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Abstract

In this paper we present a rigorous treatment to structured overlay maintenance in decentralized peer-
to-peer (P2P) systems subject to various system and network failures. we present a precise specification that
requires the overlay maintenance protocols to be decentralized, preserve connectivity of the overlay, always
converge to the desired structure whenever possible, and only maintain a small local state independent
of the size of the system. We then provide a complete protocol with proof showing that it satisfies the
specification. The protocol solves a number of subtle issues caused by decentralization and concurrency
in the system. Our specification and the protocol overcomes a number of limitations of existing overlay
maintenance protocols, such as the reliance on a centralized and continuously available bootstrap system,
the assumption of a known system stabilization time, and the need to maintain large local membership lists.
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1 Introduction

Since their introduction, structured overlays have
been used as an important substrate for many peer-
to-peer applications. In a structured peer-to-peer
overlay, each node maintains a partial list of other
nodes in the system, and these partial lists together
form an overlay topology that satisfies certain struc-
tural properties (e.g., a ring). Various system events,
such as node joins, leaves and crashes, message de-
lays and network partitions, affect overlay topology.
Thus, an overlay topology should adjust itself appro-
priately to maintain its structural properties. Topol-
ogy maintenance is crucial to the correctness and the
performance of applications built on top of the over-
lay.

Most structured overlays are based on a logical
key space, and they can be conceptually divided into
two components: leafset tables and finger tables.1

The leafset table of a node keeps its logical neigh-
bors in a key space, while the finger table keeps rel-
atively faraway nodes in the key space to enable fast
routing along the overlay topology. The leafset ta-
bles are vital for maintaining a correct overlay topol-
ogy since finger tables can be constructed efficiently
from the correct leafset tables. Therefore, our study
focuses on leafset maintenance. In particular, we fo-
cus on one-dimensional circular key space and the
ring-like leafset topology in this space, similar to
many studies such as [17, 19].

Leafset maintenance is a continuously running
protocol that needs to deal with various system
events. An important criterion for leafset mainte-
nance is convergence. That is, the leafset topology
can always converge back to the desired structure
after the underlying system stabilizes (but without
knowing about system stabilization), no matter how
adverse the system events were before system stabi-
lization.

In this paper, we provide a rigorous treatment to
leafset convergence. Our contributions are mainly
twofold. First, we provide a precise specification
for leafset maintenance protocols with cost effec-
tiveness requirements. All properties of the speci-
fication are desired by applications, while together

1The term leafset is originally used in Pastry [17] while the
term finger is originally used in Chord [19].

they prohibit protocols with various limitations ap-
peared in previous work (see Section 2 for a detailed
comparison with previous work). Second, We pro-
vide a complete protocol that is proven to satisfy our
specification.

There are several distinct features in our speci-
fication. First, our specification explicitly empha-
sizes connectivity preservation: the connectivity of
the leafset topology may only be broken by adverse
system events such as node crashes and network fail-
ures, but it should not be broken by the mainte-
nance protocol itself. Some previous protocols such
as Chord [11] and Pastry [17] allow runs in which
the topology is broken due to protocol logic itself.
Specifying the Connectivity Preservation property is
not simple. We need to define a system stabiliza-
tion time after which no adverse system events occur
and require that the maintenance protocol no longer
disconnect any nodes in the system afterwards. We
dedicate a section to show that defining such a sys-
tem stabilization time is subtle in that any time ear-
lier will not guarantee connectivity perservation.

Second, we explicitly put requirements on cost ef-
fectiveness: the size of the local state maintained by
the protocol in the steady state only depends on the
size of its leafset table, but should not depend on the
system’s size. To be cost-effective, a protocol in-
evitably needs to remove some extra entries in the
leafset (as in many existing protocols), but such re-
movals may jeopardize the connectivity of the topol-
ogy. Therefore, handling the apparent conflict be-
tween connectivity preservation and cost effective-
ness is the key in our protocol design. Some existing
protocols ([9, 13]) rely on the maintenance of a large
membership list to preserve connectivity, and thus is
not cost-effective.

Third, we explicitly address the how to heal topol-
ogy partition by introducing an interface function
add(contacts). Although the overlay could be more
resistant to topology partition by maintaining more
entries in the routing tables [11], network partitions
are still inevitable, especially when failures on major
network links happen. Therefore, we believe par-
tition healing is an indispensable part of the pro-
tocol. The interface add(contacts) and its spec-
ification cleanly separates partition detection from
partition healing: A separate mechanism may be



used to detect topology partition, and then to call
the add(contacts) interface (only once) to bridge
the partitioned components, while afterwards the
maintenance protocol will automatically converge
the topology. Our specification keeps the depen-
dency on an external mechanism such as a bootstrap
system at the minimum, while some previous proto-
cols heavily rely on continuously available bootstrap
systems to keep connectivity [6, 18].

In this paper, we provide a complete protocol and
prove that it satisfies our specification. As indicated
already, the core of the protocol is to handle the con-
flict between connectivity preservation and cost ef-
fectiveness: The protocol should remove extra en-
tries in the leafset while preserving the topology’s
connectivity. The protocol addresses a couple of
subtle issues: one is how to nullify the effects of ad-
verse system events without knowing when the sys-
tem stabilizes, and the second is to avoid livelocks
that may be caused by inopportune invocations of
the add(contacts) interface. The correctness proof
is technically involved and long, because our proto-
col needs to deal with system asynchrony and vari-
ous system failures and events.

The correctness of our protocol is based on the
availability of a dynamic failure detector that even-
tually can correctly detect failures of neighbors of a
node, and we show that such a failure detector can be
implemented in partially synchronous systems. One
may argue that in peer-to-peer environments, such
failure detectors or the partial synchrony assumption
cannot be satisfied. We justify our model with the
following reasons. First, studying the convergence
behavior of a dynamic protocol under system fail-
ures is important to understand the correctness and
the efficiency of the protocol, and to compare differ-
ent protocols under the same condition. Such stud-
ies naturally assume a model in which system fail-
ures eventually stop, for which the paradigm of self
stabilization is a direct example.2 Second, the theo-
retical assumption that the system stabilizes after a
certain time point means in practice a long enough
stable period for the topology to converge. Based
on our simulation study (Section 8) we show that
with some optimizations the convergence speed of
our protocol is fast (O(log N)) where N is the num-
ber of nodes in the system), so system stabilization
assumption may not seem so unreasonable in cer-

2In Section 4 we will elaborate the relationship between our
specification and self stabilization.

tain settings. Third, failure detection accuracy can
be greatly improved if we consider voluntary leaves,
in which a leaving node notifies its neighbors be-
fore leaving the system. Therefore, the failure de-
tection requirement in the model may be more easily
achieved for a sufficiently long time than consider-
ing only node crashes.

To our knowledge, our protocol is the first one that
satisfies all the properties required by the specifica-
tion with a complete correctness proof. We believe
that our work could compensate many system-level
studies on structured overlay maintenance and pro-
vide a more formal approach to study the correctness
of overlay maintenance protocols.

The rest of the paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 defines our
system model with the failure detector specification.
Section 4 introduces the complete specification of
covergent leafset maintenance protocols. Section 5
justifies our definition of system stabilization time
in our specification. Section 6 presents the complete
leafset maintenance protocol. Section 7 provides a
sample implementation of the failure detector in one
partially synchronous model. Section 8 discusses
optimizations for fast converging the topology and
show simulation results. We conclude the paper and
discuss future work in Section 9. Complete proofs
of all technical results are included in the appendix.

2 Related Work

Many existing structured P2P overlay proposals
mention that each node should have a leafset table.
However, those such as Pastry [17], CAN [15], and
SkipNet [8] only provide brief descriptions on what
a correct leafset table looks like and how to fix it
when the leafset table becomes incorrect because of
system churns. These proposals assume that there is
a correct leafset table on each node to begin with,
then give methods to repair the leafset tables in re-
sponse to various system events. Bamboo DHT [16]
and the latest Pastry improvements [2, 7] adopt prac-
tical mechanisms to improve overlay maintenance
and routing correctness in a dynamic environment.
These mechanisms are system-level improvements,
while there are no proofs or formal studies on pro-
tocol guarantees, such as connectivity preservation
and convergence.

In [11], Liben-Nowell et. al. point out the topol-
ogy maintenance issues of the original Chord proto-
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col [19] and propose an “idealize” process to adjust
the immediate successor of each node to improve
topology maintenance. This approach is essentially
a method to guarantee convergence, but the main-
tenance restricts itself to immediate successor data
structure. Although each node stores a successor list
to handle successor failures, the node does not ac-
tively maintain the list. Instead, it uses the successor
list of its immediate successor to overwrite its own
one, and thus it could be disconnected from other
nodes in its own list. Therefore, it is only a spe-
cial case of our protocol, is less robust, and is dif-
ficult to accommodate partition healing, which re-
quires maintaining multiple links together to bridge
partitioned components.

Some recent work uses the approach of self stabi-
lization [4, 5] to study overlay maintenance. The
T-Man [9] and TChord [13] protocols are self-
stabilizing, but they do not consider global mem-
bership changes from system churns. They require
to keep an essentially full membership list on each
node, so the maintenance cost increases significantly
when the system is large or the membership changes
over time. Authors of [6] and [18] also propose self-
stabilizing overlay maintenance protocols. But their
protocols and proofs depend on the existence of a
continuously available bootstrap system. In [6], the
bootstrap system needs to handle all join and repair
requests, and needs to issue periodic broadcast mes-
sages for self stabilization purpose, while in [18]
each node must periodically initiate look-ups to the
bootstrap system. These protocols impose signifi-
cant load and availability requirements on the boot-
strap system. In contrast, our protocol only needs
an external mechanism such as a bootstrap system
when the topology is partitioned, and it only needs
the bootstrap system once after system stabilization.
Therefore, the load and availability requirements on
the bootstrap system are minimized.

Authors of Ranch [10] provide an overlay main-
tenance protocol with a formal proof of correctness.
However, they do not consider fault tolerance: all
nodes leaves are “active leave”, in which case all
nodes invoke a special leave protocol before getting
offline. We believe silent failures must be consid-
ered in a wide area peer-to-peer environment, and
the treatment of silent failures makes the model, the
specification and the protocol design significantly
depart from those studied in [10].

In [1], Angluin et. al. proposed a method for
fast construction of an overlay network by a tree-

merging process. Their protocol is not a convergent
overlay maintenance protocol, because they assume
that overlay construction is executed when the un-
derlying system is known to have stabilized and they
do not consider the adverse impacts of system con-
ditions before system stabilization.

3 System Model

We consider a distributed peer-to-peer system con-
sisting of nodes (peers) from the set Σ =
{x1, x2, . . .}. Each node has a unique numerical ID
drawn from a one-dimensional circular key spaceK.
We use x to represent both a node x ∈ Σ and its ID
in K. For convenience, we set K = [0, 1), all real
numbers between 0 and 1. We define the following
distances in key space K: For all x, y ∈ K, (a) the
clockwise distance d+(x, y) is y−x when y ≥ x and
1 + y − x when y < x; (b) the counter-clockwise
distance d−(x, y) = d+(y, x), and (c) the circular
distance d(x, y) = min(d+(x, y), d−(x, y)).

Throughout the paper, we use continuous global
time to describe system and protocol behavior, but
individual nodes do not have access to global time.
Nodes have local clocks, which are used to gen-
erate increasing timestamps and periodic events on
the nodes. Local clocks are not synchronized with
one another. They provide an interface function
getClockValue(), which is only required to return
monotonically increasing time values on a node even
if the node has failures between the calls to the func-
tion.

Nodes may join and leave the system or crash at
any time. We treat a node leave and crash as the
same type of event; that is, a node disappears from
the system without notifying other nodes in the sys-
tem, and we refer to such an event as a failure in
the system. We define a membership pattern Π as a
function from time t to a finite and nonempty subset
of Σ, such that Π(t) refers to all of the online nodes
at time t. Nodes not in Π(t) are considered offline.
For the purpose of studying overlay convergence, we
assume that the set of online nodes Π(t) eventually
stabilizes. That is, there is an unknown time t such
that for all t′ ≥ t, Π(t′) remains the same, which we
denote as sset(Π). Let GSTN (N stands for nodes)
be the global stabilization time of the nodes, which
is the earliest time after which Π(t) does not change
any more. Henceforth, all specification properties
refer to an arbitrary membership pattern Π.
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Nodes communicate with one another by sending
and receiving messages through asynchronous com-
munication channels. We assume that there is a bidi-
rectional channel between any pair of nodes. The
channels cannot create or duplicate messages, but
they might delay or drop messages. The channels
are eventually reliable in the following sense: There
exists an earliest time GSTM ≥ GSTN such that for
any message m sent by x ∈ sset(Π) to y ∈ sset(Π)
after time GSTM , m is eventually received by y.

To deal with failures in asynchronous environ-
ments, we assume the availability of a failure de-
tector, which is a powerful abstraction that encap-
sulates all timing assumptions on message delays,
processing speed, and local clock drifts [3]. Unlike
the original model in [3], our failure detector is for
dynamic environments, and we do not assume that
the failure detector knows a priori a set of nodes to
monitor. Instead, the failure detector provides an in-
put interface register(S) for a node to register a set
of nodes S ⊂ Σ to be monitored by the failure de-
tector. A node may invoke register(S) many times
with a different set S to change the set to be mon-
itored. The failure detector also provides an output
interface detected(x) to notify a node that it detects
the failure of a node x ∈ Σ.

Informally, the failure detector should eventually
detect all failures among all registered nodes, and
should eventually not make any wrong detections on
nodes that are still online. More rigorously, the fail-
ure detector satisfies the following properties:

• Strong Completeness: For all x ∈ sset(Π) and
all y 6∈ sset(Π), if x invokes register(S) with
y ∈ S at some time t, then there is a time
t′ > t at which either the failure detector out-
puts detected(y) on x or x invokes register(S′)
with y 6∈ S′.

• Eventual Strong Accuracy: For all x, y ∈
sset(Π), there is a time t such that for all t′ ≥ t,
the failure detector will not output detected(y)
on x at time t′.

Our failure detector differs from the eventually
perfect failure detector 3P in the static environ-
ment [3] in that our failure detector relies on appli-
cation inputs to learn the set of processes to monitor.
We denote our failure detector as 3PD (D stands
for dynamic). In our protocol 3PD is only used for
each node to monitor its neighbors, so it is easier to

achieve than 3P that requires monitoring all nodes
in the system.

Every node in the system executes protocols by
taking steps triggered by events, which include in-
put events invoked by applications, message receipt
events, periodic events generated by the local clock,
and failure detection events detected(). In each step,
a node may change its local state, register with the
failure detector, and send out a finite number of mes-
sages. For simplicity we assume that the time to exe-
cute a step is negligible, but a node might fail during
the execution of a step. We also assume that there
are only a finite number of steps taken during any
finite time interval, and at each time point, there is
at most one step taken by one node.3

A run of a leafset maintenance protocol is an in-
finite sequence of steps together with the increas-
ing time points indicating when the steps occur,
such that it conforms with the above assumptions on
membership pattern, message delivery, and failure
detection.

4 The Specification for Leafset
Maintenance

We now specify the desired properties for a leaf-
set maintenance protocol. Our specification always
refers to an arbitrary execution of the protocol with
an arbitrary membership pattern Π.

First, we define the function leafset(x, set) as fol-
lows: We have a fixed constant L ≥ 1, which infor-
mally means that the leafset of a node should have
L closest nodes on each side of it in the circular
space. Given a finite subset set ⊆ Σ and a node x, If
|set \ {x}| < 2L, then leafset(x, set) = set \ {x}.
Otherwise, sort set \ {x} as (a) {x+1, x+2, . . .}
such that d+(x, x+1) < d+(x, x+2) < . . .,
and (b) {x−1, x−2, . . .} such that d−(x, x−1) <
d−(x, x−2) < . . . Then, we have leafset(x, set) =
{x+1, x+2, . . . , x+L} ∪ {x−1, x−2, . . . , x−L}.

In the leafset maintenance protocol, each node x
maintains a variable neighbors, the value of which is
a finite subset of Σ. Informally, x.neighbors should
eventually converge onto the correct leafset, mean-
ing x.neighbors = leafset(x, sset(Π)), in which
case the final topology resembles a ring structure.

3Our results also work if each step is not instantaneous or
there are multiple concurrent steps at the same time, but it would
make our description and proof more cumbersome to handle
these situations.
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Each node also has an interface function
add(contacts), where contacts is a finite subset of
Σ. This function is used to bridge partitioned com-
ponents. In particular, it can be used in the following
situations: (a) adding initial contacts when the sys-
tem is initially bootstrapped; (b) introducing contact
nodes when a new node joins the system; and (c)
introducing nodes in other partitioned components
after the overlay is partitioned (perhaps due to tran-
sient network partitions).

To formalize our requirements, we first need to
address the connectivity of the leafset topology. For
any directed graph G, we say that 1) it is strongly
connected if there is a directed path between any
pair of nodes in G, 2) it is weakly connected (or sim-
ply connected) if there is an undirected path (when
treating edges in G as undirected) between any pair
of nodes in G, and 3) it is disconnected if it is not
weakly connected. The leafset topology at time t
is a directed graph G(t) = 〈Π(t), E(t)〉, where
E(t) = {〈x, y〉|x, y ∈ Π(t) ∧ y ∈ x.neighborst}.
For any node x ∈ Π(t), we denote Px(t) as the set
of nodes in the connected subgraph of G(t) that con-
tains x; that is, Px(t) is the set of nodes that have
undirected paths to x.

A key property we require on leafset maintenance
is that the protocol should not break the connectiv-
ity of the topology. However, the topology might
also be broken by underlying system behaviors out
of protocol control, such as node failures and mes-
sage delays. To factor out system-induced topology
break-ups, we only require that the topology is not
broken once the underlying system is stabilized. To
do so, we first need to define the stabilization time
of the system.

Let GSTD (D stands for detector) be the global
stabilization time of the failure detector 3PD, which
is the earliest time t ≥ GSTN such that 3PD will
not output detected(y) on any x ∈ sset(Π) for any
y ∈ sset(Π) after time t. That is, GSTD is the ear-
liest time after which the failure detector does not
make wrong detections on online nodes any more.
After GSTD, both the nodes and the failure detec-
tor stabilize, but nodes might still receive old mes-
sages sent before GSTD that may adversely affect
the convergence of the topology. Thus, we define
GSTS (S stands for system) to be the global stabi-
lization time of the system, which is the earliest time
t ≥ max(GSTD, GSTM ) such that all messages sent
before GSTD or GSTM have been delivered by time
t or are lost. Since there are only a finite number of

messages that could have been sent before GSTD or
GSTM , we know GSTS must be a finite value. Note
that these stabilization times are defined for each run
of the leafset maintenance protocol.

Our connectivity preservation property is defined
based on GSTS as follows:
• Connectivity Preservation: For any t ≥ GSTS ,

for any directed path from x to y in G(t), for
any time t′ > t, there is a directed path from x
to y in G(t′).

Connectivity Preservation is a key property to guar-
antee leafset convergence, but it is not explicitly ad-
dressed or enforced by previous protocols in a purely
peer-to-peer environment. In Section 5, we show
that condition t ≥ GSTS is necessary in the sense
that no algorithm can guarantee connectivity preser-
vation starting from a time earlier than GSTS .

By the Connectivity Preservation property, we
know that the connected component Px(t) can only
grow after time GSTS . Since Π(t) does not change
after GSTS and is finite, we know that Px(t) even-
tually stabilizes. The next property requires that the
leafset of x eventually contains the correct leafset in
the connected component of x:
• Eventual Inclusion: There is a time t such

that for all t′ ≥ t and for all x ∈ sset(Π),
leafset(x, x.neighborst′) = leafset(x, Px(t′)).

If the topology becomes connected at some time
after GSTS , then Eventual Inclusion together with
Connectivity Preservation means that eventually
leafset(x, x.neighborst′) = leafset(x, sset(Π)) for
all x ∈ sset(Π). The properties also imply that
the weakly connected component Px(t) will become
strongly connected eventually. Note that the Even-
tual Inclusion property should hold no matter if there
are invocations of add() after GSTS .

If the topology is partitioned, the application
should be able to use the add() interface to heal the
partition. This is specified by the following prop-
erty:
• Partition Healing: For any x, y ∈ sset(Π), if

there is an invocation of add(S) on x at time
t > GSTS with y ∈ S, then there is a time
t′ > t such that x and y are connected in G(t′)
(i.e., Px(t′) = Py(t′)).

The Partition Healing property ensures that only one
invocation of add() on one node is necessary to
bridge the partition, as long as we use an S that
contains a node from every component in add(S).
Afterwards, Eventual Inclusion and Connectivity
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Preservation properties guarantee the autonomous
convergence of the topology without any further
help.

The following property requires that eventually
the leafset maintenance protocol should only main-
tain the actual leafset entries, provided that the ap-
plication eventually stops invoking add().
• Eventual Cleanup: If there is a time t af-

ter which no add() is invoked at any node in
the system, then there is a time t′ such that
for all time t′′ ≥ t′ and all x ∈ sset(Π),
leafset(x, x.neighborst′′) = x.neighborst′′ .

We call a leafset maintenance protocol convergent
if it satisfies Connectivity Preservation, Eventual In-
clusion, Partition Healing, and Eventual Cleanup. If
an external mechanism guarantees to call add() as
described in Partition Healing, then the convergent
protocol ensures that the topology is eventually con-
nected and the leafset of every node is correct, i.e.,
x.neighbors = leafset(x, sset(Π)).

One informative way to understand the specifica-
tion is to see how it avoids a trivial implementation
that always splits every node into a singleton, i.e.,
sets x.neighbors to ∅ on every node x. This imple-
mentation would correctly satisfy the specification if
there were no Partition Healing property. With Par-
tition Healing, however, after GSTS the protocol is
forced to reconnect nodes after add() invocations,
and by Connectivity Preservation, the protocol has
to keep these connections, and then by Eventual In-
clusion and Eventual Cleanup, the protocol has to
converge to a correct leafset structure. Thus trivially
splitting nodes is prohibited by the specification.

Besides convergence, the leafset maintenance
protocol should also be cost-effective in terms of
the cost to maintain the neighbors set on the nodes.
We look at the maintenance cost when the protocol
reaches its steady state: that is, assuming that there
is no more add() invoked at any node, the neighbors
set of each online node has already included the cor-
rect leafset entries in its stabilized connected com-
ponent and nothing more. The cost effectiveness is
characterized by the following property:
• Cost Effectiveness: If there is a time t after

which no add() is invoked at any node in the
system, then in the steady state of the protocol,
on each node the size of the local state and the
number of nodes registered to the failure detec-
tor are both O(L).

When counting the size, we assume that each node
ID and each clock value take a constant number of

bits to represent. The property specifies that in the
steady state the local state and the number of nodes
monitored by the failure detector on each node is lin-
ear to the size of the leafset and is not related to the
system’s size. The requirement of O(L) nodes regis-
tered to the failure detector prevents a protocol from
monitoring a large set of nodes in the steady state.
The property also implies that in the steady state
each node can only send messages to O(L) nodes
and the size of each message is at most O(L).

Our specification of convergent overlay mainte-
nance protocols is similar to self stabilization [4, 5]
in that we require the leafset topology to eventually
converge to the desired structure (each connected
component is a ring structure) no matter what the
topology was before the underlying system stabi-
lizes. Our specification differs from self stabiliza-
tion in the following aspects: First, we consider an
open system where applications may invoke add()
to add new contact nodes at any time, while self sta-
bilization considers a closed system without any ap-
plication interference. Second, unlike in the self sta-
bilization model, we do not assume that all system
states can be arbitrarily corrupted before system sta-
bilization (e.g., local clock values cannot go back-
wards).

5 Necessity of GSTS

The Connectivity Preservation property requires the
preservation of connectivity after time GSTS . One
might wonder if we can find a protocol that pre-
serves connectivity starting from an earlier time
point. In particular, we know that after time
t = max(GSTD, GSTM ), both failure detection and
message delivery are reliable. So can we guaran-
tee connectivity preservation starting from time t?
Why do we have to wait for all messages before t to
be delivered to reach the time GSTS and then only
guarantee connectivity preservation after GSTS?

The following theorem provides the justification
for GSTS by showing that any convergent leafset
maintenance protocol has a run in which the topol-
ogy is connected right before GSTS but becomes dis-
connected after GSTS . This means no protocol can
guarantee connectivity preservation starting from a
time earlier than GSTS .

Theorem 1 For any convergent leafset maintenance
protocol A and any small real value ε > 0, there ex-
ists a run in which Gt is weakly connected for some
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t such that GSTS − ε < t < GSTS , but at a later
time t′ ≥ GSTS , Gt′ is not weakly connected.

We now give an outline of the proof that covers
the intuitive ideas, and move the complete proof to
the appendix due to space constraints. For any pro-
tocol A, by our specification it has to guarantee con-
vergence of each connected component to a single
ring structure eventually. Then by the Partition Heal-
ing property, when two disconnected components
are linked by some add() invocations, these compo-
nents have to be merged into a single ring structure.
This inevitably leads to some node u removing an-
other node v from its neighbors set during the con-
vergence process. Suppose this removal step on u is
triggered by some message m received by u. If m
is sent before GSTD, then it is possible that after m
is sent, all processes other than u and v are crashed.
Then v receives some wrong failure detection events
claiming that u have crashed, which causes v to re-
move u from v.neighbors. However, u is not aware
of these system events and when it receives m it still
removes v from u.neighbors. This removal breaks
u and v into two disconnected components. There-
fore, any message sent before GSTD may potentially
break the connectivity of the topology in any proto-
col. Hence, we can only ask a protocol to guaran-
tee connectivity after these messages are delivered,
which means after GSTS .

6 Leafset Maintenance Protocol

Our leafset maintenance protocol consists of five
sub-protocols: (a) the add() protocol to add new
contacts supplied by the application (Fig. 1, lines 3–
9); (b) the failure-handling protocol to remove the
failed nodes from the leafset upon the notification
of failure detector (Fig. 1, lines 11–12); (c) the
invite protocol to invite closer nodes into leafset
(Fig. 2); (d) the replacement protocol to replace far-
away nodes that should not be in the leafset with
closer nodes (Fig. 3); 4 and (e) the deloopy proto-
col to detect and resolve a special incorrect topol-
ogy called loopy topology (Fig. 5). The replacement
protocol (Fig. 3) is our key contribution, so we fo-
cus our attention on this sub-protocol while briefly
explaining other sub-protocols. Even though each

4Technically, the faraway nodes for a node x are those in
x.neighbors\ leafset(x, x.neighbors). Whenever necessary, we
use x.var to denote the variable var on x.

On node x:
1 Data structure:
2 neighbors: set of nodes intended for

leafset entries, initially ∅.
3 add(contacts)
4 foreach y ∈ contacts
5 send PING-CONTACT to y

6 Upon receipt of PING-CONTACT from y:
7 send PONG-CONTACT to y

8 Upon receipt of PONG-CONTACT from y:
9 neighbors ← neighbors ∪ {y}
10 register(neighbors)
11 Upon detected(y):
12 neighbors ← neighbors \ {y}

Figure 1: Leafset maintenance protocol, Part I: Add
new contacts and handle failures.

sub-protocol has its own functionality, they have to
work together to provide the desired self-stabilizing
and cost-effective features specified in the previous
section.

All of these sub-protocols (except the failure-
handling one) use a periodic ping-pong messaging
structure. For ease of understanding, each type of
ping-pong message is sent independently. In actual
implementations, one can unify all periodic ping-
pong messages together for efficiency.

On each node, the protocol maintains a neighbors
set as required by the specification. The proto-
col keeps an invariant that a node y is added into
x.neighbors only after x receives a pong message di-
rectly from y. This invariant verifies the liveness of
any nodes to be added into the neighbors set and pre-
vents different unwanted behaviors in different sub-
protocols.

In the add() protocol, if the nodes were added di-
rectly into the neighbors set without any verifica-
tion, the property Eventual Inclusion would not be
satisfied because the application might keep insert-
ing failed nodes via add(). To solve this problem,
the add(contacts) protocol (Fig. 1, lines 3–9) uses a
ping-pong message loop to check the liveness of the
nodes being added. In this way, the add() invoked
after GSTN will not add any failed nodes into the
neighbors set of any online nodes, since the failed
nodes cannot respond to the PING-CONTACT mes-
sages.

The invite protocol (Fig. 2) uses a variable cand
to store candidate nodes to be invited into the
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On node x:
13 Data structure:
14 cand: candidate nodes for neighbors, initially ∅.
15 Repeat periodically:
16 foreach y ∈ neighbors, send PING-ASK-INV to y

17 Upon receipt of PING-ASK-INV from a node y:
18 view ← leafset(y, neighbors)
19 send (PONG-ASK-INV, view) to y
20 cand ← cand ∪ {y}
21 Upon receipt of (PONG-ASK-INV, view) from y
22 cand ← cand ∪ view
23 Repeat periodically /* invite closer nodes */
24 foreach y ∈ cand \ neighbors
25 if y ∈ leafset(x, cand ∪ neighbors) then
26 send PING-INVITE to y
27 cand ← ∅
28 Upon receipt of PING-INVITE from y:
29 send PONG-INVITE to y

30 Upon receipt of PONG-INVITE from y:
31 if y ∈ leafset(x, neighbors ∪ {y}) \ neighbors
32 then
33 neighbors ← neighbors ∪ {y}
34 register(neighbors)

Figure 2: Leafset maintenance protocol, Part II: In-
vite closer nodes in the key space.

neighbors set. The candidate nodes are discov-
ered by exchanging local leafset views through
the PING-ASK-INV and PONG-ASK-INV messages.
Once a node x discovers some new candidates, it
uses the periodic PING-INVITE and PONG-INVITE
message loop to invite these candidates into
x.neighbors. The invitation is successful when the
candidate y sends back the PONG-INVITE message
to x and x verifies that y is indeed qualified to be in
x’s leafset (lines 31–32). The invite protocol is in
principle similar to other leafset maintenance pro-
tocols (e.g. [19, 16, 9, 18]), except that we use
PING-INVITE and PONG-INVITE messages to pre-
vent a phenomenon called ghost entry. A ghost en-
try is an entry of a failed node that keeps bounc-
ing among the neighbors sets of two or more online
nodes, as explained below.

In the above example, suppose y is a failed node
with ID adjacent to x and z. We also suppose y is
still in z.neighbors. When x sends PING-ASK-INV
message to z, z returns y. Without the message loop
of PING-INVITE and PONG-INVITE, x would add y
into x.neighbors directly. After z told x about y, its

failure detector reports y’s failure and y is removed
from z.neighbors. Later z contacts x to find some
nodes to be invited, and x returns y. So y is added
back to z.neighbors. Then y could be removed from
x.neighbors by a failure detector notification on x,
and added back again by the PONG-ASK-INV mes-
sage from z.

This process can repeat forever, making y
bouncing back and forth between x.neighbors and
z.neighbors. The ghost entry phenomenon violates
the property of Eventual Inclusion. It could be elim-
inated by the PING-INVITE and PONG-INVITE mes-
sage loop. With this message loop, a failed node will
not be added into the neighbors set by the invita-
tion protocol since it cannot send any PONG-INVITE
messages. Therefore, it will not be returned to other
nodes as an invitation candidate, either.

The replacement protocol (Fig. 3) is responsible
for removing faraway nodes from the neighbors sets
to keep neighbors sets small. This protocol is our
key contribution to provide Cost Effectiveness, and
the key differentiator from other protocols. When
removing the faraway nodes, we need to ensure
both safety (Connectivity Preservation) and liveness
(Eventual Inclusion and Eventual Cleanup), in the
presence of concurrent replacements and other sys-
tem events.

To ensure safety, we use a closer node to replace
a faraway node instead of removing it directly. The
basic replacement flow consists of two ping-pong
loops. Suppose a node x intends to remove a node
z since z is not in leafset(x, x.neighbors). Node
x uses the PING-ASK-REPL and PONG-ASK-REPL
loop (lines 39–46) with node z to obtain a replace-
ment node y, which is recorded by x in x.repl[z]. (If
there does not exist a node v satisfy the condition
at line 43, y is set to ⊥ and returned to x.) Then x
uses the PING-REPLACE and PONG-REPLACE mes-
sage loop to verify with y about the replacement
(lines 47–61). If y finds z in y.neighbors at the
time it receives the PING-REPLACE message from
x, it acknowledges x with a PONG-REPLACE mes-
sage. Only after receiving the PONG-REPLACE mes-
sage from y, x may replace z with y in x.neighbors.
This method tries to ensure that after the removal of
edge 〈x, z〉 from the overlay, there is still a path from
x to z via y. The first ping-pong loop tries to find an
alternative path to replace 〈x, z〉. The second ping-
pong loop tries to ensure y’s liveness and the validity
of the path.

The above basic flow alone, however, cannot nul-
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On node x:
35 Data structure:
36 repl[ ]: for each z ∈ neighbors, repl[z] is a node

to replace z, initially ⊥
37 commit[ ]: for each z ∈ neighbors, commit[z] is the

time when x commits to z in a
replacement task, initially 0

/* repl[ ] and commit[ ] only maintains entries for nodes
in neighbors */

38 ts: timestamp of the replacement task, initially 0
39 Repeat periodically:
40 foreach z ∈ neighbors \ leafset(x, neighbors)
41 send PING-ASK-REPL to z

42 Upon receipt of PING-ASK-REPL from z:
43 y ← v such that v ∈ leafset(x, neighbors)

and d(z, v) < d(z, x) and
d(z, v) = minu∈leafset(x,neighbors) d(z, u)

44 send (PONG-ASK-REPL, y) to z

45 Upon receipt of (PONG-ASK-REPL, y) from z
46 if z ∈ neighbors then repl[z] ← y

47 Repeat periodically:
48 ts ← getClockValue()
49 foreach z ∈ neighbors \ leafset(x, neighbors)

and repl[z] 6= ⊥
50 send (PING-REPLACE, z, ts) to repl[z]
51 Upon receipt of (PING-REPLACE, z, ts) from y:
52 if z ∈ neighbors then
53 commit[z] ← getClockValue()
54 send (PONG-REPLACE, z, ts) to y

55 Upon receipt of (PONG-REPLACE, z, ts) from y:
56 if z ∈ neighbors \ leafset(x, neighbors)

and y = repl[z] then
57 neighbors ← neighbors ∪ {y}
58 if commit[z] < ts then
59 neighbors ← neighbors \ {z}
60 commit[y] ← getClockValue()
61 register(neighbors)

Figure 3: Leafset maintenance protocol, Part III: Re-
place faraway nodes.

lify the indirect effects of adverse system events be-
fore time GSTD when there are concurrent replace-
ments, and thus the topology connectivity could
still be jeopardized. For example, in Fig. 4, x re-
places z with y after time GSTS when it receives
the PONG-REPLACE message sent by y after time
GSTD. In the meantime, there is a concurrent task
in which y wants to replace z with u. After send-
ing the PONG-REPLACE message to x, y receives
the PONG-REPLACE message from u and success-

x

y

u

z

GSTSGSTD

PONG-REPLACE

PONG-REPLACE

incorrect “detected(z)”

Figure 4: Concurrent replacement tasks introduce
indirect effects of system conditions before GSTD

and break topology connectivity.

fully replaces z with u. However, the time that u
sends the PONG-REPLACE message to y could be
before GSTD. So an erroneous “detected(z)” on u
immediately after the sending of the message could
remove z from u.neighbors. As the result, x is re-
lying on the alternative path x → y → u → z to
remove z from x.neighbors, but the path is broken
since u removed z from u.neighbors. However, x
is not aware of these concurrent events, and it still
removes z after GSTS , which breaks the connectiv-
ity. This shows the indirect effect of adverse system
events before GSTD. A similar danger exists when
x tries to replace z and y concurrently.

We introduce variables ts and commit[ ] to elimi-
nate these dangerous concurrent replacements. Vari-
able ts is a timestamp identifying the current replace-
ment task when a node sends out PING-REPLACE
messages (line 48), and its value is piggybacked with
the PING-REPLACE and PONG-REPLACE messages.
For each z ∈ x.neighbors, variable x.commit[z]
records the time when x commits to z in a replace-
ment task, either when x verifies the replacement of
z for another node y (line 53), or when x uses z
to replace another node y (line 60). The key con-
dition is that x can only successfully replace z in
a replacement task whose timestamp ts is higher
than commit[z] on x (line 58). The use of ts and
commit[ ] variables avoids any dangerous concurrent
replacement tasks in the system. In the example of
Fig. 4, after y sends the PONG-REPLACE message to
confirm the replacement of z for x, y.commit[z] is
updated to a new timestamp that is larger than the
timestamp of y’s own concurrent replacement task
to z. So when y receives the PONG-REPLACE from
u, it will not remove z from y.neighbors. As shown
by our proof, it is the core mechanism to satisfy the
Connectivity Preservation property.
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Next, we restrict the selection of replacement
node y to guarantee the Eventual Cleanup property.
A node y can be a replacement of z for x only
when y is closer to x than z and is in z’s leafset
(line 43). The distance constraint avoids circular
replacement, while the leafset constraint guarantees
that y can successfully verify the replacement. The
latter is true because our invite protocol guarantees
that eventually the leafsets are mutual, so z will be
in y’s leafset. These two replacement selection con-
straints guarantee the progress of the replacement
tasks, and thus the Eventual Cleanup property.

The mechanisms introduced so far are not enough
to guarantee the Eventual Inclusion property, how-
ever. During the proof of an earlier version of the
protocol, we uncovered the following subtle live-
lock scenario in which the add() invocations inter-
fere with leafset convergence. Whenever node x
wants to replace z with y, the replacement is rejected
because x just committed to z in a replacement task
that replaces another node u with z. The rejections
can keep happening if an application keeps invoking
add({u}) on x at inopportune times such that the
edge from x to u is continually being added back to
the topology. The inability for x to replace z with
y is not an issue by itself. However, it is possible
that there is a node v that should be in x’s leafset,
and the only way x learns about v is through z by
the replacement protocol (the invite protocol will not
help if all nodes in z.neighbors are outside x’s leaf-
set range). In this case, x cannot replace z with y
and thus will not learn about v, so the leafset con-
vergence will not occur.

To fix this problem, we break the replacement of
z with y on node x into two phases. First, x can add
node y into x.neighbors (line 57), without check-
ing the constraint of z.commit < ts. Next, x can
remove z only when the condition z.commit < ts
holds (lines 58–59). With this change, x can still find
closer nodes through z even if x cannot replace z.

We also find another similar livelock scenario if
the replacement node is selected from z’s neighbors
set rather than its leafset (leafset(z, z.neighbors))
in line 43. The discovery of these subtle and even
counter-intuitive livelock scenarios shows that a rig-
orous and complete proof helps us in discovering
subtle concurrency issues that are otherwise difficult
to discern.

With the sub-protocols explained so far, the topol-
ogy still might be incorrect, because it can be in
a special state called the loopy state as defined

On node x:
62 Data structure:
63 succ: a derived variable, succ = x if neighbors = ∅

else succ = y ∈ neighbors such that
d+(x, y) = min{d+(x, z) : z ∈ neighbors}

64 Repeat periodically:
65 if neighbors 6= ∅ and d+(x, 0) < d+(x, succ)
66 send (PING-DELOOPY, x) to succ
67 Upon receipt of (PING-DELOOPY, u) from y:
68 if x = u then return
69 if neighbors = ∅ or d+(x, 0) < d+(x, succ) then
70 cand ← cand ∪ {u}
71 send PONG-DELOOPY to u
72 else
73 send (PING-DELOOPY, u) to succ
74 Upon receipt of PONG-DELOOPY from y:
75 cand ← cand ∪ {y}

Figure 5: Leafset maintenance protocol, Part IV:
Loopy detection.

in [11]. A node’s successor is the closest node in its
neighbors set according to the clockwise distance. A
topology is in the loopy state if following the succes-
sor links one may traverse the entire key space more
than once before coming back to the starting point.
We use a deloopy protocol (Fig. 5) similar to the one
in [11] to detect the loopy state and resolve it. The
protocol essentially initiates a PING-DELOOPY mes-
sage along the successor links to see if the message
makes a complete traversal of the logical space be-
fore coming back to the initiator. If so, a loopy state
is found, and the protocol puts the two end nodes of
this traversal into each other’s cand sets, so that the
invite protocol is triggered to resolve the loopy state.

Our protocol is cost-effective because in the
steady state each node only maintain sets neighbors
and cand, mappings repl[ ] and commit[ ], which con-
tain O(L) number of nodes, and only nodes in the
neighbors set are eventually registered with the fail-
ure detector.

Putting all sub-protocols together, we have a full
protocol that satisfies all properties in our specifica-
tion, as summarized by the following theorem.

Theorem 2 The leafset maintenance protocol pro-
vided in Fig. 1, 2, 3, and 5 is both convergent
and cost-effective, which means it satisfies the Con-
nectivity Preservation, Partition Healing, Eventual
Cleanup, Eventual Inclusion, and Cost Effectiveness
properties.
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On node x:
1 Data structure:
2 mset: set of nodes being monitored, initially ∅
3 ts[ ]: for each y ∈ mset, ts[y] is a timestamp for y.
4 register(S):
5 foreach y ∈ mset \ S
6 remove y’s entry from ts[ ]
7 foreach y ∈ S \ mset
8 ts[y] ← getClockValue()
9 mset ← S

10 Repeat periodically with interval Ip:
11 foreach y ∈ mset, send PING-ALIVE to y

12 Upon receipt of PING-ALIVE from a node y:
13 send PONG-ALIVE to y

14 Upon receipt of PONG-ALIVE from y
15 if y ∈ mset then
16 ts[y] ← getClockValue()
17 Repeat periodically with interval Ic:
18 foreach y ∈ mset
19 if ts[y] + Tc < getClockValue() then
20 output detected(y)
21 mset ← mset \ {y}
22 remove y’s entry from ts[ ]

Figure 6: Implementation of 3PD.

7 Implementation of 3PD

Failure detector 3PD could be implemented in a
number of different partially synchronous systems.
As an example, in this section we provide one im-
plementation in a system model that guarantees mes-
sage delays being bounded by a known constant ∆
eventually. More precisely, we assume that local
clocks are drift-free (our protocols can be easily ad-
justed to accommodate bounded clock drifts among
local clocks). A node can set a timer to be expired
at a later time, and it can cancel a pending timer or
reset it with different values. We say that a mes-
sage sent from node x to node y is ∆-timely if the
time elapsed from x sending m to y receiving m is
at most ∆. We assume that there is an unknown time
GSTM and a known constant bound ∆ such that all
messages sent at or after GSTM are ∆-timely.5

As shown in Figure 6, our implementation works
in a heartbeat manner. The failure detector on a node
x, periodically (with interval Ip) sends PING-ALIVE
messages to nodes being monitored (in mset). When

5If the constant ∆ is unknown, our protocol can gradually
increase the timeout value such that it still eventually stabilizes
the system topology.

a node y receives a PING-ALIVE message, it im-
mediately responds with a PONG-ALIVE message.
Meanwhile, x also checks all the nodes in its mset
periodically with interval Ic. If a node y enters mset
for more than Tc time and also fails to send any
PONG-ALIVE messages to x for at least Tc time, a
failure notification about y will be reported.

It is obvious that our implementation will re-
port failure to failed nodes eventually, since the
failed nodes cannot send PONG-ALIVE messages
any more. For the property of Eventual Strong Ac-
curacy, we show that when the liveness checking
interval Ic and the timeout threshhold Tc are set to
be at least Ip + 2∆, the online nodes can return
PONG-ALIVE messages on time, and thus no false
failure notifications will be reported eventually. The
proof of correctness is included in the appendix.

8 Improvement for Fast Conver-
gence

In this section, we describe several optimizations to
our leafset protocol to significantly speed up the sta-
bilization process.

Leafset topology convergence consists of two pe-
riods. The first period starts at the system stabiliza-
tion time GSTS and ends when all neighbors sets
on all nodes contain the correct leafset members,
and it corresponds to the Eventual Inclusion prop-
erty. The second period starts at the end of the first
period and ends when all neighbors sets only con-
tain leafset members (provided there are no more
add() invocations), and it corresponds to the Even-
tual Cleanup property. We call the length of the first
period convergence time and the length of the sec-
ond period cleanup time. Reducing the convergence
time is important because it significantly reduces the
transition period where overlay routings may be in-
correct, and it makes the topology more robust under
churn. Thus, we focus our discussion on reducing
convergence time.

To reduce convergence time, we make use of fin-
ger tables, since they maintain faraway links so that
a node may learn about other nodes in its leafset
faster through finger tables. Our first optimization
is on the invite protocol. In addition to provide
neighbors set to other nodes as leafset candidates
(line 18), a node can also provide its finger table
entries as candidates. We can adapt our proof eas-
ily and show that as long as the finger tables do not
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Figure 7: Multi-ring topology.

contain offline entries eventually, our protocol is still
correct. This optimization is similar to ones used by
other protocols.

There are several special classes of topologies in
which the above optimization is not helpful. We
find that these special topologies are more difficult
to converge than random topologies, but they are not
addressed by previous studies. We now propose a
few additional optimizations that handle these cases.

8.1 Merging of the multi-ring topology

One special class of topologies is multi-ring topolo-
gies, in which several ring structures are connected
by a few cross-ring links (Fig. 7). Multi-ring topolo-
gies can be generated due to network partitions. Af-
ter a network partition, the topology may be broken
into several disconnected components, all of which
stabilize into a ring structure. When the network re-
covers from the partition, the application or a boot-
strap system may add a few cross-ring links to con-
nect the topology.

In Fig. 7, there are two separate rings and the only
cross-ring link is from x to z (z is in x’s neighbors
set). The invite protocol will not be helpful for this
topology when all candidates that z can provide to
x are outside x’s current leafset range. In this case,
through the replacement protocol node x will even-
tually learn a node in z’s ring that is within x’s leaf-
set range, for example, node y in Fig. 7. We call two
close nodes x and y learning about each other the
creation of the first healing point between the two
separate rings. Once the first healing point is cre-
ated, the two rings will merge by the invite protocol
along the two directions on the rings. Let N be the
number of online nodes in the multi-ring topology.
With our current protocol, it may take O(N) time to
create the first healing point and take another O(N)
time to merge the two rings. To reduce the conver-
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Figure 8: Convergence time vs. system scale with-
out fast convergence algorithm on multi-ring topolo-
gies.

gence time, we need to shorten both the period to
create the first healing point and the period to merge
rings.

To speed up the creation of the first healing point,
we allow node x to issue a special routing request
starting from z using x’s own ID as the routing key.
With the help of fingers, the routing takes O(log N)
steps to reach the routing destination y. So within
O(log N) time, x can learn about y, creating the first
healing point.

To speed up the ring merging process after the first
healing point, we want to spawn more healing points
to merge the rings in parallel instead of merging in
linear fashion along the two directions. To do so,
we let leafset neighbors exchange their finger tables.
For example, as shown in Figure 7, suppose u is a
finger of x and v is a finger of y, and the first heal-
ing point is already created between nodes x and y.
Through finger table exchange between x and y, x
learns about v. When x probes its finger u, x tells
u about v since v is close to u from x’s point of
view. On receiving the probe message, u puts v in its
cand set. If v is indeed in u’s leafset range, v will be
pulled into u.neighbors by the invite protocol. When
this happens, a new healing point between u and v is
created. This process is carried out for all finger ta-
ble entries in order to spawn as many healing points
as possible.

Although there is no guarantee that every round
of leafset exchanges and finger probes at a heal-
ing point generates new healing points, we antici-
pate that well distributed fingers (which is satisfied
by most finger protocols) will lead to exponentially
fast creations of new healing points. Therefore, we
conjecture that the above fast convergence process
will lead to O(log N) convergence time for multi-
ring topologies and even other topologies. We veri-
fied the conjecture by simulations, while we plan to
conduct a mathematical analysis to prove it.
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Figure 9: Convergence time vs. system scale using
fast convergence algorithm.

The simulations are conducted by running our
protocol with an initial multi-ring topology in an
environment without node churns. Each multi-ring
topology may be composed of 2, 4, 8, 16, and 32
rings. For each type of the multi-ring topology, we
generate 100 instances for each of the following sys-
tem scale (number of online nodes): 256, 512, 1024,
2048 and 4096, and take the average convergence
time among these instances. We set the intervals of
all periodic ping-sending timers in our protocol to be
equal, so that we can use a single round number to
measure the convergence time.

In Fig. 8, we show the convergence time before
applying the fast convergence algorithm. The re-
sult indicates that the convergence time of multi-ring
topologies increases linearly with the system scale.
In Fig. 9, we show the convergence time on multi-
ring topologies when the protocol uses the fast con-
vergence algorithm with two types of fingers: the
Chord fingers [11] and the Symphony fingers [12].
With both types of fingers, the convergence time is
O(log N). Therefore, our simulation shows that our
fast convergence mechanisms reduces convergence
time to O(log N).

We also conducted simulations with random ini-
tial topologies, and the results show that even with-
out the fast convergence algorithm random topolo-
gies converge in O(log N) time. This indicates that
the convergence of multi-ring topologies are indeed
more difficult than random topologies.

8.2 Fast loopy detection

Another special case we want to deal with is the
loopy topology. Our current deloopy protocol (Part
IV) may take O(N) time to find a deloopy point —
two different nodes that are both immediately pre-
ceding point 0 in the key space. To speed up loopy
detection, we would like to use finger tables to for-
ward the deloopy message faster. However, if a fin-
ger crosses point 0 in the key space, it may miss
the deloopy point and forward the deloopy message
back to the initiator. Therefore, we propose to use a
special finger structure that we call perfect skip list,
since it resembles a special centralized skip list data
structure ([14]).

The finger table is a simple recursive structure.
The i-th level finger on node x is calculated as
follows: x.fingers[0] = x.succ, and x.fingers[i +
1] = (x.fingers[i]).fingers[i]. We also need to know
whether the i-th level finger crosses the point 0 in
the key space. This is done by recursively calcu-
lating a boolean variable crossed[i]: x.crossed[0] =
(x.succ crossed 0), and x.crossed[i + 1] =
(x.crossed[i] or (x.fingers[i]).crossed[i]). If the
topology is in the loopy state, the correct fingers
and crossed variables can be computed in parallel
in O(log N) time.

The PING-DELOOPY messages are passed by a
node along its highest level finger that does not cross
point 0. We proved that if the topology is loopy,
the above mechanism will find the deloopy point in
O(log N) time. Once the deloopy point is found,
we can use the parallel merging process described in
Section 8.1 to quickly converge the topology into a
correct ring structure.

9 Conclusions and Future Work

In this paper, we propose a formal specification of
peer-to-peer structured overlay maintenance, and in-
troduce a complete protocol that matches the spec-
ification. The protocol is able to preserve overlay
connectivity in a purely peer-to-peer manner while
maintaining a small leafset, and it is able to con-
verge any connected topology to the correct config-
uration. We then consider the convergence speed of
our protocol and provide some heuristics to achieve
O(log N) convergence time where N is the total
number of nodes in the system. Our future work in-
cludes theoretical analysis of the fast convergence
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protocols. Another direction is to generalize our re-
sults to other structured overlay topologies.
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Appendix

A Proof of Theorem 1

Theorem 1 For any convergent leafset mainte-
nance protocol A and any small real value ε > 0,
there exists a run in which Gt is weakly connected
for some t such that GSTS − ε < t < GSTS , but at a
later time t′ ≥ GSTS , Gt′ is not weakly connected.
Proof. We construct a series runs of protocol A to
reach the conclusion.

Run R1: In this run, GSTN = GSTD = GSTM =
GSTS = 0, i.e., there is no membership change, no
message loss and no failure detection mistakes in the
run. Let P1 to be the finite set of online nodes with at
least 2L + 1 entries. At some time after GSTN = 0
we invoke add(P1) on one of the nodes in P1. By
the Partition Healing property, if the leafset topology
is not connected, it will become connected. By the
Connectivity Perservation, Eventual Inclusion, and
Eventual Cleanup properties, there exists a time t1
such that any time t > t1 and any node x ∈ P1,
x.neighborst = leafset(x, P1).

Run R2: R2 is the same as R1, except that the
protocol now executes on another set of nodes P2

with P2 ∩ P1 = ∅, and an add(P2) invocation on
some node in P2. So there exists a time t2, for any
time t > t2 and any node y ∈ P2, y.neighborst =
leafset(y, P2).

Run R3: In this run, we still have GSTN =
GSTD = GSTM = GSTS = 0. The run contains
all the nodes in P1 and P2. Let t3 = max(t1, t2).
We merge the steps of R1 and R2 by time t3 to-
gether as the steps of R3 by time t3. This means
we delay all messages between P1 and P2, if there
are any, and let the two components run alone. Thus
we have that at time t3, for any node x ∈ P1, y ∈ P2,
x.neighborst3 = leafset(x, P1), y.neighborst3 =
leafset(y, P2). In other words, the system topology
is two disjoint “rings” at t3.

At some time t4 > t3, we invoke add({y}) on
x for two arbitrary nodes x ∈ P1 and y ∈ P2.
Then we deliver the delayed messages between P1

and P2 after t4. According to the Partition Heal-
ing property, the system topology eventually be-
comes weakly connected. By the other properties
in the specification, we know that there exists a time
t5 > t4 such that for any time t > t5 and any node
z ∈ P1 ∪ P2, z.neighborst = leafset(z, P1 ∪ P2).
That is, the topology merges into a single ring after

t5.
This leads to a fact that there exists a node u ∈

P = P1 ∪ P2 and for any two time points t, t′ such
that t3 < t < t4 and t5 < t′, u.neighborst 6=
u.neighborst′ . Since both P1 and P2 contain at least
2L + 1 nodes, it must be true that |u.neighborst| =
|u.neighborst′ | = 2L. Therefore, there must be
some entry being removed from u.neighbors after
t4. Let s be the first step after t4 at which u re-
moves v (v ∈ u.neighborst) from its neighbors set.
It’s obvious that s is not the first step in R3, since
the invocation of add is before it. Let s′ be the step
immediately preceeding s in run R3, and tc be the
time when s′ occurs. We know that Gtc contains
edge 〈u, v〉, and Gtc is connected by our specifica-
tion. Let σ′ be the step sequence from the first step
to step s′.

Run R4: R4 is exactly the same as R3 until step
s′. After step s′, we make all the nodes in P offline
except v. According to our specification, there exists
a step s′′ of v such that after step s′′ v.neighbors does
not contain any nodes in P \ {v}. Let σ′′ be the step
sequence from the step after s′ to step s′′.

Run R5: R5 is exactly the same as R3 until step
s′ at time tc. After step s′, we immediately make all
the nodes in P offline except u and v. So GSTN is a
value greater than tc but smaller than the time when
the first step in σ′′ is taken. Then we simulate the
execution in R4 by letting v taking the steps in σ′′
as in run R4. After step s′′, the last step in σ′′, we
schedule u to take step s at time tf . After step s′′,
we also drop all messages that have not been deliv-
ered except the message that triggers step s (in the
case s is triggered by a message). Thus the step se-
quence in R5 until time tf is σ′ · σ′′ · s. Figure 10
shows an example of the step sequence. Since u is
online but does not take any step in sequence σ′′, we
know that for any time t with GSTN ≤ t < tf , Gt

contains two nodes u and v and an edge 〈u, v〉, so
Gt is connected. For any t with tc ≤ t < GSTN ,
Gt is connected because Gtc is connected and there
is no step after tc and before GSTN . However, after
step s′′ v.neighbors only contains v, and in step s
at time tf , u removes v from u.neighbors, so Gtf is
not connected.

Now we argue why we can schedule run R5 as
described above. First, for v to take the same steps
in σ′′ as in run R4, v needs to have the same mes-
sage receipt and failure detection events. It is easy
to ensure the same message receipt events because
it runs the same as in run R4 until the last step s′′
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Figure 10: Run R5 until step s that is triggerred by the receipt of a message m.

and node u does not take any step in σ′′. For fail-
ure detection events, in σ′′ it may have one or more
detected(u) events on v since u is offline during the
steps in σ′′ in run R4, but in R5 u is online during
this period. However, we can still have the same
detected(u) events since the failure detector may
make mistakes. Second, node u should be able to
take step s as in run R3. If step s is triggered by a
message receipt event in R3, the message is gener-
ated at some step in σ′, so the same message exists
in R5, and we can delay its delivery to time tf in the
asynchornous model. If step s is triggered by a fail-
ure detection event detected(x) in R3, then x 6∈ P
since GSTD = 0 in run R3. In this case detected(x)
can still be triggered at step s in run R5. If step s is
triggered by a periodic event of u’s local clock in R3,
we can still trigger s with the same periodic event in
R5 since u’s local clock has no timing guarantee and
can be slowed down. Finally, step s cannot be trig-
gered by an add() event in R3 since in R3 all add()
events occur before step s. Therefore, run R5 is a
legitimate run in our model.

We now verify the time GSTS and conclude the
proof. For GSTD and GSTM , by definition they are
at least GSTN , and they are before tf because there
could be wrong detected(u) events during step se-
quence σ′′, and there could be messages sent dur-
ing σ′′ that are lost, but after σ′′, there is no more
wrong detection and no more message loss. There
are two cases to consider for GSTS . In the first
case, step s is not triggered by a message receipt
event. In this case, we know that GSTS is before
time tf , because after step s′′ and before tf , we
know that all messages sent before GSTD or GSTM

either have been received or dropped. Since we
know that for all t with tc ≤ t < tf , Gt is con-
nected but Gtf is not connected, and GSTS is such
that tc < GSTN ≤ GSTS < tf , so we can certainly
find a t such that GSTS − ε < t < GSTS and Gt is

connected, and t′ = tf > GSTS with Gt′ not con-
nected.

In the second case, step s is triggered by the re-
ceipt of a message m. In this case, GSTS = tf , be-
cause by time tf , every message sent before GSTD

or GSTM is either received before tf , or dropped,
or is message m received at time tf . Again since
the topology was connected before tf but discon-
nected after step s at tf , we can certainly find t with
GSTS−ε < t < GSTS and Gt is connected, and find
a time t′ = GSTS such that Gt′ is not connected.

Therefore, R5 is a run satisfying the theorem. 2

B Proof of Correctness for the Self-
Stabilizing Protocol

Our proof always refers to a particular execution of
the algorithm with a membership pattern Π.

For two different points x and y in the key space
K, we denote the interval (x, y) as the interval from
x to y in the clockwise direction, excluding point x
and y. That is, (x, y) = {z ∈ K : 0 < d+(x, z) <
d+(x, y)}.

Lemma 1 After time GSTD, for all node x ∈
sset(Π), x will not remove any online nodes in
sset(Π) from its neighbors set by failure detection.

Proof. According to the property of Eventual Strong
Accuracy of 3PD, line 12 will never be invoked on
x for a online node y. 2

Since the liveness checking protocol (Figure 1)
will not remove any online nodes from the neighbors
set after time GSTD, the removal of such nodes must
be caused by the replacement protocol (Figure 3).
With the replacement protocol, if a node u wants to
remove a node w from its neighbors set, it must find
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another node v as the replacement, in order to pre-
serve the connectivity from u to w. Lines 39–46 in
Figure 3 shows how u could find v. Then u sends a
PING-REPLACE to v to ask for v’s approval for the
replacement. If v agrees with the replacement, v will
send a PONG-REPLACE back to u, and u can replace
w with v upon the receipt of the approval.

We call the step that successfully executes
lines 51–54 v’s verification of the replacement of w
for node u, and the step that successfully executes
lines 55–61 u’s replacement of w with v. These
two steps are the key in the process for connectivity
preservation. We define a replacement sequence as
R = (u, v, w, tvf , trp), in which u replaces w with
v, with tvf and trp as the global time points at which
v’s verification and u’s replacement of w occur, re-
spectively.

Lemma 2 Suppose there are three replacement
sequences R1 = (u, v, w, t1vf , t1rp), R2 =
(u, r, v, t2vf , t2rp), and R3 = (v, s, w, t3vf , t3rp) in the
execution. Then we have

1). t2rp > t1rp implies t2vf > t1rp.
2). t3rp > t1vf implies t3vf > t1vf .

Proof. Proof of 1). At time t1rp, v is merged into
u.neighbors (line 57) and commit[v] on u is set to the
local time of u (line 60). So t1rp is the correspond-
ing global time of u’s local time commit[v] (i.e.
t1rp = globalTime(u, commit[v])). At time t2rp, u re-
places v with r (lines 57 and 59). According to the
algorithm, this implies that commit[v] < ts at time
t2rp, where ts is the timestamp variable embedded in
the PONG-REPLACE message from r (line 58). Now
let t = globalTime(u, ts). We have t > t1rp. Be-
cause t is the time that u sends the PING-REPLACE to
r, and t2vf is the time that r receives that message, it
must be true that t2vf > t. Therefore, t2vf > t > t1rp.

Proof of 2). At time t1vf , v verifies the replace-
ment of w so commit[w] on v is set to the lo-
cal time of v (line 53). In other words, t1vf =
globalTime(v, commit[w]. At a later time t3rp, v
replaces w with s, which implies that the times-
tamp ts embedded in the PONG-REPLACE message
from s to v satisfies commit[w] < ts (line 58). Let
t = globalTime(v, ts), we have t > t1vf . Since the
corresponding PING-REPLACE message is sent at t
and t3vf is the time at which this message is received
by s, we have t3vf > t > t1vf . 2

Lemma 3 For a replacement sequence R =
(u, v, w, tvf , trp) with w ∈ sset(Π), if tvf ≥ GSTD,
then at any time t ≥ tvf , there is a path from v to w
in the directed graph G(t).

Proof. To prove the lemma, we prove the follow-
ing statement by induction: For any replacement se-
quence R = (u, v, w, tvf , trp) with w ∈ sset(Π)
and tvf ≥ GSTD, for any finite step sequence
σ started at the step of v’s verification of the re-
placement at time tvf , there is a path p = (v0 =
v, v1, . . . , vm = w) from v to w in the directed graph
Gσ, where Gσ is derived from the neighbors sets of
all online nodes after the step sequence σ, and p and
σ have the following property:

(*) For any edge 〈vi, vi+1〉 on the path, either vi

verifies the replacement of vi+1 for some node
x (lines 51–54) in the step sequence σ, or vi

replaces some node x with vi+1 (lines 55–61)
in the step sequence σ.

By our system model, there are only a finite num-
ber of steps that can occur in any finite time interval,
so the above statement will cover all time after tvf .
We prove the above statement by an induction on the
number of steps k in the step sequence σ.

In the base case where k = 1, σ has one step,
which is v’s verification of the replacement of w
at time tvf . According to the algorithm, right af-
ter this step we have w ∈ v.neighbors. Since
tvf ≥ GSTD ≥ GSTN , we have v ∈ sset(Π).
Since we also have w ∈ sset(Π), we know that edge
〈v, w〉 is in Gσ. So the path we need is p = (v, w).
The (*) property holds for p and σ, since v verifies
the replacement of w for node u in σ (the only step
in σ).

We now suppose that the statement is true for less
than k steps and we need to show it is also true for k
steps where k > 1. Let σ′ be the step sequence with
k steps and σ be the prefix of σ′ with k−1 steps. Let
sk be the k-th step in σ′. By the induction hypoth-
esis, there is a path p = (v0 = v, v1, . . . , vm = w)
from v to w in Gσ. By definition, all nodes on the
path are in sset(Π). If step sk does not affect path
p, then we are done. If step sk does affect path p,
it could be one of the following two types: (a) sk

is the removal of vi+1 from vi.neighbors as a fail-
ure handling on vi (line 12) for some i < m; or (b)
sk is the replacement of vi+1 with some node z in
vi.neighbors (lines 55–61), for some i < m. By

18



Lemma 1, case (a) cannot occur because all vi’s are
in sset(Π), and all steps in σ′ occur at or after GSTD.
Therefore we only need to consider case (b).

Let this replacement sequence be R1 =
(vi, z, vi+1, t1, t

′
1). By the algorithm, step sk occurs

when vi receives a (PONG-REPLACE, vi+1, ts) mes-
sage from z, where ts is vi’s local time at which the
corresponding PING-REPLACE message was sent.
According to the algorithm, we know that before
step sk, vi.vi+1.commit < ts (line 58), and after
step sk, t′1 = globalTime(vi, vi.z.commit) (vi set
vi.z.commit to its local time at global time t′1 at
line 60). Since step sk is the replacement of vi+1

with z in vi.neighbors, there is a corresponding step
before sk at which z verifies the replacement of vi+1

for vi. Let this step be s.
We claim that step s must be in σ′ but it is not the

first step in σ′. To show the claim, we use the induc-
tion hypothesis. By the (*) property of the induction
hypothesis, in σ either vi verifies the replacement of
vi+1 for some node x or vi replaces some node x
with vi+1. In the first case, vi verifies the replace-
ment of vi+1 for some node x in σ. Let this step be
s′. Because sk is after s′, we can apply Lemma 2 2)
and conclude that step s is after s′, so s is in σ′ but
not the first one in σ′. In the second case, vi replaces
some node x with vi+1 in σ. Let this step be s′. Be-
cause sk is after s′, we can apply Lemma 2 1) and
conclude that step s is after s′, so s is in σ′ but not
the first one in σ′.

Now let σ1 be the suffix of σ′ started with the
step s. The length of σ1 is less than k. By the
definition of the first step s in σ1, z receives the
(PING-REPLACE, vi+1, ts) message from vi at step
s. This implies that during the entire execution of
σ1, vi’s local time is greater than ts.

For the replacement sequence R1 =
(vi, z, vi+1, t1, t

′
1), we can apply induction hy-

pothesis on σ1 and know that there is a path p1 from
z to vi+1 in Gσ′ , and the (*) property holds for p1

and σ1.
We now claim that 〈vi, vi+1〉 is not on path p1.

To show this claim, suppose, for a contradiction,
that 〈vi, vi+1〉 is on the path p1. By the (*) prop-
erty, there are two cases. In the first case, vi ver-
ifies the replacement of vi+1 for some node x in
σ1. Suppose this step is s′′, which must be after s
and before sk. By the algorithm, after s′′ we have
vi.vi+1.commit = ts′ > ts, which contradicts to
our earlier conclusion that vi.vi+1.commit < ts be-
fore sk. In the second case, vi replaces some node

x with vi+1 in σ1. By the algorithm, we still have
vi.vi+1.commit = ts′ > ts, again contradicting
with our conclusion that vi.vi+1.commit < ts be-
fore sk.

With the claim that 〈vi, vi+1〉 is not on path p1,
we can see that 〈vi, vi+1〉 is removed from Gσ′ , but
instead we have 〈vi, z〉, and a path p1 from z to vi+1

in Gσ′ . Thus, there is still a path from vi to vi+1, and
we can use this path to replace 〈vi, vi+1〉 in path p,
such that in Gσ′ we still have a path p′ from v to w.

Finally, we need to show that path p′ and step se-
quence σ′ satisfy the (*) property. We only need to
show edge 〈vi, z〉 for the property, since all other
edges are either from path p or path p1, and by the
induction hypothesis, they satisfy the (*) property.
For edge 〈vi, z〉, we know that vi replaces vi+1 with
z in step sk, the last step of σ′. So the (*) property
holds for edge 〈vi, z〉. We now finish the induction
step. 2

Corollary 4 If a node u replaces node w ∈ sset(Π)
with node v at time t ≥ GSTS , then there is still a
path from u to w in G(t) after the replacement.

Proof. If u replaces w with v at time t ≥ GSTS , then
v verifies this replacement at or after time GSTD.
The corollary then follows directly from Lemma 3.
2

Lemma 5 (Connectivity Preservation) If for some
time t ≥ GSTS there is a directed path from x to
y in G(t), then for all time t′ > t, there is also a
directed path from x to y in G(t′).

Proof. At time t, suppose the direct path from x to y
is p = (v0 = x, v1, . . . , vm = y. By the definition of
Gt, we know vi ∈ sset(Π) for all i. Lemma 1 shows
that no edges in G(t′) for any t′ ≥ GSTS can be re-
moved by the failure handling protocol. Corollary 4
shows that after time GSTS , any replacement that
removes an edge 〈vi, vi+1〉 still keeps a path from vi

to vi+1, for all i < m.
Therefore, we can construct a directed path p′

from x to y in G(t′) in the following way: (1) if
〈vi, vi+1〉 is still in G(t′), we keep the edge; (2) if
〈vi, vi+1〉 is not in G(t′), there must be a path pi

in G(t′) from vi to vi+1, and we use pi to replace
〈vi, vi+1〉. 2.

Corollary 6 If for some time t ≥ GSTS , P is a
weakly connected component of G(t), then for all
time t′ > t, nodes in P are still weakly connected in
G(t′).
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Proof. According to Lemma 5, every directed path
in P is preserved for all time t′ > t. Since every
undirected path in P is the concatenation of several
directed path in P , the undirected paths in P are also
preserved. Therefore, nodes in P are still weakly
connected in G(t′). 2.

Lemma 7 (Partition Healing) For any x, y ∈
sset(Π), if there is an invocation of add(S) on x
at time t > GSTS with y ∈ S, then there is a time
t′ > t such that x and y are connected in G(t′) (i.e.,
Px(t′) = Py(t′)).

Proof. At time t, let the component containing x
to be Px(t) and the component containing y to be
Py(t). If Px(t) = Py(t), x and y are always con-
nected at any time after t, according to Corollary 6.
Suppose Px(t) 6= Py(t). During the invocation of
add(S) on x at time t, x sends a PING-CONTACT
message to y. Since y ∈ sset(Π) and t > GSTS ,
y eventually receives the PING-CONTACT message
and reply with PONG-CONTACT messages to x.
When x receives the PONG-CONTACT message from
y at t′, it adds y into x.neighbors (line 9), and thus x
and y become connected in G(t′). 2.

Lemma 8 There exists t1 > GSTS , such that ∀t >
t1, ∀x ∈ sset(Π), x.neighborst ⊆ sset(Π).

Proof. After GSTS , all the messages sent from
nodes that are not in sset(Π) have been delivered.
For any node x, y is added into x.neighbors only if x
receives any of the PONG-CONTACT, PONG-INVITE,
or PONG-REPLACE messages from y directly. So
our algorithm will not add any offline nodes into the
neighbors set of any online nodes after GSTS .

Let y ∈ x.neighborsGSTS
for arbitrary nodes

x ∈ sset(Π) and y 6∈ sset(Π). In our protocol,
there are only two ways for y to be removed from
x.neighbors: (1) y is removed by the replacement
protocol. (2) y is removed by the failure handling
protocol.

If y is removed at some time tx,y > GSTS by the
replacement protocol, it is not possible for y to be
added back later. If the replacement protocol does
not remove y, y will be always monitored by the fail-
ure detector on x, because x always ask the failure
detector to monitor the whole neighbors set. Ac-
cording to the “Strong Completeness” property of
3PD, there exists a time tx,y > GSTS at which the
failure detector will output detected(y) on x, thus

removing y from x.neighbors (line 12). Therefore,
there always exists a time tx,y, at which y is removed
from x.neighbors by either the replacement protocol
or the failure handling protocol.

Let t1 = max{tx,y} for all x ∈ sset(Π), y 6∈
sset(Π), and y ∈ x.neighborsGSTS

. We have, for
all t > t1, for all x ∈ sset(Π), x.neighborst ⊆
sset(Π). 2

From now on, Let t1 be as defined in Lemma 8.
In the following lemmas, for any node x,

we denote x.neighbors both {x+1, x+2, . . .} and
as {x−1, x−2, . . .}, such that d+(x, x+i) <
d+(x, x+(i+1)) and d−(x, x−i) < d−(x, x−(i+1)),
for all i = 1, 2, . . ..

Lemma 9 There exists t2 ≥ t1, such
that for all t, t′ > t2 and for all
x ∈ sset(Π), leafset(x, x.neighborst) =
leafset(x, x.neighborst′)

Proof. To prove the lemma, we define the following
derived variables for each node x ∈ sset(Π).

x.R+ =

{
L− |x.neighbors| if |x.neighbors| < L
d+(x, x+L) otherwise

x.R− =

{
L− |x.neighbors| if |x.neighbors| < L
d−(x, x−L) otherwise

Let x.sum = x.R+ + x.R−.
According to Lemmata 1 and 8, the replacement

protocol is the only one that will remove nodes from
x.neighbors after t1 for any x ∈ sset(Π). Because
the replacement protocol only removes nodes that
are not in leafset(x, x.neighbors) (line 56), the value
of x.sum will not change due to the replacement.

Therefore, after t1, the change of x.sum is only
caused by the additions of nodes into x.neighbors.
It is easy to verify that when nodes are added into
x.neighbors, variables x.R+ and x.R− either re-
main the same or decrease, and thus x.sum either
remains the same or decreases. Moreover, x.sum re-
mains the same if and only if leafset(x, x.neighbors)
remains the same.

Since sset(Π) is a finite set, and by Lemma 8 af-
ter t1 x.neighbors ⊆ sset(Π), there are only a fi-
nite number of possible values of x.sum after t1. So
there exist a time t2,x > t1 after which x.sum does
not change. So after t2,x, leafset(x, x.neighbors) re-
mains the same. Let t2 = max{t2,x : x ∈ sset(Π)},
and the lemma holds. 2

From now on, let t2 be as defined in Lemma 9.
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Corollary 10 After time t2, the invite protocol (Part
II) will not add any node into the neighbors set of
any online node in line 32.

Proof. It is clear that every execution of line 32 that
adds a node y into x.neighbors changes the leafset of
node x, so following Lemma 9, no online nodes ex-
ecutes line 32 to add another node into x.neighbors
after time t2. 2

Lemma 11 ∀t > t2, y ∈ leafset(x, x.neighborst) if
and only if x ∈ leafset(y, y.neighborst).

Proof. Suppose ∃x, y ∈ sset(Π), ∃t >
t2, y ∈ leafset(x, x.neighborst) but
x 6∈ leafset(y, y.neighborst). According
to Lemma 9, leafset(x, x.neighborst) and
leafset(y, y.neighborst) will not change any more
after t2. So we can use leafset(x, x.neighbors) and
leafset(y, y.neighbors) to refer to x and y’s leafset
after time t2. Since y ∈ leafset(x, x.neighbors),
x will send PING-ASK-INV to y sometime after t
(line 16). When y receives this message at some
time t′ > t, y adds x into y.cand (line 20).

Consider y’s leafset leafset(y, y.neighbors),
and it is represented as {y−1, y−2, . . .}. If
|leafset(y, y.neighbors)| < L or d−(y, x) <
d−(y, y−L), then x 6∈ y.neighbors, because other-
wise x is in leafset(y, y.neighbors). In this case, at
the next time after t′ when y invites closer nodes
(lines 23–27), we have x ∈ y.cand \ y.neighbors
and x ∈ leafset(y, y.cand ∪ y.neighbors), so y
sends a PING-INVITE message to x (line 26). Node
x will respond to y with a PONG-INVITE message.
When y receives this PONG-INVITE, we have
x ∈ leafset(y, y.neighbors ∪ {x}), so y adds x
into y.neighbors, and thus leafset(y, y.neighbors)
now include x, contradicting to Lemma 9 stating
that no leafset changes after time t2. Therefore,
we know that |leafset(y, y.neighbors)| ≥ L and
d−(y, x) > d−(y, y−L). By a symmetric ar-
gument on {y+1, y+2, . . .}, we also know that
d+(y, x) > d+(y, y+L).

Hence, we now have 2L different nodes
{y−1, y−2, . . . , y−L} and {y+1, y+2, . . . , y+L} such
that for all i ∈ {1, 2, . . . , L}, d−(y, y−i) <
d−(y, x) and d+(y, y+i) < d+(y, x). Since
y ∈ leafset(x, x.neighbors), there exists some j ∈
{1, 2, . . . , L} such that y = x−j or y = x+j . With-
out loss of generality, suppose y = x+j . Let the
interval I = (x, y). We have that there are less than

L nodes in x.neighbors in interval I since y = x+j ,
but there are at least L nodes {y−1, y−2, . . . , y−L}
in y.neighbors in interval I .

Therefore, when y receives the PING-ASK-INV
message from x at time t′, the view that y calculates
for x in line 18, which is leafset(x, y.neighbors),
includes at least L nodes in interval I . There-
fore there exists at least one node z ∈ view \
x.neighbors. Node y sends this view to x (line 19).
When x receives the view, it add it into x.cand
(line 22). Next time when x invites closer nodes
(lines 23–27), we have z ∈ x.cand\x.neighbors and
z ∈ leafset(x, x.cand ∪ x.neighbors), because y ∈
leafset(x, x.neighbors) and d+(x, z) < d+(x, y).
So x sends a PING-INVITE message to z (line 26).
Since z ∈ y.neighbors, by Lemma 8, z ∈ sset(Π).
Therefore, z receives the PING-INVITE message
from x and sends a PONG-INVITE message back
to x. When x receives this PONG-INVITE message
from z, it adds z into x.neighbors (line 32), unless z
is already in x.neighbors. In either case, the leafset
of x changes, contradicting to Lemma 9. 2

We define two helper functions succ(x, set) and
pred(x, set) as the following. When set \ {x} is
empty, succ(x, set) = pred(x, set) = x. When set\
{x} is not empty, succ(x, set) is the node y ∈ set \
{x} such that d+(x, y) = min{d+(x, v) : v ∈ set \
{x}}, and pred(x, set) is the node z ∈ set \ {x}
such that d−(x, z) = min{d−(x, v) : v ∈ set \
{x}}. We also define two derived variables x.succ
(the successor of x) and x.pred (the predecessor of
x) for node x, x.succ = succ(x, x.neighbors) and
x.pred = pred(x, x.neighbors).

Given a topology graph G(t) at time t, we say
that the graph is loopy if it satisfies the follow-
ing conditions: (a) there exists a node v0 such that
d+(v0, 0) < d+(v0, v0.succt); and (b) on the se-
quence v0, v1, v2, . . . with vi+1 = vi.succt, there
exists a node vj 6= v0 such that d+(vj , 0) <
d+(vj , vj .succt).

Lemma 12 For all time t > t2, G(t) is not loopy.
Moreover, there exists time t′ > t2 such that no node
sends PONG-DELOOPY message (line 71) after time
t′.

Proof. Suppose, for a contradiction, that at time
t > t2 graph G(t) is loopy. By Lemma 9 we
know that after time t2 the leafset of every node
remains unchanged, and therefore, the successor of
every node remains unchanged. We can use x.succ
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to represent x.succt for all time t > t2. If G(t) is
loopy, there exists a node v0 such that d+(v0, 0) <
d+(v0, v0.succ), and on the sequence v0, v1, v2, . . .
with vi+1 = vi.succt, there exists a node vj 6= v0

such that d+(vj , 0) < d+(vj , vj .succ). Without
loss of generality, let vj be the first node in the
sequence that has the property. According to the
deloopy protocol (Part IV), node v0 will send a
(PING-DELOOPY, v0) message to v0.succ (line 66).
By Lemma 8, every node vi on the sequence is on-
line, so every node vi relay the (PING-DELOOPY, v0)
message to vi.succ (line 73), until the message
reaches vj . On vj , the loopy detection condition on
line 69 is true, so vj adds v0 into vj .cand (line 70)
and send a PONG-DELOOPY message back to v0

(line 71). When v0 receives this message, it adds
vj into v0.cand (line 75).

By the condition d+(v0, 0) < d+(v0, v0.succ) and
d+(vj , 0) < d+(vj , vj .succ), it is straightforward to
see that either v0 is in the interval (vj , vj .succ), or vj

is in the interval (v0, v0.succ). If v0 is in the interval
(vj , vj .succ), then we know that v0 6∈ vj .neighbors
and v0 ∈ leafset(vj , vj .neighbors ∪ {v0}). Since v0

is added into vj .cand, v0 will send a PING-INVITE
to v0 (line 26), which will lead to the addition of v0

into vj’s leafset, contradicting to Lemma 9 stating
that the leafset of any node will not change after t2.
If vj is in the interval (v0, v0.succ), similarly we can
show that vj will be added into v0’s leafset, again a
contradiction. Therefore, G(t) is not loopy for all
time t > t2.

Since G(t) is not loopy for all time t > t2,
any (PING-DELOOPY, x) message sent by x in
line 66 after time t2 will not trigger loopy detec-
tion, i.e., it will not trigger some node y to send
PONG-DELOOPY to x. Since all messages sent
before time t2 eventually disappear from the sys-
tem, there is a time t′ after which no node sends
PONG-DELOOPY message. 2

Lemma 13 Suppose that there is a time t > t2
and two nodes x, z ∈ sset(Π) such that z ∈
x.neighborst \ leafset(x, x.neighborst).
1). There exist a time t′ > t and a node y ∈
leafset(z, z.neighborst) such that d(x, y) < d(x, z)
and y ∈ x.neighborst′ .
2). Suppose further that node x and z are such
that d(x, z) = max{d(u,w) : w ∈ u.neighborst \
leafset(u, u.neighborst), u, w ∈ sset(Π)}, and no
invocation of add() or delivery of PONG-CONTACT
message happens at or after time t. Then there is a

time t′ > t and a node y ∈ leafset(z, z.neighborst)
such that d(x, y) < (x, z) and x replaces z with y
at time t′.

Proof. By Lemma 9, the leafset of every node
does not change after time t2, so we just use
leafset(v, v.neighbors) to represent the leafset of v
after time t2.

We prove (1) first. Suppose, for a contradiction,
that at time t > t2 we have x, z ∈ sset(Π) such that
z ∈ x.neighborst \ leafset(x, x.neighborst), but for
all time t′ > t and all y ∈ leafset(z, z.neighborst)
such that d(x, y) < d(x, z), we have y 6∈
x.neighborst′ . Note that, this means that z is
not replaced by x after time t in line 59. Be-
cause if x replaces z with a node y, then y is
a replacement provided by z, which means y ∈
leafset(z, z.neighbors) and d(x, y) < d(x, z). Ac-
cording to line 57, y is added to x.neighbors before
z is replaced. Since no such y is found after time t,
we know that z is never replaced.

By Lemmata 1 and 8, after time t2 only the
replacement protocol can remove a node from a
neighbors set. Thus we know that z is always in
x.neighbors after time t. Since the leafset of x does
not change after time t2, z is always in x.neighbors\
leafset(x, x.neighbors) after time t.

By Lemma 11, we know that x 6∈
leafset(z, z.neighbors), because other-
wise z ∈ leafset(x, x.neighbors). Then
leafset(z, z.neighbors) must have 2L nodes.
Otherwise, z.neighborst′ is the same as
leafset(z, z.neighbors) with less than 2L nodes
for all time t′ ≥ t. In this case, x cannot be in
z.neighborst′ . Since z is always in x.neighbors,
x will send a PING-ASK-INV message z, and z
will add x to z.cand after receiving the message
(line 20). Then later z will send x a PING-INVITE
and eventually x will be added into z.neighbors and
thus changes leafset(z, z.neighbors), contradicting
to Lemma 9.

Because z is always in x.neighbors \
leafset(x, x.neighbors) after time t, x peri-
odically send PING-ASK-REPL messages to
z, and z will try to find a replacement in
leafset(z, z.neighbors) (line 43). Among the 2L
nodes in leafset(z, z.neighbors), there must be some
node v that satisfies d(x, v) < d(x, z). In fact, it is
easy to verify that if d(x, z) = d+(x, z), then there
are L nodes in the interval (x, z) satisfying the above
condition, and if d(x, z) = d−(x, z), there are L
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nodes in the interval (z, x) satisfying the above con-
dition. This means that z will be able to find a proper
replacement y and sends (PONG-ASK-REPL, y) back
to x. Because y is selected deterministically from
leafset(z, z.neighbors), z will always provide the
same y to x after t2. When x receives this message,
it sets x.repl[z] to y.

Then x will send (PING-REPLACE, z, rnd)
to y (line 50). By Lemma 11, y ∈
leafset(z, z.neighbors) implies that z ∈
leafset(y, y.neighbors). So when y re-
ceives the (PING-REPLACE, z, rnd) from x,
y sends (PONG-REPLACE, z, rnd) back to x
(line 54). When x receives this message
from x at a time t′ > t, we know that
z ∈ x.neighborst′ \ leafset(x, x.neighbors)
and y = x.repl[z]. Therefore, the condition
in line 56 holds and x adds y into x.neighbors
(line 57). Since we have d(x, y) < d(x, z) and
y ∈ leafset(z, z.neighbors), Part (1) of the lemma
holds.

We now prove Part (2). We continue the
proof in Part (1) with the added assumption that
d(x, z) = max{d(u,w) : w ∈ u.neighborst \
leafset(u, u.neighborst)}, and there is no invocation
of add() after time t. Under these conditions and
x’s repeatedly attempts to replace z, we show that at
some time the condition in line 58 will become true
and thus the replacement will succeed eventually.

If the condition in line 58 is not true, then af-
ter x sends out the (PING-REPLACE, z, ts) to y, ei-
ther x verifies the replacement of z for another node
u (line 53), or x replaces another node u with z
(line 60).

For the first case, we consider u.repl[z] for all u
such that z ∈ u.leafset \ leafset(u, u.neighbors).
Because every u periodically refreshes u.repl[z] by
sending PING-ASK-REPL to z and z always returns
nodes in its own leafset, there exist a time τ af-
ter which x 6= u.repl[z] for all u. So after τ , no-
body will send (PING-REPLACE, z, ts) to x, and x
will never verify the replacement of z after τ ′ > τ .
Therefore, x.commit[z] will not increase due to the
verifications of z for some other nodes after τ ′.

For the second case, it implies d(x, z) < d(x, u)
and u ∈ x.neighborst′ \ leafset(x, x.neighbors) for
some time t′ > t. According to the choice of x
and z, we conclude that u cannot be in x.neighborst.
Therefore u is added after time t but before time
t′. From Corollary 10, no nodes are added into
x.neighbors after time t2 by the invite protocol. By

our condition, no invocation of add() or delivery of
PONG-CONTACT message happens at or after time t
so no node is added into x.neighbors at or after time
t due to the receipt of PONG-CONTACT message. So
the only place that x can add u into x.neighbors af-
ter time t is in the replacement protocol (line 57).
If so, it means there is yet another node v such
that d(x, u) < d(x, v) and v ∈ x.neighborst′′ \
leafset(x, x.neighbors) and t < t′′ < t′. However,
we know that v cannot be in x.neighborst either, so
v is added into x.neighbors after time t. We cannot
repeat this argument forever since there are only a
finite number of nodes, so we reach a contradiction.
Therefore, after t x.commit[z] will not increase due
to x’s own replacement of some other nodes.

Since x.commit[z] stops increase after max(τ ′, t),
we can always find a time t′′ ≥ max(τ ′, t)
at which x.getClockValue() ≥ x.commit[z]
and x sends PING-REPLACE to a node y ∈
leafset(z, z.neighborst′′) and d(x, y) < d(x, z). Af-
ter x gets the corresponding PONG-REPLACE from
y, the condition in line 58 must be true and x re-
places z with y. 2

It is reasonable to assume that applications can
only invoke finite number of add() in a fixed-length
time interval. So if applications stop invoking add(),
the delivery of PONG-CONTACT message will also
stop some time later. After applications stop in-
terfering with our protocol, the size of each node’s
neighbors set eventually become less than or equal
to 2L.

Lemma 14 (Eventual Cleanup) If there is a time
t after which no add() is invoked at any node
in the system and no delivery of PONG-CONTACT
message happens, then there is a time t′ such
that for all time t′′ ≥ t′ and all x ∈ sset(Π),
leafset(x, x.neighborst′′) = x.neighborst′′ .

Proof. Let t′1 be max(t2, t). Given any time
τ , we define a metric m(τ) = max{d(x, z) :
z ∈ x.neighborsτ \ leafset(x, x.neighborsτ ), x, z ∈
sset(Π)} if there exists x and z such that z ∈
x.neighborsτ \ leafset(x, x.neighborsτ ), otherwise
m(τ) = 0. We show that after time t′1, m(τ) is non-
increasing as τ increases and eventually it becomes
0.

First, we notice that m(τ) only changes when
some neighbors set changes. After time t′1, we know
that no node is added into any neighbors set due to
the invocation of add(), no node is added by the
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invite protocol (Corollary 10), and no node is re-
moved by the liveness check protocol (Lemmata 1
and 8). Therefore, a node may only be added or re-
moved by the replacement protocol. If a node y is
added into x.neighbors by the replacement protocol
in line 57 at a time τ , there must be a node z such
that z ∈ x.neighborsτ \ leafset(x, x.neighborsτ )
(line 56) and d(x, y) < d(x, z) (line 43). Hence this
step of adding y will not affect metric m(τ). The
removal of a node cannot increase m(τ), therefore
after time t′1, m(τ) is non-increasing.

If at a time τ > t′1 we have m(τ) > 0, let x
and z be the nodes such that z ∈ x.neighborsτ \
leafset(x, x.neighborsτ ) and d(x, z) = m(τ). By
Lemma 13 2), there is a time τ ′ > τ such that x
replaces z with a node y with d(x, y) < d(x, z).
If there are multiple such pairs of x and z with
d(x, z) = m(τ), they will all be replaced by
Lemma 13 2). Therefore, there is a time τ ′ > τ such
that m(τ ′) < m(τ). Since there are finite nodes in
sset(Π), metric m(τ) can only take finitely many
values, therefore eventually m(τ) will become 0 at
some time t′ and stays as 0 afterwards. When this
occurs, we know that for every node x ∈ sset(Π),
x.neighborst′′ = leafset(x, x.neighborst′′) for all
time t′′ > t′. 2

We sort a node x’s neighbors set as the following:
x.neighbors+ = {x+1, x+2, . . .} s.t. d+(x, x+i) <
d+(x, x+(i+1)), i = 1, 2, . . .

x.neighbors− = {x−1, x−2, . . .} s.t. d−(x, x−i) <
d−(x, x−(i+1)), i = 1, 2, . . .

Lemma 15 1). ∀t, t′ > t2, x.succt = x.succt′ and
x.predt = x.predt′ .
2). ∀t > t2, x.succt = y is equivalent to y.predt =
x.
3). Suppose x.neighborst 6= ∅. ∀t > t2, ∀x ∈
sset(Π), consider the nodes {x+1, x+2, . . . , x+M}
in x.neighbors+ and {x−1, x−2, . . . , x−M} in
x.neighbors− with M = min(L, |x.neighbors|).
We have x+i.succt = x+(i+1) ∧ x−i.predt =
x−(i+1), 1 ≤ i ≤ M − 1.

Proof.
Proof of 1). It is immediate from Lemma 9 and

the fact that x.succt and x.predt is only determined
by leafset(x, x.neighborst).

Proof of 2). The statement is trivially true when
x.neighborst = ∅, so we consider x.neighborst 6=
∅. From x.succt = y, we know that y ∈

leafset(x, x.neighborst). By Lemma 11 it must be
true that x ∈ leafset(y, y.neighborst). Suppose
y.predt = z 6= x, it must be true that d−(y, z) <
d−(y, x). According to the definition of distance
function d− and d+, we know that d+(x, z) <
d+(x, y).

Since leafset(x, x.neighbors) never change, x
will send PING-ASK-INV message to y later, ac-
cording to our protocol part II. Upon the receipt of
x’s PING-ASK-INV message, y calculates the view
as leafset(x, y.neighbors). This implies that y will
put a node u ∈ y.neighbors with d+(x, u) ≤
d+(x, z) in the view variable in the acknowledged
PONG-ASK-INV to x, thus allowing u to enter
x.cand. Since d+(x, u) < d+(x, y), next time when
x invites closer nodes (lines 23–27), x must send a
PING-INVITE to some node v such that d+(x, v) ≤
d+(x, u) < d+(x, y) and v is online. Node v will re-
ply with a PONG-INVITE to x, and when x receives
this message, x adds v into its neighbors set since
v ∈ leafset(x, x.neighbors ∪ {v}), unless v is al-
ready in x.neighbors by that time. In either case, it
contradicts to Lemma 9 saying that the leafset never
changes. Therefore, we have y.predt = x.

We can also prove that y.predt = x implies
x.succt = y in a similar way.

Proof of 3). First we prove x+i.succt =
x+(i+1), 1 ≤ i ≤ M − 1. Suppose this is not true.
There must exists a j (1 ≤ j ≤ M − 1), such that
x+j .succt = z 6= x+(j+1).

Suppose d+(x+j , z) > d+(x+j , x+(j+1)).
Because x+j ∈ leafset(x, x.neighborst) im-
plies x ∈ leafset(x+j , x+j .neighborst) and
leafset(x+j , x+j .neighbors) never changes, x+j

will send PING-ASK-INV message to x some time
after t, according to our protocol part II. Upon
the receipt of the PING-ASK-INV message, x will
put x+(j+1) (or some other nodes in the interval
(x+j , z)) in the view variable in the PONG-ASK-INV
message as the reply. Using a similar reasoning in
the proof of 2), we know that the leafset of x+j

changes, a contradiction.
Suppose d+(x+j , z) < d+(x+j , x+(j+1)).

Because x+j ∈ leafset(x, x.neighborst) and
leafset(x, x.neighbors) never changes, x will send
PING-ASK-INV message to x+j some time after
t, according to our protocol part II. Upon the
receipt of the PING-ASK-INV message, x+j will
put z in the view variable in the PONG-ASK-INV
message as the reply, leading to the change of
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leafset(x, x.neighbors), again a contradiction.
So it must be true that x+i.succt = x+(i+1), 1 ≤

i ≤ M − 1. x−i.predt = x−(i+1), 1 ≤ i ≤ M − 1
could be proved in the similar way. 2

After time t2, since the leafset does not change,
x.succ and x.pred do not change either, so we just
use them to represent their values at any time after
time t2. After time t2, given any node x ∈ sset(Π),
let closed sequence ρ(x) = (x = x0, x1, . . . , xk)
such that xi.succ = xi+1 for all i = 0, 1, . . . , k − 1,
xi = xj iff. i = j, and xk.succ = xj for some
j = 0, 1, . . . , k. We say that ρ(x) is a closed loop
if xk.succ = x0 = x. For convenience, we also use
ρ(x) to represent the set of nodes in the sequence.

Corollary 16 For any node x ∈ sset(Π), ρ(x) ex-
ists, is unique, and is a closed loop. Moreover, for
all y ∈ ρ(x), leafset(y, y.neighborst) ⊆ ρ(x) for all
time t > t2.

Proof. Closed sequence ρ(x) exists because
sset(Π) is a finite set. It is unique because the x.succ
variable has a unique value. Suppose xk.succ =
xj 6= x0 with 0 < j ≤ k. If xk.succ = xk,
xk.neighbors \ {xk} must be empty according to
the definition of helper function succ. However, by
Lemma 15 2) we have xk.pred = xk−1 6= xk, which
means that xk.neighbors \ {xk} is not empty. This
is contradictory. If xk.succ = xj(j < k), then ac-
cording to Lemma 15 2), xk = xj .pred. Since by
definition we also have xj−1 = xj .pred, so xj−1 =
xk, still a contradiction. Therefore, xk.succ = x0

and ρ(x) is a closed loop. By Lemma 15 3), it
is straightforward to see that for all y ∈ ρ(x),
leafset(y, y.neighborst) ⊆ ρ(x) for all time t > t2.
2

Lemma 17 For all t > t2, for any node x ∈
sset(Π), ρ(x) = Px(t). Px(t) is the weakly con-
nected component containing x in G(t).

Proof. Suppose, for a contradiction that there exists
x, z ∈ Px(t) such that z ∈ Px(t) \ ρ(x). By defini-
tion of Px(t), there is a path from x to z when treat-
ing edges in Px(t) as undirected. Along the path,
we can find node x0 and z0 such that x0 ∈ ρ(x) and
z0 6∈ ρ(x), and either 〈x0, z0〉 is in Px(t) or 〈z0, x0〉
is in Px(t).

Consider the first case where 〈x0, z0〉
is in Px(t). By Corollary 16, z0 ∈
x0.neighborst \ leafset(x0, x0.neighborst).

By Lemma 13 1), there is a time τ0 > t
and a node y0 ∈ leafset(z0, z0.neighborst)
such that d(x0, y0) < d(x0, z0) and
y0 ∈ x0.neighborsτ0 . By Corollary 16, we
know that y 6∈ ρ(x). Otherwise since y ∈ ρ(x)
leads to leafset(y0, y0.neighborsτo

) ⊆ ρ(x),
and z0 ∈ leafset(y0, y0.neighborsτ0) by
Lemma 11, z0 ∈ ρ(x), a contradiction.
Since leafset(x0, x0.neighborsτ0) ⊆ ρ(x), we
also have y0 6∈ leafset(x0, x0.neighborsτ0).
Thus we find a node y0 such that y0 ∈
x0.neighborsτ0 \ leafset(x0, x0.neighborsτ0)
and d(x0, y0) < d(x0, z0). We can con-
tinue applying Lemma 13 1) to find nodes
y1, y2, . . . and time points τ1, τ2, . . . such that
yi ∈ x0.neighborsτi

\ leafset(x0, x0.neighborsτi
),

d(x0, yi+1) < d(x0, yi), and τi < τi+1. However,
since there are only a finite number of nodes in
sset(Π), this process cannot continue indefinitely, a
contradiction.

Consider the second case where 〈z0, x0〉 is in
Px(t). In this case, we consider the closed loop
ρ(z0). We have x0 6∈ ρ(z0), otherwise it means
ρ(x) = ρ(x0) = ρ(z0) and thus z0 ∈ ρ(x). Then
we can apply the same argument as in case 1 with
the roles of x0 and z0 reversed and reaches a contra-
diction. Therefore the lemma holds. 2

Lemma 18 For all time t > t2 and all x ∈ sset(Π),
x.succt = succ(x, Px(t)).

Proof. We consider the time after t2 when the leafset
on every node does not change. In this case, we omit
the subscript in x.succ.

We only consider the cases that sset(Π) 6= ∅. If
Px(t) only contains a single node x, according to
Lemma 8, x.neighbors becomes empty after t1. So
x.succ = x and succ(x, Px(t)) = x, the lemma
holds. Now consider the case that Px(t) contains
at least 2 nodes. Suppose, for a contradiction, that
there is some node x ∈ Px(t) such that x.succ 6=
succ(x, Px(t)) = y.

Consider the closed loop ρ(x). By Lemma 17,
ρ(x) = Px(t), so |ρ(x)| > 1, and y ∈ ρ(x). We
claim that for any leafset topology G(t) containing
the above closed loop ρ(x), G(t) must be loopy,
which contradicts to Lemma 12, and thus the lemma
holds.

To prove the claim, we use the following prop-
erties of the circular space K. For u, v ∈ K and
u 6= v, we use the notion [u, v) to denote the in-
terval (u, v) ∪ {u}. It is obvious that w ∈ [u, v)
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is equivalent to d+(u,w) < d+(u, v). Moreover, it
is also straightforward to verify that 0 ∈ [u, v) is
equivalent to u = 0 or v < u. With this, we know
that given a sequence u0, u1, . . . , uk where all nodes
in the sequence are different, if 0 ∈ [u0, uk), then
0 ∈ [ui, ui+1) for some i ∈ {0, 1, . . . , k − 1}. This
is because, if some ui = 0, then 0 ∈ [ui, ui+1); if no
ui is 0, then uk < u0, which means there must exist
ui+1 < ui, which implies 0 ∈ [ui, ui+1).

Let z = x.succ. Since y = succ(x, Px(t))
and x.neighbors ⊆ Px(t), we have d+(x, y) <
d+(x, z), i.e. y ∈ [x, z). We now consider the
following two possible cases. In the first case, we
have 0 ∈ [x, y). It is easy to verify that in this
case 0 ∈ [x, z) and 0 ∈ [z, y). Thus in the se-
quence from z to y in ρ(x), there is a node u such
that 0 ∈ [u, u.succ). Since all nodes in the se-
quence from z to y is different from x, we find two
nodes x and u in ρ(x) such that 0 ∈ [x, x.succ) and
0 ∈ [u, u.succ). By definition this means that any
leafset topology containing ρ(x) is loopy.

In the second case, 0 ∈ [y, x). Thus in the se-
quence from y to x in ρ(x) (but excluding x) we
have a node u such that 0 ∈ [u, u.succ). Now con-
sider the interval [x, z). If 0 ∈ [x, z), we already find
two different nodes x and u such that 0 ∈ [x, x.succ)
and 0 ∈ [u, u.succ), which means the leafset topol-
ogy containing ρ(x) is loopy. If 0 6∈ [x, z), then
we have 0 ∈ [z, x). Together with 0 ∈ [y, x) and
y ∈ [x, z), it is easy to verify that 0 ∈ [z, y). Thus
in the sequence from z to y in ρ(x) (but excluding
y) we have a node v such that 0 ∈ [v, v.succ). The
sequence from z to y excluding y has no overlap
with the sequence from y to x, so u 6= v. There-
fore we again find two nodes u and v such that
0 ∈ [u, u.succ) and 0 ∈ [v, v.succ), which implies
that the leafset topology containing ρ(x) is loopy. In
all cases, we reach a contradiction. Therefore, the
lemma holds. 2

Lemma 19 (Eventual Inclusion) For all time t >
t2, and all x ∈ sset(Π), leafset(x, x.neighborst) =
leafset(x, Px(t)).

Proof. It is sufficient to show that for all time after t2
and for all x ∈ sset(Π), leafset(x, x.neighborst) =
leafset(x, Px(t)).

By Lemma 18, for all x ∈ sset(Π), x.succt =
succ(x, Px(t)). According to the definition of succ
and pred, we know that succ(x, Px(t)) = y is
equivalent to pred(y, Px(t)) = x. According to

Lemma 15 1) and 2), we also have x.predt =
pred(x, Px(t)).

Now consider {x+1, x+2, . . . , x+M} in
x.neighbors+

t , and {x−1, x−2, . . . , x−M} in
x.neighbors−t with M = min(L, |x.neighbors|),
for an arbitrary node x ∈ Px(t). By Lemma 15
3) we have x+1 = x.succ = succ(x, Px(t))
and x+(i+1) = x+i.succ = succ(x+i, Px(t)),
x−1 = x.pred = pred(x, Px(t)) and
x−(i+1) = x−i.pred = pred(x−i, Px(t)), for
all i = 1, 2, . . . , M − 1. This directly im-
plies that succ(x+i, Px(t)) ∈ leafset(x, Px(t))
and pred(x−i, Px(t)) ∈ leafset(x, Px(t)),
for all i = 1, 2, . . . ,M − 1. Thus we have
leafset(x, x.neighborst) ⊆ leafset(x, Px(t)).

If |leafset(x, x.neighbors)| < |leafset(x, Px(t))|,
then leafset(x, x.neighborst) = x.neighborst, and
since ρ(x) = Px(t), there must be some node
y ∈ ρ(x) such that y 6∈ x.neighborst. Let y be
the first such one following the sequence ρ(x), i.e.,
y = z.succ while z ∈ x.neighbors. In this case the
invite protocol (part II) will cause z to introduce new
nodes to x and thus x’s leafset will add new nodes
in.

Therefore we have |leafset(x, x.neighborst)| =
|leafset(x, Px(t))|. In this case, if
leafset(x, Px(t)) 6⊆ leafset(x, x.neighborst),
there exists a node y ∈ leafset(x, Px(t)) \
leafset(x, x.neighborst). So either there ex-
ists a x+j such that y ∈ (x+j , x+(j+1)) for
some j = 1, 2, . . . ,M − 1, or there exists a
x−j such that y ∈ (x−j , x−(j+1)) for some
j = 1, 2, . . . , M − 1. In the first case, we have
x+j .succ = x+(j+1) 6= succ(x+j , Px(t)), con-
tradicting to Lemma 18. In the second case, we
have x−(j+1).succ = x−j 6= succ(x−(j+1), Px(t)),
again contradicting to Lemma 18. Therefore
leafset(x, Px(t)) ⊆ leafset(x, x.neighborst), and
thus leafset(x, Px(t)) = leafset(x, x.neighborst).
2

Corollary 20 If for some time t ≥ GSTS , G(t)
is weakly connected, then for all time t′ > t2,
for any node x ∈ sset(Π), leafset(x, sset(Π)) =
leafset(x, x.neighborst′).

Proof. Because G(t) is weakly connected, we
have Px(t′′) = G(t′′) for all t′′ ≥ t, accord-
ing to Lemma 5. According to Lemma 17, we
know that for all t′′ > max(t, t2) and for all x ∈
sset(Π), ρ(x) = sset(Π). Because ρ(x) only de-
pends on the leafset of all the nodes and Lemma 9
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ensures that leafsets of all nodes stop change af-
ter t2. So it must be true that t2 ≥ t. There-
fore, according to Lemma 19, leafset(x, sset(Π)) =
leafset(x, x.neighborst′). 2

Lemma 21 (Cost Effectiveness) In the steady state
the size of local state on each node is O(L) and the
number of nodes registered to the failure detector is
no more than 2L.

Proof (Sketch). After t2, each node only maintains
at most 2L nodes in its neighbors set, at most 4L
nodes in its cand set, and for each node y in the
neighbors set repl[y] is a single node. Thus the size
of the local state is O(L).

On every change of the neighbors set, except for
the one caused by the detected notification, our pro-
tocol re-registers the set to be monitored by the fail-
ure detector. If the failure detector removes the
node detected as failed from its monitor set automat-
ically, the monitor set is eventually the same as the
neighbors set. Since the neighbors set contains no
more than 2L nodes, the number of nodes registered
to the failure detector is eventually no more than 2L.
2

Theorem 2 The leafset maintenance protocol pro-
vided in Fig. 1, 2, 3, and 5 is both convergent
and cost-effective, which means it satisfies the Con-
nectivity Preservation, Partition Healing, Eventual
Cleanup, Eventual Inclusion, and Cost Effectiveness
properties.
Proof. The theorem follows from Lemmata 5, 7, 14,
19, and 21. 2

C Proof of Correctness for 3PD im-
plementation

We prove that the protocol in Figure 6 correctly im-
plement a failure detector in 3PD.

Lemma 22 (Strong Completeness) For all x ∈
sset(Π) and all y 6∈ sset(Π), if x invokes
register(S) with y ∈ S at some time t, then there
exists a time t′ > t at which either our 3PD pro-
tocol (Figure 6) outputs detected(y) or x invokes
register(S′) with y 6∈ S′.

Proof. We only need to prove that detected(y) will
be outputted, if x never invokes any register(S′) af-
ter t, or every register(S′) has y in S′.

After GSTN , y cannot send messages any more
since y 6∈ sset(Π). Let t(y) be the time after
which no messages from y will be delivered. So af-
ter t(y), x will not be able to receive any message
from y. Let t′′ = max(t, t(y)). During the inter-
val (t′′ + Tc, t

′′ + Tc + Ic], there exists a time t′ at
which x checks the liveness in x.mset. If y ∈ x.mset
at t′, the checking at line 19 will be passed, because
t′ − t′′ > Tc. Therefore, a detected(y) is outputted
on x. If y 6∈ x.mset at t′, since every registration af-
ter t contains y, an earlier detection must have been
issued. In either case, the lemma holds. 2

Lemma 23 (Eventual Strong Accuracy) If
Ic, Tc ≥ Ip + 2∆, then after time GSTM + Ic, our
3PD protocol (Figure 6) will not report failures of
any online nodes in sset(Π).

Proof. Suppose, for a contradiction, that there exist
nodes x, y ∈ sset(Π) and a time t > GSTM + Ic

such that our 3PD protocol invokes detected(y) on
x. Without loss of generality, we assume t is the first
such time. From the algorithm (line 19), we know
that x does not receive any PONG-ALIVE messages
from y in the time period [t−Tc, t]. Since Tc ≥ Ip+
2∆, the above is true for the period [t−(Ip+2∆), t].
Since Ic > Ip + 2∆ and t > GSTM + Ic, we have
t− (Ip + 2∆) > GSTM .

We claim that y is in x.mset in the period [t−(Ip+
2∆), t]. To see that this is true, first, detected(y) is
invoked on x at time t when executing line 20, so
y was in x.mset right before time t. If y was not in
x.mset in the entire period in [t− (Ip +2∆), t], then
y must be added back to x.mset at some time in this
period. However, according to the algorithm, a node
y can be added to x.mset only through the register()
interface. And line 19 ensures that y enters x.mset
for at least Tc time. Since Tc > Ip + 2∆, y must be
in x.mset through the entire period [t−(Ip+2∆), t].

Given the period [t − (Ip + 2∆), t − 2∆] with
length Ip, x must send one PING-ALIVE message
to y since y ∈ x.mset in this time period. Since
t− (Ip + 2∆) > GST∆, this PING-ALIVE message
is received by y within ∆ time units. Upon the re-
ceipt of this PING-ALIVE message, y sends to x a
PONG-ALIVE message, which should be received by
x within ∆ time units. Therefore, x should have re-
ceived a PONG-ALIVE message from y in the time
period [t− (Ip +2∆), t], which is a contradiction. 2

Theorem 3 The protocol in Figure 6 implements a
failure detector in 3PD.
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Proof. By Lemmata 22 and 23. 2
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