
Automated Directory Assistance System - from Theory to Practice

Dong Yu, Yun-Cheng Ju, Ye-Yi Wang, Geoffrey Zweig, and Alex Acero

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
{dongyu, yuncj, yeyiwang, gzweig, alexac}@microsoft.com

Abstract

The automated directory assistance system (ADAS) is

traditionally formulated as an automatic speech recognition

(ASR) problem. Recently, it has been formulated as a voice

search problem, where a spoken utterance is firstly converted

into text, which in turn is used to search for the listing. In this

paper, we focus on the design and development of the

utterance-to-listing component of ADAS. We show that many

theoretical and practical issues need to be resolved when

applying the basic idea of voice search to the development of

ADAS. We share our experiences in addressing these issues,

especially in pre-processing the listing database, generating a

high performance LM, and developing efficient, accurate, and

robust search algorithms. Field tests of our prototype system

indicate that an 81% task completion rate can be achieved.

Index Terms: speech recognition, directory assistance, voice

search, TFIDF, spoken dialog system, vector space model

1. Introduction

An automated directory assistance system (ADAS) [1] [2] [3]

[5] [6] is a spoken dialog system that provides the caller with

the phone number and/or address of the business or residential

listing he/she requests. It is a very complicated system that

involves automatic speech recognition (ASR), listing lookup,

disambiguation, and dialog design. The core element of the

ADAS is the utterance-to-listing (U2L) component that maps

an utterance 𝑜 to a listing 𝑙 ∈ 𝕃, where 𝕃 = 𝑙𝑖 𝑖 = 1,… , 𝐿} is

the set of listings known to the system. An important design

goal for the ADAS is to find the decision rule 𝑙 = 𝑑(𝑜) that

minimizes the average error rate

𝑅 = 𝛿 𝑙𝑗 , 𝑑 𝑜𝑗

𝑁

𝑗=1

 (1)

where 𝑙𝑗 is the reference listing of the 𝑗th utterance 𝑜𝑗 , 𝑁 is

the total number of utterances in the evaluation set, and

𝛿 𝑥, 𝑦 =
0 if x=y

1 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
 . (2)

The U2L task was traditionally formulated merely as an

ASR problem, where the utterance 𝑜 is directly mapped to the

listing 𝑙 by the ASR [1] [2] [3]. In other words

𝑑 𝑜 = argmax
𝑙

𝑝 𝑙 𝑜

= argmax
𝑙

𝑝 𝑜 𝑙 𝑝 𝑙 ,
(3)

where 𝑝 𝑜 𝑙 is the acoustic model (AM) probability and 𝑝 𝑙
is the language model (LM) probability. In its simplest form,

the LM is just the listing unigram and is constructed as a

probabilistic context free grammar (PCFG).

It has been observed, however, the automation rate of the

ADAS with this simple formulation is extremely low due to

the fact that callers usually don’t know, don't remember, or

don’t say the exact name listed in the directory [1] [2].

Instead, different callers may refer the same listing in many

different ways. For example, the listing Kung Ho Cuisine of

China usually is referred as Kung Ho, Kung Ho Restaurant, or

Kung Ho Chinese Restaurant. In [4], this has been dealt with

through the use of “unique signatures” that are different word

sequences which uniquely identify a listing, but we have

found that even this method is somewhat fragile.

A natural improvement to the ADAS design is to model

the different expressions callers actually use in referring a

listing. This leads to the decision rule

𝑑 𝑜 = argmax
𝑙

𝑝 𝑙 𝑜

= argmax
𝑙

 𝑝 𝑜 𝑤 𝑝 𝑤 𝑙

𝑤

𝑝 𝑙

≈ argmax
𝑙

max
𝑤

𝑝 𝑜 𝑤 𝑝 𝑤 𝑙 𝑝 𝑙

= argmax
𝑙

max
𝑤

𝑝 𝑜 𝑤 𝑝(𝑤, 𝑙),

(4)

where 𝑤 is the word sequence callers use to ask for the listing

𝑙, and the joint probability 𝑝 𝑤, 𝑙 is taken as the LM [1].

This formulation leads to two difficult issues. First, the

estimation of the joint probability 𝑝 𝑤, 𝑙 is not trivial and

usually requires collecting a huge number of real calls.

Second, the approach is not scalable [2] given that there are

numerous ways in which different callers may refer the same

listing and there are more than 18M listings in the US yellow

page alone. As a result, this approach is practical only when

the listing database is small (e.g., when the system only

automates the frequently requested listings [1]).

To solve these problems, a voice search formulation of

the U2L task has been proposed by Natarajan et al. [2]

recently. In this formulation, a spoken utterance is firstly

converted into text, which in turn is used to search for the

listing. This new formulation provides a promising framework

in developing a scalable high performance ADAS.

In this paper, we focus on the design and development of

the U2L component in the ADAS targeting on the business

listings. We show that many theoretical and practical issues

need to be resolved when applying the voice search technique

to the development of ADAS. We share our experiences in

addressing these issues, especially in pre-processing the

listing database, generating a high performance LM, and

developing efficient, accurate, and robust search algorithms.

This paper is organized as follows. In Section 2, we

formulate the U2L task as a voice search problem. In Section

3, we discuss the listing database pre-processing strategies.

We describe the LM generation approaches in Section 4 and

illustrate the search algorithm in Section 5. In Section 6, we

show the field test results. We conclude the paper in Section

7.

2. ADAS - Voice Search Formulation

As indicated in Section 1 and in [1] [2], the motivation behind

the voice search formulation of the ADAS is to avoid the

estimation of the joint probability 𝑝 𝑤, 𝑙 and to alleviate the

scalability problem. The basic idea of the voice search

formulation is to use the stochastic N-gram LM to generalize

different ways of referring listings and to make the LM

compact. This is similar to using the N-gram LM in the

dictation task. Since the goal of the ADAS is to find the

INTERSPEECH 2007, pp. 2709-2712, Antwerp, Belgium, 2007

listing, a second step of mapping the recognized text to the

listing is needed as we will discuss next.

With the voice search formulation, the decision rule (4)

becomes

𝑑 𝑜 ≈ argmax
𝑙

max
𝑤

𝑝 𝑜 𝑤 𝑝(𝑤, 𝑙)

= argmax
𝑙

max
𝑤

𝑝 𝑜 𝑤 𝑝(𝑤)𝑝(𝑙|𝑤),
(5)

where 𝑝(𝑤) is a domain specific N-gram LM that is not

associated with listing 𝑙, and 𝑝(𝑙|𝑤) is a search model that

maps the word sequence 𝑤 to the listing 𝑙. One benefit of this

formulation is that the ASR and the search engines can be

decoupled and formed into a pipeline where the N-best results

from the ASR are fed into the search engine for processing. If

only the top ASR result is used (esp. if the ASR result has

been confirmed by the user), the decision rule (5) simplifies to

𝑑(𝑜) ≈ argmax
𝑙

𝑝 𝑙 𝑤 , (6)

where

𝑤 = argmax
𝑤

𝑝 𝑜 𝑤 𝑝 𝑤 (7)

is the top ASR result. In practice, (6) can be applied to each

entry in the ASR N-best list to form the final N-best result.

Figure 1 depicts the architecture of the U2L component in

the ADAS with this formulation. In this architecture, the

utterance is firstly converted into ASR N-best results. The

ASR results are then fed into the search component and the

N-best list that combines both the ASR score and the search

score is returned. The results may need to be disambiguated if

the utterance is not sufficient to identify a single listing 𝑙.

ASR

Search

ASR N-Best Result

Combined N-Best Result

Utterance

N-Gram LMAM

Listing Search

Index

Disambiguation

Listing

Figure 1: architecture of the U2L component in the

ADAS.

3. Automated Data Pre-Processing

Before building the LM and the search index, it’s extremely

important to correctly pre-process the entries in the listing

database for the following reasons.

First, the entries in the listing database are usually

optimized for visual presentation, which is different from the

way that callers would ask for them. For example, the listing

Gates Mason MD is often asked by callers as Doctor Mason

or Doctor Gates Mason.

Second, listing entries may contain abbreviations such as

Co, LLC, MD, RN, CPA, Corp, &, St., and Ave. These

abbreviations usually need to be normalized for the ASR

engine to generate the correct pronunciations with some

exceptions such as LLC. Note that some of the abbreviations

need to be normalized differently under different contexts.

For example, St. in St. Paul Cathedral should be normalized

as Saint, while St. in First St. Cafe should be normalized as

Street.

Third, listing entries may contain spelling and

typographical errors which need to be fixed. For example,

there can be more than 30 different spellings of locksmith in

the listing database. Having all these different spellings would

greatly hurt the performance of the ASR.

Fourth, the same entity may be listed under different

names in the listing database. For example, the coffee store

Starbucks Coffee sometimes is listed as Starbucks and

sometimes is listed as Starbucks Coffee.

The requirement of the normalization is different for the

ASR and for the search. For the ASR, the only requirement is

to make sure the listing names and street addresses are

normalized to the spoken form. In other words, we care about

how to rearrange words in the listing, how to expand or drop

off abbreviations, and how to identify and convert misspelled

words to the correct form. Since normalization rules are

context dependent, it is usually conducted using a finite state

transducer (FST) [11], with which the output symbols are

determined based on the state and the input symbols. Figure 2

illustrates an example FST that normalizes the abbreviation

St. to different forms depending on the context. In this FST

State 1 is both the start and the end state. While in State 1, the

FST changes to State 2 after accepting the input St.. It remains

at State 1 and output whatever observed otherwise. While in

State 2, the FST outputs Saint [name] if a [name] is accepted

and outputs Street [word] otherwise. After accepting an input

at State 2, the FST changes the state to State1. The number of

states in the FST can be as high as hundreds of thousands in a

typical ADAS system.

1 2
In: St.

out: nul

In: [name]

out: Saint [name]

In: [other words]

out: Street [other words]

In: [other words]

out: [other words]

Figure 2: an example FST for text normalization.

For the search, the goal of the normalization is to make

sure the correct listing can be found no matter how the caller

would refer the listing, even when there are ASR errors. The

key here is to normalize listings into canonical forms that take

into consideration the behavior of the ASR engines. For

example, [word]’s, [word]s, and [word] should all be

normalized into [word], Wal-Mart and Walmart should all be

normalized as Wal Mart, and JCPenny and J C Penny should

all be normalized as J C Penny. Here we want to emphasize

the importance of breaking the compound words, which occur

a lot in the listing database (e.g., townhouse, townhome,

Sportsworld, and Drycleaner). As an example, there is a

listing called Lionsgate Townhomes which might be referred

by callers as Lionsgate Townhouses. Without word breaking,

the match score is low even if there is no ASR error since

Townhomes is different from Townhouses or Town houses.

When there are ASR errors the match score is even lower. For

these listings, breaking the compound words in both the

search index and the ASR output can greatly increase the

search accuracy. We have developed an efficient prefix-tree

based automatic word breaking algorithm, where the parent

word is the prefix of all its child words. Put it in another way,

each child word might be split into two words if the part

without the prefix is also a word. If a word has two or more

possible breaking possibilities, the one with the highest

bigram score is chosen. Word breaking provided us with more

than 3% overall accuracy improvement in our offline testing.

4. Language Model Generation

Ideally, the LM should be built from the transcripts of real

calls, which demonstrate not only the different ways callers

use to refer business listings but also the probability of each

such ways. Unfortunately, since there are more than 18M

(12M unique names) business listings in the US, it’s

extremely hard to collect enough real calls to provide a good

coverage, especially during the early development phase. For

this reason, we estimate the LM probability as

𝑝 𝑤 = 𝜆𝑝𝑡 𝑤 + 1 − 𝜆 𝑝𝑙 𝑤 , (8)

where 𝑝𝑡 𝑤 is the LM model built using the transcripts of

the real calls, 𝑝𝑙(𝑤) is the LM built using the listing database,

and 𝜆 is the interpolation weight. 𝜆 is set to 0 when there is no

real calls available, and increases as the number of real calls

increase. The exact value of 𝜆 can be determined by

minimizing the perplexity of a validation set collected under

real usage scenario.

Building 𝑝𝑡 𝑤 is straight forward. The difficult part is

building 𝑝𝑙(𝑤) since the entries in the listing database do not

reflect different ways callers actually use to ask for the

listings, even if the listings are text-normalized. We have

given the example of Kung Ho Cuisine of China in Section 1.

A simpler example is Microsoft Corporation which is usually

referred as Microsoft by callers. If we build 𝑝𝑙(𝑤) directly

from the listing database 𝑝 /𝑠 𝑀𝑖𝑐𝑟𝑜𝑠𝑜𝑓𝑡) (where /
𝑠 means the end of the sentence) is extremely low. With this

LM Microsoft may be misrecognized as Micro Song (or

something else sounds similar to Microsoft) by the ASR.

To improve the quality of 𝑝𝑙(𝑤), we need to predict how

the callers will phrase their queries given a listing. A typical

approach is to collect many real calls, transcribe them (or to

elicit alternative user expressions through a game [10]), and

either manually or automatically create rules [6] (sometimes

called a variation model) from the transcripts. This rule-based

approach is usually costly; the rule coverage is highly

restricted by the data available; and the rules may be over-

generalized without careful crafting.

In our system, we have used a statistical variation model

based on the following observations. First, callers usually

remember and say the first several words in the listing name

but likely to forget or omit the words at the end. Second,

caller often say the words that can distinguish the listing from

others but omit words that cannot. Third, callers may

voluntarily provide information that they think can help

identifying the listing, e.g., category or address information.

The basic idea of our approach is to adjust the N-gram

counts as follows. First, each listing is weighted using priors

retrieved from the query log or search hit if this information is

available. Second, each word in the listing name is associated

with a skip probability that is assumed to be proportional to

the importance of the word in the listing. The importance of

the word is determined by its position in the listing and its

discriminative ability. Each word at the position 𝑖 has a

position importance of 𝑤𝑙
𝑖 , where 0 < 𝑤𝑙 ≤ 1 is the position

weight. The discriminative ability of the word is determined

using the inverse document frequency (which will be covered

in Section 5), maximum entropy (MaxEnt) model [7], or

similar technologies. Third, each word has a probability to

transfer to words that carry the category information. The

transfer probability is assumed to be correlated to the word

importance and the category (e.g., restaurant) indication

ability (based on the mutual information) of the words.

There are several other issues to consider when building

the LM. Due to the large number of business listings in the

US, it’s a good idea to build an LM for each city to reduce the

perplexity. When building the city specific LMs, listings in

the surrounding cities should also be included and/or the LM

of the whole US should be interpolated since many times the

callers do not know the exact boundary of the cities. Note that

using city specific LM requires the ADAS to ask the caller the

city name first. This is completely acceptable since city name

is important disambiguation information and is likely to be

asked later if not at the first dialog turn.

Another issue to consider is whether to use a bigram LM

or a trigram LM. We have noticed that bigram LM is a good

choice for 𝑝𝑙(𝑤) since most listing names are short and the

callers may rephrase the names. We have also noticed that

using the garbage model [8] can provide additional robustness

since side talks and carrier phrases can be filtered.

As a final note in this section, we want to emphasize that

no data is better than more real data. The tricks we have

described here can bring the performance of the ADAS to a

high level. However, further performance improvement may

only be achieved by collecting more real calls.

5. Listing Search

The search component in the ADAS is quite non trivial. It

needs to be robust to the noisy input because the callers may

use carrier phrases and often refer listings by names that are

different than that appear in the listing database, and the ASR

may introduce errors. Moreover, it has to be very efficient

computationally since the listing database to be searched is

large and the callers expect that the response is instantaneous.

We have tried using the MaxEnt [7] and the term frequency -

inverse document frequency (TFIDF) [9] algorithms. We

noticed that the MaxEnt algorithm is not practical at this stage

due to the training complexity on the 18M listings.

As a result, in our current system the search is conducted

using an improved TFIDF algorithm, where each query and

listing is represented as a vector of weights 𝑣𝑖 = 𝑡𝑓𝑖 ∙ 𝑖𝑑𝑓𝑖 .
Here, the term frequency

𝑡𝑓𝑖 =
𝑛𝑖

 𝑛𝑘𝑘
, (9)

with 𝑛𝑖 being the number of the occurrences of the term 𝑡𝑖 in

the query or the listing, and the inverse document frequency

𝑖𝑑𝑓𝑖 = 𝑙𝑜𝑔
𝐷

𝑑𝑖
, (10)

with 𝑑𝑖 being the number of listings where the term 𝑡𝑖
appears, and 𝐷 being the total number of listings in the

database. The weight 𝑣𝑖 indicates that terms that occurs

frequently in a specific listing and rarely seen in other listings

should be weighted higher since they contain more

information in identifying the listing from others. For

example, in the listing Microsoft Corporation, the term

Microsoft is more important than the term Corporation in

identifying the listing from others. The similarity between the

query vector 𝒗𝑞 and the listing vector 𝒗𝑙 is defined as

𝑠 𝒗𝑞 , 𝒗𝑙 =
𝒗𝑞 ∙ 𝒗𝑙

 𝒗𝑞 𝒗𝑙
, (11)

where ∙ is the inner product of vectors. This is the famous

vector space model [9] widely used in information retrieval.

Note that 𝑠 𝒗𝑞 , 𝒗𝑙 is not a probability and strictly

speaking cannot be directly plugged into (5) or (6). However,

the decision rule (6) can be changed to

𝑑 𝑜 = argmax
𝑙

𝑠 𝒗 𝑞 , 𝒗𝑙 (12)

as long as the decision boundaries are the same, i.e.,

 argmax
𝑙

𝑝 𝑙 𝑤 = argmax
𝑙

𝑠 𝒗 𝑞 , 𝒗𝑙 . (13)

To apply the TFIDF to the listing search problem, we

need to determine what the terms should be. We have tried

using just the unigram words as the terms as well as adding

bigram terms. The bigram terms help in some cases and hurt

in other cases due to the ASR error and the word order swap

in the caller’s phrases. Overall it provides about 2% absolute

error rate reduction in our offline testing with doubled search

time compared to using the unigram terms alone.

To further improve the performance of the search

algorithm we have proposed additional enhancements to the

basic TFIDF. The first enhancement is about the way to

handle the duplicate terms in the callers’ queries. Note that

since queries are short, each term in the query carries

important information, i.e., a repeated term in the query or the

listing name is a key indicator of the listing. The second

occurrence of the same term should not be treated the same as

its first occurrence. Our approach is to give each term in the

listing and the query a unique ID. For example, the second 5

in the listing 5 star 5 is noted as 5_2 to distinguish it from the

first 5. With this enhancement, the query big 5 matches better

to the listing big 5 sporting goods than the listing 5 star 5.

The second enhancement is about the category

information. Many times the caller voluntarily provides the

category information which can be recognized based on the

mutual information between the words and the categories.

The category can be considered as a term in the TFIDF

calculation or another information source. With the addition

of the category information, our system can rank the listing

Calabria Ristorante Italiano higher than the listing Calabria

Electric when the query is Calabria Restaurant.

The third enhancement is about the search efficiency.

Given that each term is unique in both the query and the

listing in the enhanced TFIDF, we can simplify (12) to

𝑑 𝑜 = argmax
𝑙

𝒗 𝑞 ∙ 𝒗𝑙

 𝒗 𝑞 𝒗𝑙

= argmax
𝑙

𝒗 𝑞 ∙ 𝒗𝑙

 𝒗𝑙

= argmax
𝑙

𝑖𝑑𝑓𝑖

2

 𝒗𝑙
𝑡𝑓 𝑖,𝑞=𝑡𝑓 𝑖,𝑙=1

,

(14)

where 𝑖𝑑𝑓𝑖
2 𝒗𝑙 is non-negative and can be pre-computed.

This allows us to develop an efficient A* like algorithm that

only expands and stores the most promising search path. The

search takes about 2 ms on average on a 2GHz CPU 2GB

RAM Windows XP computer. Note that TFIDF score is also a

good feature for confidence calculation in ADAS.

6. Field Evaluation

We have deployed our completely automated prototype

ADAS (for the 18M US businesses) built upon Microsoft

Speech Server to public to evaluate its task completion rate,

which is one of the most important measurements of the

successfulness of an ADAS. The results are summarized in

Table 1. Out of 808 legitimate calls we have listened to, 655

were successful. This translates to 81% task completion rate.

Note that some users retried several times at the listing search

turn with the total number of turns tried being 1072, which

indicates a 61% turn accuracy rate. About 67% of the failures

are due to the ASR errors (esp. because of accents, noise, and

out of grammar words) and 33% of the failures are due to the

search errors (mostly because the listing is not in our feed or

the surrounding cities we have included). We have noticed

that if the system cannot provide the caller with the correct

listings in the first two trials, it’s very unlikely that the call

will be successful even if the caller tries it many times.

Table 1. Field evaluation result.

 Total Success Success Rate

Tasks 808 655 81%

Turns 1072 655 61%

7. Conclusion

Building an ADAS is a challenging task. It involves a

combination of acoustic modeling, language modeling, dialog

strategy, listing search, confidence measurement, and

disambiguation. In this paper we focused our discussion on

the U2L component in the ADAS. We described the

motivation of formulating the ADAS as a voice search

problem and demonstrated many theoretical and practical

issues to be resolved to successfully apply the basic idea of

voice search to the development of the ADAS. We

summarized our experiences in addressing these issues and

proposed many practical solutions to data pre-processing, LM

generation, and listing search. The 81% task completion rate

in the field test is a good indication of the success of our

approaches. We believe that the performance of our system

will continue to improve as we start to collect more and more

real calls.

Although our current system focuses on the business

listing search, the experiences we have gain can be easily

applied to many other large scale spoken dialog systems

where information lookup is part of the task.

8. References

[1] Levin, E., and Mane, A.M., “Voice User Interface

Design for Automated Directory Assistance”, in Proc.

INTERSPEECH, 2005, vol. 3, pp. 2509-2512.

[2] Natarajan, P., Prasad, R., Schwartz, R., and Makhoul, J.,

“A Scalable Architecture for Directory Assistance

Automation”, in Proc. ICASSP, 2002, vol. 1, pp. 21-24.

[3] Billi, R., Canavesio, F., and Rullent, C., “Automation of

Telecom Italia Directory Assistance Service: Field Trial

Results”, in Proc. IVTTA, 1998, pp. 11-16.

[4] Jan, E.E., Maison, B., Mangu, L., and Zweig, G.,

“Automatic construction of Unique Signatures and

Confusable sets for Natural Language Directory

Assistance Application”, In Proc. Eurospeech 2003, pp.

1249-1252.

[5] Seide, F., and Kellner, A., “Towards an Automated

Directory Information System”, in Proc. Eurospeech,

1997, vol. 3, pp. 1327–1330.

[6] Scharenborg, O., Sturm, J., Boves, L., "Business Listings

in Automatic Directory Assistance", in Proc. Eurospeech

2001, pp. 2381-2384.

[7] Berger, A. L., Pietra, S. A. D., and Pietra, V. J. D., “A

Maximum Entropy Approach to Natural Language

Processing”, Computational Linguistics, 1996, 22(1):39-

71.

[8] Yu, D., Ju, Y.-C., Wang, Y.-Y., and Acero, A., “N-Gram

Based Filler Model for Robust Grammar Authoring”, in

Proc. ICASSP, 2006, vol. 1, pp. 565-568.

[9] Salton, G., Introduction to Modern Information

Retrieval. McGraw-Hill, 1983.

[10] Paek, T., Ju, Y.-C., Meek, C., “People Watcher: A Game

for Eliciting Human-Labeled Data for Automated

Directory Assistance”, Interspeech 2007.

[11] Sproat, R., Black, A., Chen, S., Kumar, S., Ostendorf,

M., and Richards, C., “Normalization of non-standard

words”, Computer Speech and Language, 15(3):287–

333, 2001.

http://www.research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/users/gzweig/Pubs/Eurospeech03b.pdf
http://www.research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/users/gzweig/Pubs/Eurospeech03b.pdf
http://www.research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/users/gzweig/Pubs/Eurospeech03b.pdf
http://www.research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/users/gzweig/Pubs/Eurospeech03b.pdf

