2L) component that maps 

an utterance 𝑜 to a listing 𝑙 ∈ 𝕃, where 𝕃 =  𝑙𝑖 𝑖 = 1,… , 𝐿} is 

the set of listings known to the system. An important design 

goal for the ADAS is to find the decision rule 𝑙 = 𝑑(𝑜) that 

minimizes the average error rate 

𝑅 =  𝛿  𝑙𝑗 , 𝑑 𝑜𝑗   

𝑁

𝑗=1

 (1) 

where 𝑙𝑗  is the reference listing of the 𝑗th utterance 𝑜𝑗 , 𝑁 is 

the total number of utterances in the evaluation set, and 

𝛿 𝑥, 𝑦 =  
0 if x=y

1 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  . (2) 

The U2L task was traditionally formulated merely as an 

ASR problem, where the utterance 𝑜 is directly mapped to the 

listing 𝑙 by the ASR [1] [2] [3]. In other words  

𝑑 𝑜 = argmax
𝑙

𝑝 𝑙 𝑜  

=  argmax
𝑙

𝑝 𝑜 𝑙 𝑝 𝑙 , 
(3) 

where 𝑝 𝑜 𝑙  is the acoustic model (AM) probability and 𝑝 𝑙  
is the language model (LM) probability. In its simplest form, 

the LM is just the listing unigram and is constructed as a 

probabilistic context free grammar (PCFG). 

It has been observed, however, the automation rate of the 

ADAS with this simple formulation is extremely low due to 

the fact that callers usually don’t know, don't remember, or 

don’t say the exact name listed in the directory [1] [2]. 

Instead, different callers may refer the same listing in many 

different ways. For example, the listing Kung Ho Cuisine of 

China usually is referred as Kung Ho, Kung Ho Restaurant, or 

Kung Ho Chinese Restaurant. In [4], this has been dealt with 

through the use of “unique signatures” that are different word 

sequences which uniquely identify a listing, but we have 

found that even this method is somewhat fragile. 

A natural improvement to the ADAS design is to model 

the different expressions callers actually use in referring a 

listing. This leads to the decision rule 

𝑑 𝑜 = argmax
𝑙

𝑝 𝑙 𝑜  

=  argmax
𝑙

 𝑝 𝑜 𝑤 𝑝 𝑤 𝑙 

𝑤

𝑝 𝑙  

≈ argmax
𝑙

max
𝑤

𝑝 𝑜 𝑤 𝑝 𝑤 𝑙 𝑝 𝑙  

= argmax
𝑙

max
𝑤

𝑝 𝑜 𝑤 𝑝(𝑤, 𝑙), 

(4) 

where 𝑤 is the word sequence callers use to ask for the listing 

𝑙, and the joint probability 𝑝 𝑤, 𝑙  is taken as the LM [1]. 

This formulation leads to two difficult issues. First, the 

estimation of the joint probability 𝑝 𝑤, 𝑙  is not trivial and 

usually requires collecting a huge number of real calls. 

Second, the approach is not scalable [2] given that there are 

numerous ways in which different callers may refer the same 

listing and there are more than 18M listings in the US yellow 

page alone. As a result, this approach is practical only when 

the listing database is small (e.g., when the system only 

automates the frequently requested listings [1]).  

To solve these problems, a voice search formulation of 

the U2L task has been proposed by Natarajan et al. [2] 

recently. In this formulation, a spoken utterance is firstly 

converted into text, which in turn is used to search for the 

listing. This new formulation provides a promising framework 

in developing a scalable high performance ADAS.  

In this paper, we focus on the design and development of 

the U2L component in the ADAS targeting on the business 

listings. We show that many theoretical and practical issues 

need to be resolved when applying the voice search technique 

to the development of ADAS. We share our experiences in 

addressing these issues, especially in pre-processing the 

listing database, generating a high performance LM, and 

developing efficient, accurate, and robust search algorithms. 

This paper is organized as follows. In Section 2, we 

formulate the U2L task as a voice search problem. In Section 

3, we discuss the listing database pre-processing strategies. 

We describe the LM generation approaches in Section 4 and 

illustrate the search algorithm in Section 5. In Section 6, we 

show the field test results. We conclude the paper in Section 

7. 

2. ADAS - Voice Search Formulation 

As indicated in Section 1 and in [1] [2], the motivation behind 

the voice search formulation of the ADAS is to avoid the 

estimation of the joint probability 𝑝 𝑤, 𝑙  and to alleviate the 

scalability problem. The basic idea of the voice search 

formulation is to use the stochastic N-gram LM to generalize 

different ways of referring listings and to make the LM 

compact. This is similar to using the N-gram LM in the 

dictation task. Since the goal of the ADAS is to find the 
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listing, a second step of mapping the recognized text to the 

listing is needed as we will discuss next. 

With the voice search formulation, the decision rule (4) 

becomes 

𝑑 𝑜 ≈ argmax
𝑙

max
𝑤

𝑝 𝑜 𝑤 𝑝(𝑤, 𝑙) 

= argmax
𝑙

max
𝑤

𝑝 𝑜 𝑤 𝑝(𝑤)𝑝(𝑙|𝑤), 
(5) 

where 𝑝(𝑤) is a domain specific N-gram LM that is not 

associated with listing 𝑙, and 𝑝(𝑙|𝑤) is a search model that 

maps the word sequence 𝑤 to the listing 𝑙. One benefit of this 

formulation is that the ASR and the search engines can be 

decoupled and formed into a pipeline where the N-best results 

from the ASR are fed into the search engine for processing.  If 

only the top ASR result is used (esp. if the ASR result has 

been confirmed by the user), the decision rule (5) simplifies to 

𝑑(𝑜) ≈ argmax
𝑙

𝑝 𝑙 𝑤  , (6) 

where 

𝑤 = argmax
𝑤

𝑝 𝑜 𝑤 𝑝 𝑤  (7) 

is the top ASR result. In practice, (6) can be applied to each 

entry in the ASR N-best list to form the final N-best result. 

Figure 1 depicts the architecture of the U2L component in 

the ADAS with this formulation. In this architecture, the 

utterance is firstly converted into ASR N-best results. The 

ASR results are then fed into the search component and the 

N-best list that combines both the ASR score and the search 

score is returned. The results may need to be disambiguated if 

the utterance is not sufficient to identify a single listing 𝑙. 

ASR

Search

ASR N-Best Result

Combined N-Best Result

Utterance

N-Gram LMAM

Listing Search 

Index

Disambiguation

Listing

 
Figure 1: architecture of the U2L component in the 

ADAS. 

3. Automated Data Pre-Processing 

Before building the LM and the search index, it’s extremely 

important to correctly pre-process the entries in the listing 

database for the following reasons. 

First, the entries in the listing database are usually 

optimized for visual presentation, which is different from the 

way that callers would ask for them. For example, the listing 

Gates Mason MD is often asked by callers as Doctor Mason 

or Doctor Gates Mason.  

Second, listing entries may contain abbreviations such as 

Co, LLC, MD, RN, CPA, Corp, &, St., and Ave. These 

abbreviations usually need to be normalized for the ASR 

engine to generate the correct pronunciations with some 

exceptions such as LLC. Note that some of the abbreviations 

need to be normalized differently under different contexts. 

For example, St. in St. Paul Cathedral should be normalized 

as Saint, while St. in First St. Cafe should be normalized as 

Street. 

Third, listing entries may contain spelling and 

typographical errors which need to be fixed. For example, 

there can be more than 30 different spellings of locksmith in 

the listing database. Having all these different spellings would 

greatly hurt the performance of the ASR. 

Fourth, the same entity may be listed under different 

names in the listing database. For example, the coffee store 

Starbucks Coffee sometimes is listed as Starbucks and 

sometimes is listed as Starbucks Coffee. 

The requirement of the normalization is different for the 

ASR and for the search. For the ASR, the only requirement is 

to make sure the listing names and street addresses are 

normalized to the spoken form. In other words, we care about 

how to rearrange words in the listing, how to expand or drop 

off abbreviations, and how to identify and convert misspelled 

words to the correct form. Since normalization rules are 

context dependent, it is usually conducted using a finite state 

transducer (FST) [11], with which the output symbols are 

determined based on the state and the input symbols.  Figure 2 

illustrates an example FST that normalizes the abbreviation 

St. to different forms depending on the context. In this FST 

State 1 is both the start and the end state. While in State 1, the 

FST changes to State 2 after accepting the input St.. It remains 

at State 1 and output whatever observed otherwise. While in 

State 2, the FST outputs Saint [name] if a [name] is accepted 

and outputs Street [word] otherwise. After accepting an input 

at State 2, the FST changes the state to State1. The number of 

states in the FST can be as high as hundreds of thousands in a 

typical ADAS system. 

1 2
In: St.

out: nul

In: [name]

out: Saint [name]

In: [other words]

out: Street [other words]

In: [other words]

out: [other words]

 

Figure 2: an example FST for text normalization. 

 

For the search, the goal of the normalization is to make 

sure the correct listing can be found no matter how the caller 

would refer the listing, even when there are ASR errors.  The 

key here is to normalize listings into canonical forms that take 

into consideration the behavior of the ASR engines. For 

example, [word]’s, [word]s, and [word] should all be 

normalized into [word], Wal-Mart and Walmart  should all be 

normalized as Wal Mart, and JCPenny and J C Penny should 

all be normalized as J C Penny. Here we want to emphasize 

the importance of breaking the compound words, which occur 

a lot in the listing database (e.g., townhouse, townhome, 

Sportsworld, and Drycleaner). As an example, there is a 

listing called Lionsgate Townhomes which might be referred 

by callers as Lionsgate Townhouses. Without word breaking, 

the match score is low even if there is no ASR error since 

Townhomes is different from Townhouses or Town houses. 

When there are ASR errors the match score is even lower. For 

these listings, breaking the compound words in both the 

search index and the ASR output can greatly increase the 

search accuracy. We have developed an efficient prefix-tree 

based automatic word breaking algorithm, where the parent 

word is the prefix of all its child words. Put it in another way, 

each child word might be split into two words if the part 

without the prefix is also a word. If a word has two or more 

possible breaking possibilities, the one with the highest 

bigram score is chosen. Word breaking provided us with more 

than 3% overall accuracy improvement in our offline testing. 



4. Language Model Generation 

Ideally, the LM should be built from the transcripts of real 

calls, which demonstrate not only the different ways callers 

use to refer business listings but also the probability of each 

such ways. Unfortunately, since there are more than 18M 

(12M unique names) business listings in the US, it’s 

extremely hard to collect enough real calls to provide a good 

coverage, especially during the early development phase. For 

this reason, we estimate the LM probability as 

𝑝 𝑤 = 𝜆𝑝𝑡 𝑤 +  1 − 𝜆 𝑝𝑙 𝑤 , (8) 

where 𝑝𝑡 𝑤  is the LM model built using the transcripts of 

the real calls, 𝑝𝑙(𝑤) is the LM built using the listing database, 

and 𝜆 is the interpolation weight. 𝜆 is set to 0 when there is no 

real calls available, and increases as the number of real calls 

increase. The exact value of 𝜆 can be determined by 

minimizing the perplexity of a validation set collected under 

real usage scenario. 

Building 𝑝𝑡 𝑤  is straight forward. The difficult part is 

building 𝑝𝑙(𝑤) since the entries in the listing database do not 

reflect different ways callers actually use to ask for the 

listings, even if the listings are text-normalized. We have 

given the example of Kung Ho Cuisine of China in Section 1. 

A simpler example is Microsoft Corporation which is usually 

referred as Microsoft by callers. If we build 𝑝𝑙(𝑤) directly 

from the listing database 𝑝  /𝑠    𝑀𝑖𝑐𝑟𝑜𝑠𝑜𝑓𝑡) (where  /
𝑠  means the end of the sentence) is extremely low. With this 

LM Microsoft may be misrecognized as Micro Song (or 

something else sounds similar to Microsoft) by the ASR. 

To improve the quality of 𝑝𝑙(𝑤), we need to predict how 

the callers will phrase their queries given a listing. A typical 

approach is to collect many real calls, transcribe them (or to 

elicit alternative user expressions through a game [10]), and 

either manually or automatically create rules [6] (sometimes 

called a variation model) from the transcripts. This rule-based 

approach is usually costly; the rule coverage is highly 

restricted by the data available; and the rules may be over-

generalized without careful crafting. 

In our system, we have used a statistical variation model 

based on the following observations. First, callers usually 

remember and say the first several words in the listing name 

but likely to forget or omit the words at the end. Second, 

caller often say the words that can distinguish the listing from 

others but omit words that cannot. Third, callers may 

voluntarily provide information that they think can help 

identifying the listing, e.g., category or address information.  

The basic idea of our approach is to adjust the N-gram 

counts as follows. First, each listing is weighted using priors 

retrieved from the query log or search hit if this information is 

available. Second, each word in the listing name is associated 

with a skip probability that is assumed to be proportional to 

the importance of the word in the listing. The importance of 

the word is determined by its position in the listing and its 

discriminative ability. Each word at the position 𝑖 has a 

position importance of 𝑤𝑙
𝑖 , where 0 < 𝑤𝑙 ≤ 1 is the position 

weight. The discriminative ability of the word is determined 

using the inverse document frequency (which will be covered 

in Section 5), maximum entropy (MaxEnt) model [7], or 

similar technologies. Third, each word has a probability to 

transfer to words that carry the category information. The 

transfer probability is assumed to be correlated to the word 

importance and the category (e.g., restaurant) indication 

ability (based on the mutual information) of the words.  

There are several other issues to consider when building 

the LM. Due to the large number of business listings in the 

US, it’s a good idea to build an LM for each city to reduce the 

perplexity. When building the city specific LMs, listings in 

the surrounding cities should also be included and/or the LM 

of the whole US should be interpolated since many times the 

callers do not know the exact boundary of the cities. Note that 

using city specific LM requires the ADAS to ask the caller the 

city name first. This is completely acceptable since city name 

is important disambiguation information and is likely to be 

asked later if not at the first dialog turn. 

Another issue to consider is whether to use a bigram LM 

or a trigram LM. We have noticed that bigram LM is a good 

choice for 𝑝𝑙(𝑤) since most listing names are short and the 

callers may rephrase the names. We have also noticed that 

using the garbage model [8] can provide additional robustness 

since side talks and carrier phrases can be filtered. 

As a final note in this section, we want to emphasize that 

no data is better than more real data. The tricks we have 

described here can bring the performance of the ADAS to a 

high level. However, further performance improvement may 

only be achieved by collecting more real calls. 

5. Listing Search 

The search component in the ADAS is quite non trivial. It 

needs to be robust to the noisy input because the callers may 

use carrier phrases and often refer listings by names that are 

different than that appear in the listing database, and the ASR 

may introduce errors. Moreover, it has to be very efficient 

computationally since the listing database to be searched is 

large and the callers expect that the response is instantaneous. 

We have tried using the MaxEnt [7] and the term frequency - 

inverse document frequency (TFIDF) [9] algorithms. We 

noticed that the MaxEnt algorithm is not practical at this stage 

due to the training complexity on the 18M listings. 

As a result, in our current system the search is conducted 

using an improved TFIDF algorithm, where each query and 

listing is represented as a vector of weights 𝑣𝑖 = 𝑡𝑓𝑖 ∙ 𝑖𝑑𝑓𝑖 . 
Here, the term frequency 

𝑡𝑓𝑖 =
𝑛𝑖

 𝑛𝑘𝑘
, (9) 

with 𝑛𝑖  being the number of the occurrences of  the term 𝑡𝑖  in 

the query or the listing, and the inverse document frequency 

𝑖𝑑𝑓𝑖 = 𝑙𝑜𝑔
𝐷

𝑑𝑖
, (10) 

with 𝑑𝑖  being the number of listings where the term 𝑡𝑖  
appears, and 𝐷 being the total number of listings in the 

database. The weight 𝑣𝑖  indicates that terms that occurs 

frequently in a specific listing and rarely seen in other listings 

should be weighted higher since they contain more 

information in identifying the listing from others. For 

example, in the listing Microsoft Corporation, the term 

Microsoft is more important than the term Corporation in 

identifying the listing from others. The similarity between the 

query vector 𝒗𝑞  and the listing vector 𝒗𝑙  is defined as 

𝑠 𝒗𝑞 , 𝒗𝑙 =
𝒗𝑞 ∙ 𝒗𝑙

 𝒗𝑞  𝒗𝑙 
, (11) 

where ∙  is the inner product of vectors. This is the famous 

vector space model [9] widely used in information retrieval.  

Note that 𝑠 𝒗𝑞 , 𝒗𝑙  is not a probability and strictly 

speaking cannot be directly plugged into (5) or (6). However, 

the decision rule (6) can be changed to 

𝑑 𝑜 = argmax
𝑙

𝑠 𝒗 𝑞 , 𝒗𝑙   (12) 

as long as the decision boundaries are the same, i.e., 

 argmax
𝑙

𝑝 𝑙 𝑤  = argmax
𝑙

𝑠 𝒗 𝑞 , 𝒗𝑙  . (13) 



To apply the TFIDF to the listing search problem, we 

need to determine what the terms should be. We have tried 

using just the unigram words as the terms as well as adding 

bigram terms. The bigram terms help in some cases and hurt 

in other cases due to the ASR error and the word order swap 

in the caller’s phrases. Overall it provides about 2% absolute 

error rate reduction in our offline testing with doubled search 

time compared to using the unigram terms alone.  

To further improve the performance of the search 

algorithm we have proposed additional enhancements to the 

basic TFIDF. The first enhancement is about the way to 

handle the duplicate terms in the callers’ queries. Note that 

since queries are short, each term in the query carries 

important information, i.e., a repeated term in the query or the 

listing name is a key indicator of the listing. The second 

occurrence of the same term should not be treated the same as 

its first occurrence. Our approach is to give each term in the 

listing and the query a unique ID. For example, the second 5 

in the listing 5 star 5 is noted as 5_2 to distinguish it from the 

first 5. With this enhancement, the query big 5 matches better 

to the listing big 5 sporting goods than the listing 5 star 5.  

The second enhancement is about the category 

information. Many times the caller voluntarily provides the 

category information which can be recognized based on the 

mutual information between the words and the categories. 

The category can be considered as a term in the TFIDF 

calculation or another information source. With the addition 

of the category information, our system can rank the listing 

Calabria Ristorante Italiano higher than the listing Calabria 

Electric when the query is Calabria Restaurant. 

The third enhancement is about the search efficiency. 

Given that each term is unique in both the query and the 

listing in the enhanced TFIDF, we can simplify (12) to 

𝑑 𝑜 = argmax
𝑙

𝒗 𝑞 ∙ 𝒗𝑙

 𝒗 𝑞  𝒗𝑙 
 

= argmax
𝑙

𝒗 𝑞 ∙ 𝒗𝑙

 𝒗𝑙 
 

= argmax
𝑙

 
𝑖𝑑𝑓𝑖

2

 𝒗𝑙 
𝑡𝑓 𝑖,𝑞=𝑡𝑓 𝑖,𝑙=1

, 

(14) 

where 𝑖𝑑𝑓𝑖
2  𝒗𝑙   is non-negative and can be pre-computed. 

This allows us to develop an efficient A* like algorithm that 

only expands and stores the most promising search path. The 

search takes about 2 ms on average on a 2GHz CPU 2GB 

RAM Windows XP computer. Note that TFIDF score is also a 

good feature for confidence calculation in ADAS. 

6. Field Evaluation  

We have deployed our completely automated prototype 

ADAS (for the 18M US businesses) built upon Microsoft 

Speech Server to public to evaluate its task completion rate, 

which is one of the most important measurements of the 

successfulness of an ADAS. The results are summarized in 

Table 1. Out of 808 legitimate calls we have listened to, 655 

were successful. This translates to 81% task completion rate. 

Note that some users retried several times at the listing search 

turn with the total number of turns tried being 1072, which 

indicates a 61% turn accuracy rate. About 67% of the failures 

are due to the ASR errors (esp. because of accents, noise, and 

out of grammar words) and 33% of the failures are due to the 

search errors (mostly because the listing is not in our feed or 

the surrounding cities we have included). We have noticed 

that if the system cannot provide the caller with the correct 

listings in the first two trials, it’s very unlikely that the call 

will be successful even if the caller tries it many times. 

Table 1. Field evaluation result. 

 Total Success Success Rate 

Tasks 808 655 81% 

Turns 1072 655 61% 

7. Conclusion 

Building an ADAS is a challenging task. It involves a 

combination of acoustic modeling, language modeling, dialog 

strategy, listing search, confidence measurement, and 

disambiguation. In this paper we focused our discussion on 

the U2L component in the ADAS. We described the 

motivation of formulating the ADAS as a voice search 

problem and demonstrated many theoretical and practical 

issues to be resolved to successfully apply the basic idea of 

voice search to the development of the ADAS. We 

summarized our experiences in addressing these issues and 

proposed many practical solutions to data pre-processing, LM 

generation, and listing search. The 81% task completion rate 

in the field test is a good indication of the success of our 

approaches. We believe that the performance of our system 

will continue to improve as we start to collect more and more 

real calls.  

Although our current system focuses on the business 

listing search, the experiences we have gain can be easily 

applied to many other large scale spoken dialog systems 

where information lookup is part of the task.  
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