
Simple and Flexible Stack Types

Frances Perry1

frances@cs.princeton.edu
Chris Hawblitzel

chrishaw@microsoft.com

Juan Chen
juanchen@microsoft.com

June 2007

Technical Report
MSR-TR-2007-51

Typed intermediate languages and typed assembly languages for optimiz-
ing compilers require types to describe stack-allocated data. Previous type
systems for stack data were either undecidable or did not treat arguments
passed by reference. This paper presents a simple, sound, decidable type
system expressive enough to support the Micro-CLI source language, includ-
ing by-reference arguments. This type system safely expresses operations
on aliased stack locations by using singleton pointers and a small subset of
linear logic.

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com

1The work by Frances Perry was done during an internship at Microsoft Research

1 Introduction

Java and C# are safe, high-level languages. The safety of Java and C# protects one
program from another: safe applets cannot crash a browser, safe servlets cannot crash
a server, and so on. The high level of abstraction makes programming easier, but
makes compilation more challenging. Java and C# require sophisticated optimizing
compilation to achieve performance competitive with programs written directly in C
or assembly language.

Unfortunately, a large, complex compiler is likely to have bugs, and these bugs may
cause the compiler to produce unsafe assembly language code. Proof-carrying code
(PCC) [15] and typed assembly language (TAL) [14] solve this problem by verifying
the safety of the assembly language code generated by the compiler, thus removing
the compiler from the trusted computing base. Because the behavior of an assembly
language program is undecidable in general, PCC and TAL require machine-checkable
evidence to verify a program’s safety. A type-preserving compiler generates this evi-
dence by transforming a well-typed source program into a well-typed assembly language
program, preserving the well-typedness of the program during each compilation phase
in between the source and assembly language levels [14]. To do this, the compiler
must define type systems for each intermediate language in the compilation. Java
bytecode [12] and CIL [4] are well-known typed intermediate languages, but these still
contain many high-level abstractions, such as single instructions for invoking virtual
methods and platform-independent storage slots for local data. Below the Java byte-
code and CIL levels, these abstractions break down into smaller pieces. A virtual
method invocation turns into a method table lookup, instructions for pushing argu-
ments onto a stack, a call instruction, plus prologue and epilogue code in the called
method. Local data storage slots turn into machine-specific registers and stack slots.
These lower-level concepts need lower-level types.

This paper describes SST (Simple Stack Types), a type system that is appropriate
for type-checking stack operations in the lowest levels of a type-preserving compiler,
including the final typed assembly language generated by the compiler. Previous type
systems for stacks were either undecidable without explicit proof annotations [2, 9] or
could not represent arguments passed and returned by reference [13]. By contrast, SST
has a simple decision procedure, making it easy to use in an intermediate language.
It expresses by-reference arguments, even when multiple references point to the same
aliased location. It is provably type-safe, via standard preservation and progress lem-
mas. Finally, SST is simple and elegant enough to be a trustworthy component of a
typed assembly language.

To represent stacks in the presence of aliasing, SST builds on ideas from stack-based
TAL [13], alias types [18], and linear logic [6, 19]. Section 2 discusses these systems and
related systems in more detail. Sections 3 and 4 introduce SST’s types and instructions
formally. Section 5 describes a translation from the Micro-CLI [9] source language to
SST, demonstrating SST’s expressiveness. Section 6 concludes.

2 Background and Related Work

Stack-based TAL (STAL) was the first TAL to support stacks. Its central idea, shared
by SST, was a stack type, which specifies the known types of values on the stack at any
point in a TAL program. For example, the STAL stack type “int :: int :: ρ” specifies
that two integers live at the top of the stack, but all types deeper in the stack are
unknown, specified only by the stack type variable ρ. Code blocks in STAL may be
polymorphic over stack type variables.

In addition to the concatenation operator “ :: ”, STAL contains a compound stack
type that can express some pointers into the middle of the stack. Unfortunately, STAL

1

ς ⇒ ς ′

` : τ :: ς ⇒ ` : τ :: ς ′
s-imp-concat ` : σ ⇒ ` : σ′

` : (σ ∧ {`t : τ}) ⇒ ` : (σ′ ∧ {`t : τ}) s-imp-alias

ς ⇒ ς s-imp-eq ` : (τ :: ς) ⇒ ` : (τ :: ς ∧ {` : τ}) s-imp-add-alias

ς1 ⇒ ς2 ς2 ⇒ ς3
ς1 ⇒ ς3

s-imp-trans ` : (σ ∧ {`t : τ}) ⇒ ` : σ
s-imp-drop-alias

` : (τ1 :: `q : (σ ∧ {`2 : τ2})) ⇒ ` : ((τ1 :: `q : σ) ∧ {`2 : τ2})
s-imp-expand-alias

ς ⇒ ` : (σ ∧ {`1 : τ1}) ς ⇒ ` : (σ ∧ {`2 : τ2})
ς ⇒ ` : (σ ∧ {`1 : τ1} ∧ {`2 : τ2})

s-imp-merge-alias

Figure 1: Logical Stack Implication Rules

cannot express the possibly aliased pointers that C# compilers use to implement by-
reference arguments. Consider the three C# methods below. The swap method takes
two integer references and swaps the integers. The f method instantiates arguments
x and y with pointers to local variables a and b, while g instantiates x and y with
pointers to c:

void f() {
int a = 10, b = 20;
swap(ref a, ref b); }

void g() {
int c = 30;
swap(ref c, ref c); }

void swap(ref int x, ref int y) {
int t = x;
x = y;
y = t; }

STAL cannot give a useful type to the swap method: even with compound types,
STAL stack types must list the types of stack slots in precisely the order that they
appear in memory. The STAL type for swap must reserve one particular stack slot
for x and another for y, making it impossible for a caller to instantiate x and y with
aliased pointers (as g does), with heap pointers (as is allowed by C#), or with two
stack pointers in the opposite order. Regarding these limitations, Morrisett et al. say
that, “it appears that this limitation could be removed by introducing a limited form of
intersection type, but we have not yet explored the ramifications of this enhancement.”
(In fact, one subsequent TAL [2] did add intersection types, but did not explore its use
for stacks. Furthermore, this type system was undecidable [2].) SST uses a form of
intersection type, rather than using STAL’s compound types.

A key advantage of stack allocation is the ease of stack deallocation: a program
simply pops data from the top of the stack to deallocate the data. In general, popping
may leave dangling pointers to popped data. STAL deals with this safely but awk-
wardly, applying a special validation rule before each use of any potentially dangling
pointer. SST follows a more direct and flexible approach introduced by alias types [18]
(although alias types handled heaps objects, not stack data). Alias types split a pointer
type into two parts: the location ` of the data, and the type of the data at location `.
The pointer to the data has a singleton type Ptr(`), which indicates that the pointer
points exactly to the location `, but deliberately does not specify the type of the data

2

at location `. Instead, a separate capability specifies the current type at `. For exam-
ple, the capability {` 7→ int} specifies that ` currently holds an integer. Because of the
separation between singleton pointer types and capabilities, the capabilities can evolve,
independently of the pointer types, to track updates and deallocation.

To ensure that no two capabilities specify contradictory information about a sin-
gle location, alias types impose a linearity discipline on the program’s treatment of
capabilities, prohibiting arbitrary duplication of the information contained in a ca-
pability. In particular, the capability {` 7→ int} is not equivalent to the capability
{` 7→ int, ` 7→ int}. However, alias types (and the similar capability calculus [3])
use non-standard operators and rules for controlling linearity. Following recent ad-
vice [20, 7, 5], SST uses operators and rules directly inspired by standard linear
logic [6, 19] and separation logic [17, 8]. Linear logic and separation logic share a
core of basic operators. Two are of particular interest for stacks: multiplicative con-
junction “⊗” (written as “∗” in separation logic) and additive conjunction “&” (written
as “∧” in separation logic). For example, to have “coffee⊗ tea” is to have both coffee
and tea. To have “coffee&tea” is to have a choice between coffee and tea, but not both.
Ahmed and Walker observe that additive conjunction “allows us to specify different
‘views’ of the stack” [1] (though [1] did not explore applications of this observation);
we take this observation as a starting point for representing by-reference arguments.

Jia, Spalding, Walker and Glew [9] used linear logic as the basis for a typed low-
level language of stacks and heaps (we refer to this low-level language as “JSWG”).
In contrast to STAL, JSWG expressed by-reference arguments. To demonstrate this,
the authors also introduced the high-level “Micro-CLI” source language (modeled on
the CLI intermediate format targeted by C# compilers [4]) and provided a translation
from Micro-CLI programs to JSWG programs. In contrast to SST’s decidable logic,
JSWG’s linear logic (which includes the standard linear operators ⊗, &, ⊕, (, and
!) is undecidable [11], making SST more practical than JSWG’s system for a compiler
intermediate language. Furthermore, JSWG expresses pointers using a heavyweight
notion of “frozen” capabilities (with version numbers and “tag trees” for pointers into
the stack) while SST relies solely on singleton pointer types and a minimal linear logic.
Despite its smaller set of features, SST is still powerful enough to express Micro-CLI;
Section 5 describes a translation of Micro-CLI programs to SST programs.

3 Simple Stack Types

Consider the STAL stack type int :: int :: ρ from the Section 2. In alias type notation,
each integer on the stack would have a capability {` 7→ int}. In linear logic notation, the
⊗ operator would glue capabilities together to form a complete stack capability: {`2 7→
int}⊗{`1 7→ int}⊗ρ, where `2 and `1 are the locations of each of the two integers on the
stack. SST takes this notation as a starting point, but makes two modifications. First,
to simplify the type checking algorithm, SST replaces the commutative, associative
⊗ operator with the non-commutative, non-associative :: operator, resulting in a
stack capability {`2 7→ int} :: {`1 7→ int} :: ρ. Second, rather than showing one location
per stack slot, SST’s notation puts stack slots in between locations, writing `2 : int ::
`1 : int :: `0 : ρ to indicate that one integer falls between locations `2 and `1, and the
other falls between locations `1 and `0. Note that this adds the extra location `0 to the
example — for instance, the stack pointer might have type Ptr(`2), pointing to the top
of the stack, while the frame pointer might have type Ptr(`0), pointing to the bottom
of the frame.

The following grammar generates labeled stack types ς and unlabeled stack types
σ (where τ indicates a single-word type, such as int):

labeled stack type ς ::= ` : σ
unlabeled stack type σ ::= ρ | Empty | τ :: ς | σ ∧ {` : τ}

3

% ::= ρ | Empty | τ :: ς

` : ρ
{}

=⇒ ` : ρ
s-imp2-var

` : Empty
{}

=⇒ ` : Empty
s-imp2-empty

ς
φ

=⇒ ς ′

` : τ :: ς
φ∪{(`,τ)}

=⇒ ` : τ :: ς ′
s-imp2-concat

`′ : σ
φ

=⇒ `′ : %

`′ : (σ ∧ {` : τ}) φ∪{(`,τ)}
=⇒ `′ : %

s-imp2-alias-left

ς
φ∪{(`,τ)}

=⇒ `′ : σ

ς
φ∪{(`,τ)}

=⇒ `′ : (σ ∧ {` : τ})
s-imp2-alias-right

Figure 2: Algorithmic Stack Implication Rules

The unlabeled stack type variables ρ, empty stack Empty, and stack concatenation
operator :: give SST the same expressiveness as the core of STAL, but little else.
The real power of SST comes from the ∧ operator, indicating aliasing. The stack type
σ ∧ {` : τ} implies three things. First, σ holds. Second, the location ` resides either
in the heap or in the part of the stack described by σ. Third, ` currently contains a
word of type τ . Figure 1 shows the rules governing stack types; “ς ⇒ ς ′” means that
if ς holds, then ς ′ also holds. Some rules (s-imp-concat, s-imp-alias, s-imp-eq, s-imp-
trans) are basic structural rules. The s-imp-add-alias and s-imp-merge-alias rules allow
a program to add one or more aliases to a stack type. The s-imp-drop-alias rule lets a
program drop unneeded aliases. The s-imp-expand-alias rule expands the scope of an
alias, as described in more detail below.

Figure 2 shows an alternate version of the stack type rules, with a more algorithmic
flavor. In fact, the alternate version is syntax directed: for any ς and ς ′, the syntax of
ς and ς ′ determines which rule from Figure 2 to apply. Nevertheless, the two versions
are equivalent:

Theorem 1 ς ⇒ ς ′ if and only if there exists some φ such that ς
φ

=⇒ ς ′.

Thus, a type checker can use ς
φ

=⇒ ς ′ as a simple algorithm for deciding ς ⇒ ς ′.
The simplicity of the algorithm stems from the simplicity of the :: and ∧ operators.

As an example, consider the swap function from Section 2. Suppose that the com-
piler pushes arguments to swap onto the stack from right-to-left, and stores the return
address in a register. Upon entry to swap, the stack will hold the arguments x and y,
each of which is a pointer to some location inside ρ:

`2 : Ptr(`x) :: `1 : Ptr(`y) :: `0 : (ρ ∧ {`x : int} ∧ {`y : int})

Note that locations `x and `y may appear anywhere in ρ, in any order. In fact, `x

and `y may be the same location. For example, suppose that just before calling swap,
the stack has type `0 : int :: ς. Figure 1’s s-imp-add-alias and s-imp-merge-alias rules
prove:

`0 : int :: ς
⇒ `0 : ((int :: ς) ∧ {`0 : int} ∧ {`0 : int})

4

Using this, the program can choose ρ = (int :: ς), choose `x = `y = `0, push two
pointers to `0 onto the stack, and call swap.

Figure 1’s rules also allow reordering of aliases. For example, the s-imp-drop-alias,
s-imp-alias, and s-imp-merge-alias rules prove:

`0 : (ρ ∧ {`y : int} ∧ {`x : int})
⇒ `0 : (ρ ∧ {`x : int} ∧ {`y : int})

Section 2 mentioned the danger of pointers left dangling after the program pops
a word from the stack. The syntax σ ∧ {` : τ} expresses a clear scope in which `
remains safe to use: ` definitely contains type τ as long as σ remains unmodified. If
the program pops a word from σ, for example, then the alias {` : τ} must be discarded
(see section 4.1 for details). The rules governing this scope are simple: s-imp-expand-
alias expands the scope of an alias, but there is no rule to contract the scope. Expansion
is safe, and allows a caller to pass a reference on to another method. The h method
shown below expands the scope of c before calling swap. Contraction, on the other
hand, could leave unsafe dangling pointers, as shown by the illegal and unsafe C#
method illegalMethod:

void h(ref int c) { swap(ref c, ref c); }
ref int illegalMethod() { int c; return ref c; }

Relation to linear logic. Just as :: is a limited version of the linear logic
⊗ operator, the ∧ operator is a limited version of the linear logic & operator. More
specifically, the notation σ ∧ {` : τ} corresponds to the linear logic formula σ&({` 7→
τ} ⊗ >), where > is the linear logic notation to indicate any resource. Intuitively,
knowing σ&({` 7→ τ} ⊗ >) means that you can choose to look at the stack in one of
two ways: either consider the stack to have type σ, or consider the stack to have type
{` 7→ τ} ⊗ >. The latter case tells you that the stack holds type τ at location `, plus
some other data represented by >.

The s-imp-expand-alias rule and lack of a contraction rule also correspond to linear
logic, where A⊗ (B&(C ⊗>)) implies (A⊗B)&(C ⊗>), but (A⊗B)&(C ⊗>) does
not imply A ⊗ (B&(C ⊗ >)); linear logic can expand, but not contract, the scope of
“&(C ⊗ >)”. Unlike JSWG [9]’s scoping via version numbers and tag trees, SST’s
scoping follows naturally from linear logic rules.

Locations. A location ` may be a location variable “η”, the location of the bottom
of the stack “base”, the next location towards the top of the stack “next(`)”, or a heap
location “p” (assuming an infinite supply of locations p for heap allocation):

location ` ::= η | base | next(`) | p

For example, the STAL type int :: int :: ρ may be written in SST as “next2(η) : int ::
next(η) : int :: η : ρ”, where next2(η) is an abbreviation for next(next(η)). For conve-
nience, we frequently use the following abbreviation:

(τn . . . τ1)@(` : σ) = nextn(`) : τn :: . . . :: next1(`) : τ1 :: ` : σ

With this, the STAL type int :: int :: ρ may be written in as (int; int)@(η : ρ).

4 Formalization

Types. SST supports integer type “int”, nonsense type “Nonsense” for uninitialized
stack slots, heap pointer type “HeapPtr(τ)” for pointers to heap values of type τ ,
singleton type “Ptr(`)”, and code type “∀[∆](Γ, ς)” for code blocks.

type τ ::= int | Nonsense | HeapPtr(τ) | Ptr(`) | ∀[∆](Γ, ς)

5

Type ∀[∆](Γ, ς) describes preconditions for code blocks. The location environment ∆
is a sequence of location variables and stack type variables. The register file Γ is a
partial function from registers to types. Γ and ς describe the initial register and stack
state for the blocks. They may refer to the variables in ∆.

Values and Operands. A stack location d is either “base” or the next stack
location “next(d)”.

A word-sized value w may be an integer “i”, the “nonsense” value for uninitialized
stack slots, a heap location “p”, a stack location “d”, or instantiated values “w[`]” and
“w[σ]” where w points to code blocks polymorphic over location variables and stack
type variables. Contents of registers and stack slots are word-sized. As in STAL [13],
word-sized values are separated from operands to prevent registers from containing
registers.

stack loc d ::= base | next(d)
word value w ::= i | nonsense | p | d | w[`] | w[σ]

operand o ::= r | w | o[`] | o[σ]

An operand o may be a register “r”, a word-sized value “w”, or instantiated
operands “o[`]” and “o[σ]”. A special register sp is used for the stack pointer.

Instructions. Most instructions are standard. Values on the heap or stack are
accessed through explicit load and store instructions.

instr ins ::= mov r, o | add r, o | sub r, o | ladd r, i | load r1, [r2 + i]
| store [r1 + i], r2 | jumpif0 r, o | heapalloc r = 〈o〉 | (η, r) = unpack(o)

SST uses “ladd” instructions for stack location arithmetic. The first operand points
to a stack location. The second operand is a constant integer (positive or negative).
A “ladd” instruction moves the stack pointer along the stack according to the integer
value. The standard add and subtract instructions deal with only integer arithmetic.

The heap allocation instruction “heapalloc r = 〈o〉” allocates a word on the heap
with initial value o and assigns the new heap location to r.

The unpack instruction “(η, r) = unpack(o)” coerces a heap pointer o to a heap
location. It introduces a fresh location variable η for o and assigns η to r.

4.1 Type Checking Instructions

The type checker maintains a few environments. The location environment ∆ and the
register file Γ were explained previously. The heap environment Ψ is a partial function
from heap locations to heap pointer types. A mapping “p 7→ HeapPtr(int)” in Ψ means
that the heap location p points to an integer on the heap. Complete semantics is shown
in Appendix B.

Operand Typing Rules. The judgment ∆; Ψ; Γ ` o : τ means that operand o has
type τ under the environments. Note that a heap location can be typed in two ways:
the type in the heap environment (o-p-H) or a singleton type (o-p). A stack location
has a singleton type (o-d).

If an operand o has a polymorphic type ∀[∆](Γ, ς), o[`] and o[σ] instantiate the first
variable in ∆ with ` and σ respectively. The judgments ∆ ` ` and ∆ ` σ mean that `
and σ are well-formed under ∆ respectively.

∆;Ψ; Γ ` r : Γ(r)
o-reg

∆;Ψ; Γ ` i : int o-int ∆;Ψ; Γ ` nonsense : Nonsense
o-ns

∆;Ψ; Γ ` p : Ψ(p)
o-p-H

∆;Ψ; Γ ` p : Ptr(p)
o-p

∆; Ψ; Γ ` d : Ptr(d) o-d

∆;Ψ; Γ ` o : ∀[η, ∆′](Γ′, ς) ∆ ` `

∆;Ψ; Γ ` o[`] : ∀[∆′](Γ′[`/η], ς[`/η]) o-inst-l
∆; Ψ; Γ ` o : ∀[ρ,∆′](Γ′, ς) ∆ ` σ

∆; Ψ; Γ ` o[σ] : ∀[∆′](Γ′[σ/ρ], ς[σ/ρ])
o-inst-Q

6

The judgment ` (Γ, ς){r ← τ}(Γ′, ς ′) means that assigning a value of type τ to
register r results in new environments Γ′ and ς ′. Only Γ is changed if r is not sp.
Otherwise the stack grows or shrinks according to the new value of sp.

r 6= sp Γ′ = Γ[r 7→ τ]
` (Γ, ς){r ← τ}(Γ′, ς) a-not-esp

` Resize(`, ς) = ς ′ Γ′ = Γ[sp 7→ Ptr(`)]
` (Γ, ς){sp ← Ptr(`)}(Γ′, ς ′) a-esp

Stack Rules. Resize. When the stack grows or shrinks, SST uses the judgment
` Resize(`, ς) = ς ′ to get the new stack type. The judgment means that resizing stack
ς to location ` results in stack ς ′. The location ` will be the top of ς ′. The stack shrinks
if ` is inside ς (s-shrink) and grows if ` is beyond the top of ς (s-grow). The stack drops
all aliases beyond ` when shrinking to avoid dangling pointers.

ς ⇒→
τ @(` : σ)

` Resize(`, ς) = ` : σ
s-shrink

ς ′ = (Nonsensen; . . . ; Nonsense1)@(` : σ)
` Resize(nextn(`), ` : σ) = ς ′

s-grow

Location Lookup. The judgment ς ` ` + i = `′ means that in stack ς going i slots
from location ` leads to location `′. A positive i means going toward the stack top and
negative means toward the stack bottom. The notion n represents natural numbers.
(The requirement ς ⇒→

τ @(` : σ) ensures that ` is a stack location, not a heap location.)

ς ⇒→
τ @(` : σ)

ς ` ` + n = nextn(`) s-offset-next
ς ⇒→

τ @(` : σ)
ς ` nextn(`) + (−n) = `

s-offset-prev

Type Lookup. The judgment ς ` ` : τ means that the location ` in stack ς has type
τ . The location ` can be either an alias in ς, or be on the spine of ς (the stack type
obtained by dropping all aliases from ς).

ς ⇒ `′ : (σ ∧ {` : τ})
ς ` ` : τ

s-lookup

Stack Update. The judgment ς ` ` ← τ Ã ς ′ means that updating the location `
in stack ς with type τ results in stack ς ′. Weak updates do not change the stack type
(s-update-weak). Strong updates change the type of ` and drop all aliases beyond `
because they may refer to the old type of ` (s-update-strong).

ς ` ` : τ
ς ` ` ← τ Ã ς

s-update-weak
ς ⇒→

τ @(` : τ :: ς ′)

ς ` ` ← τ ′ Ã→
τ @(` : τ ′ :: ς ′)

s-update-strong

Instruction Typing Rules. Figure 3 lists instruction typing rules. ∆; Ψ `
(Γ; ς){ins}(Γ′; ς ′) means that checking instruction “ins” changes the environments Γ
and ς to new environments Γ′ and ς ′.

The location arithmetic instruction “ladd r, i” requires that r point to a location `
and i be a multiple of 4. The stack grows toward lower addresses. If i is negative, the
result location is further outward from `.

Loads and stores can operate on heap locations (i-load-p and i-store-p), stack lo-
cations on the spine (i-load-concat and i-store-concat), and aliases (i-load-aliased and
i-store-aliased). SST supports weak updates on heap locations and aliases, and both
strong and weak updates on stack locations on the spine.

The rule for heap allocation assigns a heap pointer type to the register that holds
the pointer, instead of a singleton type, because the new heap location is statically
unknown. The heap environment does not change after heap allocation because the
rest of the program does not refer to the new heap location by name.

When control transfers, the type checker matches the current environments with
those of the target. The location environment of the target should have been fully
instantiated. Γ ⇒ Γ′ requires that Γ′ be a subset of Γ.

7

∆;Ψ; Γ ` o : τ ` (Γ, ς){r ← τ}(Γ′, ς ′)
∆;Ψ ` (Γ; ς){mov r, o}(Γ′; ς ′) i-mov

Γ(r) = Ptr(`) ς ` ` + i = `′

` (Γ, ς){r ← Ptr(`′)}(Γ′, ς ′)
∆;Ψ ` (Γ; ς){ladd r,−4 ∗ i}(Γ′; ς ′) i-ladd

∆;Ψ; Γ ` o : int r 6= sp Γ(r) = int
∆;Ψ ` (Γ; ς){add r, o}(Γ; ς) i-add

∆;Ψ; Γ ` o : int r 6= sp Γ(r) = int
∆;Ψ ` (Γ; ς){sub r, o}(Γ; ς) i-sub

Γ(r2) = HeapPtr(τ)
` (Γ, ς){r1 ← τ}(Γ′, ς ′)

∆;Ψ ` (Γ; ς){load r1, [r2 + 0]}(Γ′; ς ′) i-load-p

Γ(r2) = τ
Γ(r1) = HeapPtr(τ)

∆;Ψ ` (Γ; ς){store [r1 + 0], r2}(Γ; ς)
i-store-p

Γ(r2) = Ptr(`) ς ` ` + i = `′

ς ` `′ : τ ` (Γ, ς){r1 ← τ}(Γ′, ς ′)
∆; Ψ ` (Γ; ς){load r1, [r2 + (−4 ∗ i)]}(Γ′; ς ′) i-load-concat

Γ(r1) = Ptr(`) Γ(r2) = τ
ς ` ` + i = `′ ς ` `′ ← τ Ã ς ′

∆;Ψ ` (Γ; ς){store [r1 + (−4 ∗ i)], r2}(Γ; ς ′)
i-store-concat

Γ(r2) = Ptr(`) ς ` ` : τ
` (Γ, ς){r1 ← τ}(Γ′, ς ′)

∆;Ψ ` (Γ; ς){load r1, [r2 + 0]}(Γ′; ς ′) i-load-aliased

Γ(r1) = Ptr(`)
ς ` ` : τ Γ(r2) = τ

∆;Ψ ` (Γ; ς){store [r1 + 0], r2}(Γ; ς) i-store-alised

∆;Ψ; Γ ` o : τ
` (Γ, ς){r ← HeapPtr(τ)}(Γ′, ς ′)

∆; Ψ ` (Γ; ς){heapalloc r = 〈o〉}(Γ′; ς ′) i-heapalloc

Γ(r) = int ∆; Ψ; Γ ` o : ∀[](Γ′, ς ′)
Γ ⇒ Γ′ ς ⇒ ς ′

∆;Ψ ` (Γ; ς){jumpif0 r, o}(Γ; ς)
i-jump0

Figure 3: Instruction Typing Rules

8

4.2 Blocks and Programs

A heap value v is either a code block “block” or a heap word “〈w〉”. A code block
“∀[∆](Γ, ς) b” describes the precondition ∀[∆](Γ, ς) and its body b. The block body is
a sequence of instructions that ends with a jump instruction. Only variables in ∆ can
appear free in Γ, ς, and the block body.

A program consists of a heap H, a register bank R, a stack s, and a block body
as the entry point. H is a partial function from heap locations to heap values. R is a
partial function from registers to word-sized values. The stack s records values on the
spine. It is either the empty stack “empty” or a concatenation of a word-sized value
with a stack “w :: s”.

heap value v ::= block | 〈w〉
block block ::= ∀[∆](Γ, ς) b

block body b ::= ins; b | jump o
heap H ::= p1 7→ v1, . . . , pn 7→ vn

reg bank R ::= r1 7→ w1, . . . , rn 7→ wn

stack value s ::= empty | w :: s
program P ::= (H, R, s, b)

A program P = (H, R, s, b) is well-formed (illustrated by the judgment ` P) if H
matches a heap environment Ψ, R matches a register file Γ, s matches a stack type ς,
and b is well-formed under Ψ, Γ, and ς. The notion “•” means empty environments.

` H : Ψ •; Ψ ` s : ς •; Ψ ` R : Γ •; Ψ; Γ; ς ` b

` (H, R, s, b)
m-tp

A heap H matches a heap environment Ψ if they have the same domain and each
heap value in H has the corresponding type in Ψ (h-tp). Matching a register bank
with a register file is defined similarly (g-tp).

Ψ = {. . . , p 7→ τ, . . .} H = {. . . , p 7→ v, . . .} . . . •; Ψ ` v : τ . . .

` H : Ψ
h-tp

Γ = {. . . , r 7→ τ, . . .} R = {. . . , r 7→ w, . . .} . . . ∆;Ψ; • ` w : τ . . .

∆;Ψ ` R : Γ
g-tp

A stack value s matches a stack type ς if all the locations on the spine have the
corresponding type in ς (s-base and s-concat) and ς contains only aliased locations to
heap pointers (s-alias) and to stack locations on the spine (s-imp).

∆;Ψ ` empty : (base : Empty) s-base
∆;Ψ ` s : (` : ς) ∆; Ψ; • ` w : τ

∆;Ψ ` w :: s : (next(`) : τ :: ` : σ)
s-concat

∆;Ψ, {p 7→ HeapPtr(τ)} ` s : (` : σ)
∆; Ψ, {p 7→ HeapPtr(τ)} ` s : (` : (σ ∧ {p : τ})) s-alias

∆;Ψ ` s : ς ς ⇒ ς ′

∆;Ψ ` s : ς ′
s-imp

To type check a block body, the checker checks the instructions in order (b-ins)
until it reaches the jump instruction (b-jump).

The unpack instruction “(η, r) = unpack(o)” requires o have a heap pointer type
(b-unpack). The rule introduces a fresh location variable η to ∆, assigns r a singleton
type Ptr(η), and updates the stack type to contain η.

∆;Ψ ` (Γ; ς){ins}(Γ′; ς ′)
∆;Ψ; Γ′; ς ′ ` b

∆; Ψ; Γ; ς ` ins; b b-ins

∆;Ψ; Γ ` o : ∀[](Γ′, ς ′)
Γ ⇒ Γ′ ς ⇒ ς ′

∆;Ψ; Γ; ς ` jump o
b-jump

∆; Ψ; Γ ` o : HeapPtr(τ) r 6= sp η 6∈ ∆
(∆; η); Ψ; Γ[r 7→ Ptr(η)]; ` : (σ ∧ {η : τ}) ` b

∆;Ψ; Γ; ` : σ ` (η, r) = unpack(o)
b-unpack

9

A block is well-formed if under the heap environment and the specified precondition,
the block body type-checks.

∆;Ψ; Γ; ς ` b

Ψ ` ∀[∆](Γ, ς) b
block-tp

A code block has the specified precondition as its type, if the code block is well-
formed and the precondition is well-formed (v-code). The heap-allocated word values
have heap pointer types (v-hp).

Ψ ` ∀[∆′](Γ′, ς ′) b ∆ ` ∀[∆′](Γ′, ς ′)
∆;Ψ ` ∀[∆′](Γ′, ς ′) b : ∀[∆′](Γ′, ς ′) v-code

∆; Ψ; • ` w : τ

∆;Ψ ` 〈w〉 : HeapPtr(τ)
v-hp

Evaluation The judgment P → P ′ means that program P evaluates to program
P ′. Appendix B.3 lists program evaluation rules. Evaluating a program in SST is
mainly evaluating instructions in the “main” block. The heap, the register bank, and
the stack might change during evaluation. When the control transfers, the body of the
new code block is loaded as “main” and the evaluation continues.

The stack is represented as a sequence of word-sized values. No explicit labels are
necessary for the stack locations because the label of a stack slot can be computed from
the distance of the slot from the bottom of the stack.

Arithmetic on stack locations is defined as follows. d + n computes the outward
location n slots from d and d− n computes the inward location n slots from d.

d + 0 = d
d + (n + 1) = next(d) + n
base + (−(n + 1)) = base
next(d) + (−(n + 1)) = d + (−n)

Stack may grow or shrink during execution of programs. The only way to grow or
shrink the stack is by assigning new values to sp. We use a function “resize(d, s)” to
represent growing or shrinking the stack s to location d. An auxiliary function size(s)
gets the top location of s. If d is the top location of s, the stack is unchanged. If d is an
outward location n slots from the top of the stack, the stack grows n slots. Otherwise,
the stack throws away slots beyond d.

size(empty) = base
size(w :: s) = next(size(s))
resize(size(s), s) = s
resize(size(s) + (n + 1), s) = nonsense :: resize(size(s) + n, s)
resize(size(s) + (−(n + 1)), w :: s) = resize(size(s) + (−n), s)

A function s(d) returns the value at location d on s.

(w :: s)(size(w :: s)) = w
s-lookup-top

s(d) = w

(w′ :: s)(d) = w
s-lookup

Assigning a new value to a stack slot changes the stack. The stack size does not
change because each slot is word-sized. The function s[d ← w] means the new stack
with a new value w for the location d.

d = size(w :: s)
w′ :: s = (w :: s)[d ← w′]

s-assign-top
s′ = s[d ← w]

w′ :: s′ = (w′ :: s)[d ← w]
s-assign

Operands are evaluated to word-sized values. The judgment R ` o 7→ w means that
operand o evaluates to value w under the register bank R. Registers get their values
from the register bank.

10

R ` r 7→ R(r)
eo-r

R ` w 7→ w
eo-w

R ` o 7→ w
R ` o[`] 7→ w[`] eo-inst-l R ` o 7→ w

R ` o[σ] 7→ w[σ]
eo-inst-Q

Assigning new values to registers may change the register bank and/or the stack.
The judgment (R, s){r ← w}(R′, s′) means that assigning w to r results in new register
bank R′ and new stack s′. If r is not sp, only R is updated to reflect the new value of
r. Otherwise, the stack needs to resize as well.

r 6= sp R′ = R[r 7→ w]
(R, s){r ← w}(R′, s) u-not-esp

R′ = R[sp 7→ d]
(R, s){sp ← d}(R′, resize(d, s))

u-esp

The location add instruction ladd r, i deals with stack location arithmetic if r eval-
uates to a stack location. Each slot is 4-byte aligned. r is assigned an outward location
if i is negative and an inward one if the integer is positive.

The load instruction load r1, [r2+0] assigns r1 with the value stored at heap location
p if r2 evaluates to p (e-load-p). The load instruction load r1, [r2 + i] assigns r1 with
the value stored at stack location d + i if r2 evaluates to d (e-load-d). Similarly, the
store instruction store [r1 + i], r2 changes the heap (e-store-p) or the stack (e-store-d)
depending on whether r1 evaluates to a heap location or a stack location. Loading
from and storing to an alias fall into the above two cases because an alias is either a
stack location on the spine of the stack or a heap location at run time.

The heap allocation instruction “heapalloc r = 〈o〉” expands the heap with a fresh
heap location and assigns r with the new heap location.

The conditional jump instruction “jumpif0 r, o” falls through to the rest of the block
if o evaluates to a non-zero value. Otherwise, it replaces the current block body with
the target block body. The heap, the register bank, and the stack remain unchanged.

To evaluate the unpack instruction “(η, r) = unpack(o)”, o must evaluate to a heap
location. Then r is assigned the heap location and the rest of the block is evaluated
with η replaced with the location.

We proved soundness (by standard progress and preservation theorems) and decid-
ability of SST. The proofs can be found online [16].

Theorem 2 (Preservation) If ` P and P → P ′, then ` P ′.

Theorem 3 (Progress) If ` P , then ∃P ′ such that P → P ′.

Theorem 4 (Decidability) Given Ψ and block, there is an algorithm to decide whether
“Ψ ` block” holds.

5 Source Language and Translation

As mentioned in Section 2, we translate JSWG’s Micro-CLI [10] to SST. Micro-CLI
supports both heap and stack allocation. A managed pointer can point to either a
heap-allocated or a stack-allocated value. Managed pointers have the same constraints
as those in CLI, such as they cannot be stored in objects nor returned from functions.

11

The syntax of Micro-CLI is restated here.

qualifiers q ::= S | H
types τ ::= int | τ ∗q

values v ::= n | x

program p ::= fds rb

function decls fds ::= · | fd fds
function decl fd ::= τ f(τ1 x1, . . . , τn xn) rb

return block rb ::= {lds; ss; return v}

local decls lds ::= · | ld; lds
local decl ld ::= τ x = v | τ x = newq v

statement list ss ::= · | s; ss
statement s ::= if v then ss else ss | x = v | x = v1 + v2 | x = v1 − v2

| x = f(v1, . . . , vn) | x = !v | v1 := v2

Micro-CLI supports only the integer type and pointer types. Each pointer type
is qualified by “S” (stack pointer) or “H” (heap pointer). Heap pointer types are
subtypes of stack pointer types with the same referent types, that is, τ ∗H is a subtype
of τ ∗S .

A Micro-CLI program consists of a sequence of function declarations and a return
block. A function declaration specifies the return type, the function name, the pa-
rameters, and the body (a return block). A return block contains a sequence of local
variable declarations and a sequence of statements. A local variable declaration de-
clares the type and the initial value of a local variable that can be used in subsequent
declarations and statements.

Because SST deals with aliasing differently from JSWG, the two translations differ
in rules around managed pointers which introduce aliasing. For example, if a source
function has a parameter with type “pointer-to-pointer-to-int”, the translation to SST
creates two aliases for the pointers while the translation to JSWG uses existential types
to abstract the locations and version numbers to relate the scopes. The precondition
of the function in SST would have a stack type “next(η) : Ptr(η1) :: η : {ρ ∧ {η1 :
Ptr(η2)} ∧ {η2 : int}}” where the function is polymorphic over η1 and η2.

We use the following example to show the result of translation. The “swap” function
in Section 2 is rewritten into Micro-CLI syntax as follows:

int swap(int ∗S x, int ∗S y){
int t = 0;
int t′ = 0;
t = !x;
t′ = !y;
x := t′;
y := t;
return 0;

}
Micro-CLI does not allow such syntax as “x := !y”. A new variable “t′” holds

the value of “!y” and is then assigned to x. Local variables can be initialized only by
values. The local variables t and t′ are initialized to 0 first and then assigned “!x”
and “!y” respectively. Micro-CLI does not allow functions with no return values. The
“swap” function simply returns an integer value.

12

The function is translated to the following SST function:

∀[ηx, ηy, η0, ρ](Γ, ς)
mov rfp, sp
mov r1, 0 ; r1 = 0;
ladd sp,−4
store [sp + 0], r1 ; push r1 (for t′)
mov r1, 0 ; r1 = 0;
ladd sp,−4
store [sp + 0], r1 ; push r1 (for t)
load r1, [rfp + 0] ; r1 = x
load r1, [r1 + 0] ; r1 = [r1]
store [rfp + (−8)], r1 ; t = r1 (t =!x)
load r1, [rfp + 4] ; r1 = y
load r1, [r1 + 0] ; r1 = [r1]
store [rfp + (−4)], r1 ; t′ = r1 (t′ =!y)
load r1, [rfp + 0] ; r1 = x
load r2, [rfp + (−4)] ; r2 = t′

store [r1 + 0], r2 ; [r1] = r2 (x := t′)
load r1, [rfp + 4] ; r1 = y
load r2, [rfp + (−8)] ; r2 = t
store [r1 + 0], r2 ; [r1] = r2 (y := t)
ladd sp, 16 ; pop t, t′, x, y
mov r1, 0 ; r1 = 0
ladd sp,−4
store [sp + 0], r1 ; push r1

jump rra ; jump rra

where Γ = sp 7→ Ptr(next2(η0)),
rra 7→ ∀[](sp 7→ Ptr(next(η0)), next(η0) : int :: η0 : ρ)

and ς = next2(η0) : Ptr(ηx) :: next(η0) : Ptr(ηy) ::
η0 : {ρ ∧ {ηx : int} ∧ {ηy : int}}

The translation is straightforward. Many optimizations can be applied to improve
the SST code, which is beyond the scope of this paper. The translation reserves
register sp for the stack pointer, rfp for the frame pointer, and rra for the return
address. Two temporary registers r1 and r2 are used to hold intermediate values
during the translation of a Micro-CLI instruction. Parameters and return values are
passed through the stack. Local variables are allocated on the stack.

The SST function is polymorphic over four variables: ηx, ηy, η0, and ρ. The first
two represent the values of x and y. The third represents the location of the rest of
the stack (abstracted by the stack type variable ρ). The parameters x and y are on
the stack upon entry to the function. Section 3 explained the initial stack state. The
parameters and the local variables are accessed through the frame pointer: t, t′, x, and
y have addresses rfp − 8, rfp − 4, rfp, and rfp + 4 respectively.

At the beginning of the function, the frame pointer rfp is assigned sp and the initial
values for t and t′ are pushed onto the stack. At the end, the local variables and the
parameters are popped from the stack, the return value is pushed onto the stack, and
the control transfers to the return address, which is kept in register rra.

Details of the Translation. The translation rules use the following abbreviations.
The map V keeps the mapping from local variables to their offsets on the stack from
the frame pointer.

update x = store [rfp + (−4 ∗ V (x))], r1

push r = ladd sp,−4; store [sp + 0], r
pop r = load r, [sp + 0]; ladd sp, 4

13

Values are translated to SST instructions that load the values to temp registers.

|Γs ` n : int| V r = mov r, n
|Γs ` x : Γs(x)| V r = load r, [rfp + (−4 ∗ V (x))]

Local declarations are translated to instructions that allocate stack space and load
values to the stack.

|Γs ` v : τ | V r1 = I

|Γs ` τ x = v : Γs[x : τ]| V sz = (V [x 7→ sz + 1], sz + 1, (I; push r1))
trans-ld-v

τ = τ ′ ∗S |Γs ` v : τ ′| V r1 = I V ′ = V [x 7→ sz + 2]
|Γs ` τ x = newS v : Γs[x : τ]| V sz = (V ′, sz + 2, (I; push r1;mov r2, sp; push r2))

trans-ld-s

τ = τ ′ ∗H |Γs ` v : τ ′| V r1 = I V ′ = V [x 7→ sz + 1]
|Γs ` τ x = newH v : Γs[x : τ]| V sz = (V ′, sz + 1, (I; heapalloc r1 = 〈r1〉; push r1))

trans-ld-h

A source language type environment keeps type environment for parameters, local
variables, and function names. When translated to SST, parameters and local variables
are described by stack types and function names are described by heap environments.
A register bank keeps the types of the reserved registers (sp, rfp, and rra).

Suppose a function f has a declaration τ0 f(x1 : τ1, . . . , xn : τn) rb. Let τra =
∀[](sp 7→ Ptr(next(η)), next(η) : |τ0| :: η :: ρ)

|•, , , | η ρ = ({η, ρ}, •, {sp 7→ Ptr(η)}, η : ρ)

|τi, ς, ∆| = (τ ′, ς ′, ∆′) |Γs, V, 0, f | η ρ = (∆, Ψ,Γ, ς) Γ(sp) = Ptr(`)
|(Γs, xi : τi), V, 0, f | η ρ = (∆′,Ψ, Γ[sp 7→ Ptr(next(`)), rra 7→ τra], next(`) : τ ′ :: ς ′)

τ 6= τ ′ ∗S |Γs, V, sz, f | η ρ = (∆, Ψ, Γ, ς) Γ(sp) = Ptr(`)
|(Γs, x : τ), V, sz + 1, f | η ρ = (∆, Ψ, Γ[sp 7→ Ptr(next(`)), rfp 7→ Ptr(η), rra 7→ τra], next(`) : |τ | :: ς)

f has local declaration x = newS v
|Γs, V, sz, f | η ρ = (∆, Ψ, Γ, ς) Γ(sp) = Ptr(`)

|(Γs, x : τ ∗S), V, sz + 2, f | η ρ = (∆, Ψ, Γ[sp 7→ Ptr(next2(`)), rfp 7→ Ptr(η), rra 7→ τra],
next2(`) : Ptr(next(`)) :: next(`) : |τ, Γ, ς, V, v| :: ς)

|Γs, V, sz, f | η ρ = (∆, Ψ, Γ, ς)
|(Γs, f : (τ1, . . . , τn) → τ), V, sz, f | η ρ = (∆, (Ψ, pf 7→ |(τ1, . . . , τn) → τ |), Γ, ς)

τ 6= τ ′ ∗S

|τ, ς, ∆| = (|τ |, ς, ∆)
|τ, ς, ∆| = (τ ′, ς ′, ∆′) η is a fresh location variable

|τ ∗S , ς, ∆| = (Ptr(η), ς ′ ∧ {η : τ ′}, (η;∆′))

Types are translated as follows. Stack pointer types are translated to singleton
types. The translation needs to know which variable has the stack pointer type to get
the offset of the variable from the frame pointer. When τ 6= τ ′ ∗S , we use |τ | as a short
cut for |τ, , , , |.

|int| = int
|τ ∗H | = HeapPtr(|τ |)
|τ ∗S ,Γ, ς, V, x| = τ ′

where Γ(rfp) = Ptr(`) S ` ` + V (x) : τ ′

|(τ1, . . . , τn) → τ | = ∀[∆](Γ, ς)
where |{x1 : τ1, . . . , xn : τn}, V, 0, f | η ρ = (∆, ,Γ, ς)
and V = x1 7→ 0, x2 7→ −1, . . . , xn 7→ −n + 1

14

Arguments are translated to instructions that push the arguments onto the stack.
If an argument is a pointer, the translation collects locations that will be used to
instantiate the aliases associated with the pointer parameter in the callee.

|Γs ` v : τ | V r1 = I τ 6= τ ′ ∗S

|Γs ` v : τ | V r1 ` `0 = ((I; push r1), next(`))

|Γs ` x : Γs(x)| V r1 = I |Γs(x)| (τ ′ ∗S) x V `0 f r1 = (I ′, sub)
|Γs ` x : τ ′ ∗S | V r1 ` `0 = ((I; I ′; push r1), (next(`); sub))

τ 6= τ ′ ∗S

|τ | τ V `0 f r = (∅, ∅)
|τ | τ ′ V `0 f r = (I ′, sub)

|τ ∗H | (τ ′ ∗S) V `0 f r = (((r, η) = unpack(r); I ′), (η; sub))

|τ | τ ′ y V `0 f r = (I ′, sub) f has local declaration x = newS v

|τ ∗S | (τ ′ ∗S) x V `0 f r = (I ′, (`0 + (V (x)− 1); sub))

Translation of instructions adds into the current code block SST instructions that
perform the operation. It ends the current code block and starts new ones at control
transfer points.

Γs ` x : τ |Γs ` v : τ | V r1 = Iv τ 6= τ ′ ∗S

|Γs ` x = v| V sz f C0 Ψ1 cb I = (C0,Ψ1, cb, (I; Iv; update x))
trans-mov

Γs ` x : int |Γs ` v1 : int| V r1 = I1 |Γs ` v2 : int| V r2 = I2

|Γs ` x = v1 + v2| V sz f C0 Ψ1 cb I = (C0,Ψ1, cb, (I; I1; I2; add r1, r2; update x)) trans-add

Γs ` x : int |Γs ` v1 : int| V r1 = I1; |Γs ` v2 : V | int r2 = I2

|Γs ` x = v1 − v2| V sz f C0 Ψ1 cb I = (C0,Ψ1, cb, (I; I1; I2; sub r1, r2; update x)) trans-sub

Γs ` x : τ |Γs ` v : τ ∗q | V r1 = Iv τ 6= τ ′ ∗S

|Γs ` x =!v| V sz f C0 Ψ1 cb I = (C0,Ψ1, cb, (I; Iv; load r1, [r1 + 0]; update x)) trans-deref

|Γs ` v1 : τ ∗q | V r1 = I1 |Γs ` v2 : τ | V r2 = I2 τ 6= τ ′ ∗S

|Γs ` v1 := v2| V sz f C0 Ψ1 cb I = (C0, Ψ1, cb, (I; I1; I2; store [r1 + 0], r2))
trans-assign

|Γs ` v : int| V r1 = Iv |Γs, V, sz, f | η ρ = (∆, Ψ, Γ, ς)
|Γs ` sts1| V sz f C0 (Ψ1, cbt 7→ ∀[∆](Γ, ς)) cbt ∅ = (Ct, Ψt, cbt, It)
|Γs ` sts2| V sz f C0 (Ψ1, cbf 7→ ∀[∆](Γ, ς)) cbf ∅ = (Cf , Ψf , cbf , If)

|Γs ` if v then sts1 else sts2| V sz f C0 Ψ1 cb I = (C1,Ψ2, cbcont, ∅) trans-if

where
C1 = (Ct ∪ Cf), cbt 7→ ∀[∆](Γ, ς)(It; jump cbcont[∆]), cbf 7→ ∀[∆](Γ, ς)(If ; jump cbcont[∆]),

cb 7→ ∀[∆1](Γ1, ς1)(I; Iv; jumpif0 r1, cbf [∆]; jump cbt[∆])
Ψ2 = (Ψt ∪Ψf), cbcont 7→ ∀[∆](Γ, ς)

Γs(f ′) = (τs) → τ τs = τ1, . . . , τn Γs ` x : τ τ 6= τ ′′ ∗S

|Γs, V, sz, f | η ρ = (∆,Ψ, Γ, ς) Γ(sp) = Ptr(`)
|Γs ` vs : τs| V r1 ` (`− sz) = (Is, sub) ∀ 1 ≤ i ≤ n Ψ1(cb) = ∀[∆1](Γ1, ς1)

|Γs ` x = f ′(vs)| V sz f C0 Ψ1 cb I = (C1,Ψ2, cbcont, (pop r1; update x; pop rra; pop rfp))
trans-call

where

C1 = C0, cb 7→ ∀[∆1](Γ1, ς1)(I; push rfp; push rra; Is;
mov rra, cbcont[∆]; jump pf ′ [sub,next2(`), σ])

σ = Γ(rra) :: next(`) : Γ(rfp) :: ς
Ψ2 = Ψ1, cbcont 7→ ∀[∆](Γ[sp 7→ Ptr(next3(`))], next3(`) : |τ | :: next2(`) : σ)

15

Translation of basic blocks consists of translating local declarations and instructions.
At the end of the block, arguments are popped from the stack and the return value is
pushed.

Γs(f) = (τ1, . . . , τn) → τ |Γs ` lds : Γ′s| V 0 = (V ′, sz′, Ild)
|Γ′s ` sts| V ′ sz′ f C0 Ψ1 pf (mov rfp, sp; Ild) = (C ′0,Ψ2, cb

′, I ′)
|Γ′s ` v : τ | V ′ r1 = Iv Ψ2(cb′) = ∀[∆2](Γ2, ς2)

|Γs `τ lds; sts; return v| f C0 Ψ1 = ((C ′0, cb
′ 7→ b′), Ψ2)

trans-b

where b′ = ∀[∆2](Γ2, ς2){I ′; Iv; ladd sp,−4 ∗ (sz′ + n); push r1; jump rra},
and f has declaration τ f(τ1 x1, . . . , τn xn) rb
and V = {x1 7→ 0, x2 7→ −1, . . . , xn 7→ −n + 1}

Translation of function declaration is mainly translating the basic block with pa-
rameters in the source type environment.

Γ′s = Γs[f : (τ1, . . . , τn) → τ, x1 : τ1, . . . , xn : τn]
|Γ′s `τ rb| f C Ψ[pf 7→ |(τ1, . . . , τn) → τ |] = (C ′, Ψ′)

|Γs ` τ f(τ1 x1, . . . , τn xn) rb : Γs[f : (τ1, . . . , τn) → τ]| C Ψ = (C ′, Ψ′) trans-f

Translation of programs uses a “halt” block as the return address of the main body.
The “halt” block expects the return value from the main body.

|• ` fds : Γs| {phalt 7→ blockhalt} {phalt 7→ τhalt} = (C, Ψ)
|Γs `τ rb| main C (Ψ, pmain 7→ τmain) = (C ′, Ψ′)

| ` (fd1, . . . , fdn, rb)| = (C ′, Ψ′, (mov rra, phalt; jump pmain[base, empty]))
trans-p

where τhalt = ∀[](sp 7→ Ptr(next(base)),next(base) : int :: base : Empty)
and τmain = ∀[η, ρ]({sp 7→ Ptr(η),

rra 7→ ∀[](sp 7→ Ptr(next(η)), next(η) : int :: η : ρ)}, η : ρ)

We proved the type-preservation theorem of the translation:

Theorem 5 (Type-preserving Translation) Well-typed Micro-CLI programs trans-
late to well-typed SST programs.

6 Conclusions

With a simple stack type ς, SST safely supports many low-level idioms: stack pointers,
frame pointers, by-value arguments, and by-reference arguments, where by-reference
arguments may point to both stack data and heap data.

This paper presented one particular type system built around the stack type ς, but
many variations are possible. For example, we treated the stack pointer register as a
special register to safely accomodate kernel-mode code in the presence of interrupts, but
some other settings could treat the stack pointer as an ordinary register. For GC safety,
we allowed pointer arithmetic on stack pointers but disallowed pointer arithmetic on
heap pointers. For simplicity, we assumed infinite stack space to grow in, but a type
checker based on SST could also verify stack overflow checks (perhaps in cooperation
with virtual-memory-based overflow checks). Also for simplicity, our heap consisted of
one-word objects, but this extends naturally to objects with multiple fields. Finally, to
ensure simple, efficient type checking, we used a small, restricted linear logic, but we
could trade efficiency for expressiveness by varying the linear logic, without abandoning
the basic SST approach.

16

References

[1] Amal Ahmed and David Walker. The logical approach to stack typing. In 2003
ACM SIGPLAN Workshop on Types in Language Design and Implementation,
2003.

[2] Karl Crary. Toward a foundational typed assembly language. In Symposium on
Principles of Programming Languages, 2003.

[3] Karl Crary, David Walker, and Greg Morrisett. Typed memory management in
a calculus of capabilities. In Proceedings of the 26th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 262–275. ACM Press,
1999.

[4] ECMA. Standard ECMA-335 Common Language Infrastructure (CLI). 2006.

[5] Matthew Fluet, Greg Morrisett, and Amal Ahmed. Linear regions are all you
need. In 15th European Symposium on Programming (ESOP’06), 2006.

[6] Jean-Yves Girard. Linear logic. In Theoretical Computer Science, 1987.

[7] Chris Hawblitzel. Linear types for aliased resources (extended version). Technical
Report MSR-TR-2005-141, Microsoft Research, 2005.

[8] Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable
data structures. In Symposium on Principles of Programming Languages, pages
14–26, 2001.

[9] Limin Jia, Frances Spalding [Perry], David Walker, and Neal Glew. Certifying
compilation for a language with stack allocation. In LICS ’05: Proceedings of the
20th Annual IEEE Symposium on Logic in Computer Science (LICS’ 05), pages
407–416, Washington, DC, USA, 2005. IEEE Computer Society.

[10] Limin Jia, Frances Spalding [Perry], David Walker, and Neal Glew. Certifying
compilation for a language with stack allocation. Technical Report TR-724-05,
Princeton University, 2005.

[11] Patrick Lincoln, John C. Mitchell, Andre Scedrov, and Natarajan Shankar. Deci-
sion problems for propositional linear logic. Ann. Pure Appl. Logic, 56(1-3):239–
311, 1992.

[12] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Prentice
Hall, 1999.

[13] Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based typed
assembly language. Journal of Functional Programming, 13(5):957–959, 2003.

[14] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to
typed assembly language. In ACM Transactions on Programming Languages and
Systems (TOPLAS), volume 21, pages 527–568. ACM Press, 1999.

[15] George Necula. Proof-Carrying Code. In ACM Symposium on Principles of Pro-
gramming Languages, pages 106–119. ACM Press, 1997.

[16] Frances Perry, Chris Hawblitzel, and Juan Chen. Proofs for SST, 2007.
http://research.microsoft.com/users/juanchen/stack.

[17] J. Reynolds. Separation logic: a logic for shared mutable data structures. In 3rd
ACM SIGPLAN Workshop on Types in Compilation (TIC2000), 2002.

17

[18] Frederick Smith, David Walker, and Greg Morrisett. Alias types. In In European
Symposium on Programming, 2000.

[19] P. L. Wadler. A taste of linear logic. In Proceedings of the 18th International Sym-
posium on Mathematical Foundations of Computer Science, Gdánsk, New York,
NY, 1993. Springer-Verlag.

[20] David Walker. Mechanical reasoning about low-level programs. lecture notes,
http://www.cs.cmu.edu/~dpw/papers.html, 2001.

A SST Syntax

location ` ::= η | base | next(`) | p
labeled stack type ς ::= ` : σ

unlabeled stack type σ ::= ρ | Empty | τ :: ς | σ ∧ {` : τ}
type τ ::= int | Nonsense | Ptr(`) | HeapPtr(τ) | ∀[∆](Γ, ς)

stack loc d ::= base | next(d)
word value w ::= i | nonsense | p | d | w[`] | w[σ]

operand o ::= r | w | o[`] | o[σ]
instr ins ::= mov r, o | add r, o | sub r, o | ladd r, i

| load r1, [r2 + i] | store [r1 + i], r2

| jumpif0 r, o | heapalloc r = 〈o〉
| (η, r) = unpack(o)

heap value v ::= block | 〈w〉
block block ::= ∀[∆](Γ, ς) b

block body b ::= ins; b | jump o
loc env ∆ ::= • | η;∆ | ρ;∆

heap H ::= p1 7→ v1, . . . , pn 7→ vn

heap env Ψ ::= p1 7→ τ1, . . . , pn 7→ τn

reg bank R ::= r1 7→ w1, . . . , rn 7→ wn

reg file Γ ::= r1 7→ τ1, . . . , rn 7→ τn

stack value s ::= empty | w :: s
program P ::= (H, R, s, b)

We use the following abbreviation:

(τn . . . τ1)@(` : σ) = nextn(`) : τn :: . . . :: next1(`) : τ1 :: ` : σ

B SST Semantics

B.1 Well-formedness

∆ ` `

{. . . , η, . . .} ` η
wf-l-var ∆ ` base wf-l-base

∆ ` `
∆ ` next(`) wf-l-next ∆ ` p

wf-l-p

18

∆ ` ς

∆ ` `
∆ ` ` : Empty

wf-S-empty
∆ ` ` ρ ∈ ∆

∆ ` ` : ρ
wf-S-P

∆ ` ` ∆ ` τ ∆ ` `q : σ
∀ `′q, τ

′, σ′ : τ = τ ′ if `q : σ ⇒ `′q : (σ′ ∧ {` : τ ′})
∆ ` `q : (σ ∧ {` : τ}) wf-S-alias

∆ ` ` ∆ ` τ ∆ ` ς
∀ `′q, `

′, τ ′, σ′ : ` 6= `′ if ς ⇒ `′q : (σ′ ∧ {`′ : τ ′})
∆ ` ` : (τ :: ς) wf-S-concat

∆ ` τ

∆ ` int wf-t-int ∆ ` Nonsense wf-t-ns
∆ ` τ

∆ ` HeapPtr(τ)
wf-t-hp

∆ ` `
∆ ` Ptr(`)

wf-t-single

∆, ∆′ ` Γ′ ∆, ∆′ ` ς ′
∆ ∩∆′ = {}

∆ ` ∀[∆′](Γ′, ς ′) wf-t-code

∆ ` Γ
. . . ∆ ` τ . . .

∆ ` {. . . , r 7→ τ, . . .} wf-G

B.2 Static Semantics

∆;Ψ; Γ ` o : τ

∆;Ψ; Γ ` r : Γ(r)
o-reg

∆;Ψ; Γ ` i : int o-int ∆;Ψ; Γ ` nonsense : Nonsense
o-ns

∆;Ψ; Γ ` p : Ψ(p)
o-p-H

∆;Ψ; Γ ` p : Ptr(p)
o-p

∆;Ψ; Γ ` d : Ptr(d) o-d

∆;Ψ; Γ ` o : ∀[η, ∆′](Γ′, ς) ∆ ` `

∆;Ψ; Γ ` o[`] : ∀[∆′](Γ′[`/η], ς[`/η]) o-inst-l
∆;Ψ; Γ ` o : ∀[ρ, ∆′](Γ′, ς) ∆ ` σ

∆;Ψ; Γ ` o[σ] : ∀[∆′](Γ′[σ/ρ], ς[σ/ρ])
o-inst-Q

` (Γ, ς){r ← τ}(Γ′, ς ′)

r 6= sp Γ′ = Γ[r 7→ τ]
` (Γ, ς){r ← τ}(Γ′, ς) a-not-esp

` Resize(`, ς) = ς ′ Γ′ = Γ[sp 7→ Ptr(`)]
` (Γ, ς){sp ← Ptr(`)}(Γ′, ς ′) a-esp

` Resize(`, ς) = ς ′

ς ⇒→
τ @(` : σ)

` Resize(`, ς) = ` : σ
s-shrink

ς ′ = (Nonsensen; . . . ; Nonsense1)@(` : σ)
` Resize(nextn(`), ` : σ) = ς ′

s-grow

ς ` ` + i = `′

ς ⇒→
τ @(` : σ)

ς ` ` + n = nextn(`) s-offset-next
ς ⇒→

τ @(` : σ)
ς ` nextn(`) + (−n) = `

s-offset-prev

19

ς ` ` : τ

ς ⇒ `′ : (σ ∧ {` : τ})
ς ` ` : τ

s-lookup

ς ` ` ← τ Ã ς ′

ς ` ` : τ
ς ` ` ← τ Ã ς

s-update-weak
ς ⇒→

τ @(` : τ :: ς ′)

ς ` ` ← τ ′ Ã→
τ @(` : τ ′ :: ς ′)

s-update-strong

∆;Ψ ` (Γ; ς){ins}(Γ′; ς ′)
∆;Ψ; Γ ` o : τ ` (Γ, ς){r ← τ}(Γ′, ς ′)

∆;Ψ ` (Γ; ς){mov r, o}(Γ′; ς ′) i-mov

Γ(r) = Ptr(`) ς ` ` + i = `′ ` (Γ, ς){r ← Ptr(`′)}(Γ′, ς ′)
∆;Ψ ` (Γ; ς){ladd r,−4 ∗ i}(Γ′; ς ′) i-ladd

∆;Ψ; Γ ` o : int r 6= sp Γ(r) = int
∆;Ψ ` (Γ; ς){add r, o}(Γ; ς) i-add

∆;Ψ; Γ ` o : int r 6= sp Γ(r) = int
∆;Ψ ` (Γ; ς){sub r, o}(Γ; ς) i-sub

Γ(r2) = HeapPtr(τ) ` (Γ, ς){r1 ← τ}(Γ′, ς ′)
∆;Ψ ` (Γ; ς){load r1, [r2 + 0]}(Γ′; ς ′) i-load-p

Γ(r2) = τ Γ(r1) = HeapPtr(τ)
∆;Ψ ` (Γ; ς){store [r1 + 0], r2}(Γ; ς)

i-store-p

Γ(r2) = Ptr(`) ς ` ` + i = `′

ς ` `′ : τ ` (Γ, ς){r1 ← τ}(Γ′, ς ′)
∆; Ψ ` (Γ; ς){load r1, [r2 + (−4 ∗ i)]}(Γ′; ς ′) i-load-concat

Γ(r1) = Ptr(`) Γ(r2) = τ
ς ` ` + i = `′ ς ` `′ ← τ Ã ς ′

∆;Ψ ` (Γ; ς){store [r1 + (−4 ∗ i)], r2}(Γ; ς ′)
i-store-concat

Γ(r2) = Ptr(`) ς ` ` : τ ` (Γ, ς){r1 ← τ}(Γ′, ς ′)
∆;Ψ ` (Γ; ς){load r1, [r2 + 0]}(Γ′; ς ′) i-load-aliased

Γ(r1) = Ptr(`) ς ` ` : τ Γ(r2) = τ

∆;Ψ ` (Γ; ς){store [r1 + 0], r2}(Γ; ς) i-store-aliased

∆;Ψ; Γ ` o : τ ` (Γ, ς){r ← HeapPtr(τ)}(Γ′, ς ′)
∆; Ψ ` (Γ; ς){heapalloc r = 〈o〉}(Γ′; ς ′) i-heapalloc

Γ(r) = int ∆; Ψ; Γ ` o : ∀[](Γ′, ς ′) Γ ⇒ Γ′ ς ⇒ ς ′

∆;Ψ ` (Γ; ς){jumpif0 r, o}(Γ; ς)
i-jump0

Γ ⇒ Γ′

Γ′ ⊆ Γ
Γ ⇒ Γ′

G-imp

20

ς ⇒ ς ′

ς ⇒ ς ′

` : τ :: ς ⇒ ` : τ :: ς ′
s-imp-concat ` : σ ⇒ ` : σ′

` : (σ ∧ {`t : τ}) ⇒ ` : (σ′ ∧ {`t : τ}) s-imp-alias

ς ⇒ ς s-imp-eq ` : (τ :: ς) ⇒ ` : (τ :: ς ∧ {` : τ}) s-imp-add-alias

ς1 ⇒ ς2 ς2 ⇒ ς3
ς1 ⇒ ς3

s-imp-trans ` : (σ ∧ {`t : τ}) ⇒ ` : σ
s-imp-drop-alias

` : (τ1 :: `q : (σ ∧ {`2 : τ2})) ⇒ ` : ((τ1 :: `q : σ) ∧ {`2 : τ2})
s-imp-expand-alias

ς ⇒ ` : (σ ∧ {`1 : τ1}) ς ⇒ ` : (σ ∧ {`2 : τ2})
ς ⇒ ` : (σ ∧ {`1 : τ1} ∧ {`2 : τ2})

s-imp-merge-alias

Figure 4: Stack Implication Rules

` P
` H : Ψ •; Ψ ` s : ς •; Ψ ` R : Γ •; Ψ; Γ; ς ` b

` (H, R, s, b)
m-tp

` H : Ψ

Ψ = {. . . , p 7→ τ, . . .} H = {. . . , p 7→ v, . . .} . . . •; Ψ ` v : τ . . .

` H : Ψ
h-tp

∆;Ψ ` R : Γ

Γ = {. . . , r 7→ τ, . . .} R = {. . . , r 7→ w, . . .} . . . ∆;Ψ; • ` w : τ . . .

∆;Ψ ` R : Γ
g-tp

∆;Ψ ` s : ς

∆;Ψ ` empty : (base : Empty) s-base
∆;Ψ ` s : (` : σ) ∆; Ψ; • ` w : τ

∆;Ψ ` w :: s : (next(`) : τ :: ` : σ)
s-concat

∆;Ψ, {p 7→ HeapPtr(τ)} ` s : (` : σ)
∆; Ψ, {p 7→ HeapPtr(τ)} ` s : (` : (σ ∧ {p : τ})) s-alias

∆;Ψ ` s : ς ς ⇒ ς ′

∆;Ψ ` s : ς ′
s-imp

∆;Ψ; Γ; ς ` b

∆;Ψ ` (Γ; ς){ins}(Γ′; ς ′)
∆;Ψ; Γ′; ς ′ ` b

∆; Ψ; Γ; ς ` ins; b b-ins

∆;Ψ; Γ ` o : ∀[](Γ′, ς ′)
Γ ⇒ Γ′ ς ⇒ ς ′

∆;Ψ; Γ; ς ` jump o
b-jump

∆; Ψ; Γ ` o : HeapPtr(τ) r 6= sp η 6∈ ∆
(∆; η); Ψ; Γ[r 7→ Ptr(η)]; ` : (σ ∧ {η : τ}) ` b

∆;Ψ; Γ; ` : σ ` (η, r) = unpack(o)
b-unpack

Ψ ` block
∆;Ψ; Γ; ς ` b

Ψ ` ∀[∆](Γ, ς) b
block-tp

21

∆;Ψ ` v : τ

Ψ ` ∀[∆′](Γ′, ς ′) b ∆ ` ∀[∆′](Γ′, ς ′)
∆;Ψ ` ∀[∆′](Γ′, ς ′) b : ∀[∆′](Γ′, ς ′) v-code

∆; Ψ; • ` w : τ

∆;Ψ ` 〈w〉 : HeapPtr(τ)
v-hp

B.3 Dynamic Semantics

d + i = d′

d + 0 = d
d + (n + 1) = next(d) + n
base + (−(n + 1)) = base
next(d) + (−(n + 1)) = d + (−n)

size(s) = d

size(empty) = base
size(w :: s) = next(size(s))

resize(d, s) = s′

resize(size(s), s) = s
resize(size(s) + (n + 1), s) = nonsense :: resize(size(s) + n, s)
resize(size(s) + (−(n + 1)), w :: s) = resize(size(s) + (−n), s)

s(d) = w

(w :: s)(size(w :: s)) = w
s-lookup-top

s(d) = w

(w′ :: s)(d) = w
s-lookup

s′ = s[d ← w]

d = size(w :: s)
w′ :: s = (w :: s)[d ← w′]

s-assign-top
s′ = s[d ← w]

w′ :: s′ = (w′ :: s)[d ← w]
s-assign

R ` o 7→ w

R ` r 7→ R(r)
eo-r

R ` w 7→ w
eo-w

R ` o 7→ w
R ` o[`] 7→ w[`] eo-inst-l R ` o 7→ w

R ` o[σ] 7→ w[σ]
eo-inst-Q

(R, s){r ← w}(R′, s′)

r 6= sp R′ = R[r 7→ w]
(R, s){r ← w}(R′, s) u-not-esp

R′ = R[sp 7→ d]
(R, s){sp ← d}(R′, resize(d, s))

u-esp

22

P → P ′

R ` o 7→ w (R, s){r ← w}(R′, s′)
(H, R, s, (mov r, o; b)) → (H, R′, s′, b)

e-mov

R ` r 7→ d (R, s){r ← d + i}(R′, s′)
(H, R, s, (ladd r,−4 ∗ i; b)) → (H, R′, s′, b) e-ladd

R ` r 7→ i1 R ` o 7→ i2 (R, s){r ← i1 + i2}(R′, s′)
(H,R, s, (add r, o; b)) → (H, R′, s′, b) e-add

R ` r 7→ i1 R ` o 7→ i2 (R, s){r ← i1 − i2}(R′, s′)
(H,R, s, (sub r, o; b)) → (H, R′, s′, b) e-sub

R ` r2 7→ p H(p) = 〈w〉 (R, s){r1 ← w}(R′, s′)
(H, R, s, (load r1, [r2 + 0]; b)) → (H, R′, s′, b)

e-load-p

R ` r2 7→ d s(d + i) = w (R, s){r1 ← w}(R′, s′)
(H, R, s, (load r1, [r2 + (−4 ∗ i)]; b)) → (H,R′, s′, b) e-load-d

R ` r1 7→ p H(p) = 〈w〉 R ` r2 7→ w′

(H, R, s, (store [r1 + 0], r2; b)) → (H[p ← 〈w′〉], R, s, b)
e-store-p

R ` r1 7→ d R ` r2 7→ w s′ = s[d + i ← w]
(H,R, s, (store [r1 + (−4 ∗ i)], r2; b)) → (H, R, s′, b) e-store-d

R ` o 7→ w p 6∈ domain(H) H ′ = H, p 7→ 〈w〉 (R, s){r ← p}(R′, s′)
(H, R, s, (heapalloc r = 〈o〉; b)) → (H ′, R′, s′, b)

e-heapalloc

R ` r 7→ i i 6= 0
(H, R, s, (jumpif0 r, o; b)) → (H, R, s, b)

e-jump0-false

R ` r 7→ 0 R ` o 7→ p[subst] H(p) = ∀[∆](Γ, ς) b2

(H, R, s, (jumpif0 r, o; b1)) → (H, R, s, b2[subst/∆])
e-jump0-true

R ` o 7→ p (R, s){r ← p}(R′, s′)
(H, R, s, ((η, r) = unpack(o); b)) → (H,R′, s′, b[p/η])

e-unpack

R ` o 7→ p[subst] H(p) = ∀[∆](Γ, ς) b

(H,R, s, jump o) → (H,R, s, b[subst/∆])
e-jump

23

