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ABSTRACT

Search engines can record which documents were clicked for
which query, and use these query-document pairs as ‘soft’
relevance judgments. However, compared to the true judg-
ments, click logs give noisy and sparse relevance information.
We apply a Markov random walk model to a large click log,
producing a probabilistic ranking of documents for a given
query. A key advantage of the model is its ability to retrieve
relevant documents that have not yet been clicked for that
query and rank those effectively. We conduct experiments
on click logs from image search, comparing our (‘backward’)
random walk model to a different (‘forward’) random walk,
varying parameters such as walk length and self-transition
probability. The most effective combination is a long back-
ward walk with high self-transition probability.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms

Algorithms, Experimentation, Theory

Keywords

Web search, models, click data, user behavior, image search

1. INTRODUCTION

A search engine can track which of its search results were
clicked for which query. For a popular system, these click
records can amount to millions of query-document pairs per
day. Each pair can be viewed as a weak indication of rele-
vance: that the user decided to at least view the document,
based on its description in the search results. Although
clicks are not real judgments, there is evidence that they
are useful, for example as training data [6, 2], as annota-
tions [14, 15], for query suggestion [13, 4, 3] or directly as
evidence for ranking [1].
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We can use the clicks of past users to improve the cur-
rent search results. However, the clicked set of documents is
likely to differ from the current user’s relevant set. Some dif-
ferences arise because we are aggregating clicks across users,
who may simply disagree about which documents are rele-
vant. Other differences are due to presentation issues; for
example, the user must decide whether to click based on a
short summary and is influenced by the ordering of results
[7]. For any given search, a large number of documents are
never seen by the user, therefore not clicked.

From the perspective of a user conducting a search, doc-
uments that are clicked but not relevant constitute noise in
the click data. Documents that are relevant but not clicked
constitute sparsity in the click data.

One class of approaches attempts to reduce noise in click
data, by building a click model that may use additional in-
formation about the user’s behaviour [5, 1]. For example,
taking into account the user’s browsing patterns after click-
ing a document. These approaches can significantly reduce
noise, by identifying some clicked documents as irrelevant.

This paper focuses on the sparsity problem, although our
model also has noise reduction properties. The model gives a
probabilistic ranking of documents, which includes relevant
documents that have not yet been clicked for the current
query. The sparsity problem is evidenced by power law dis-
tributions observed in click logs [15]. Most queries in the
click log have a small number of clicked documents. In such
cases, it is useful to identify additional relevant documents.

We first describe the click information as a graph, and sur-
vey a range of click graph applications. Then we detail our
Markov random walk model for finding relevant documents.
The subsequent sections describe a real click dataset, and
empirical evaluation of the new methods.

2. ALGORITHMS ON THE CLICK GRAPH

Our current model uses click data alone, without consid-
ering document content or query content. To describe the
data, and related non-content-based approaches, it is useful
to think of the click information as a graph. The graph is
bipartite, with two types of nodes: queries and documents.
An edge connects a query and a document if we have ob-
served a click for that query-document pair by any user.
The edge may be weighted according to the total number
of clicks from all users. An example click graph, taken from
image search, is depicted in Figure 1.

Algorithms employing the graph can find associations be-
tween nodes that are not directly linked (adjacent), perhaps
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Figure 1: Click graph. Nodes are queries or images, edges indicate clicks. Images A and B are equidistant from
the query ‘panda’ (distance=3), so retrieval based on a naive shortest-path algorithm could not distinguish
them. Our Markov random walk approach sums over paths, so image A benefits from having 7 distinct paths
of length 3. In other words, nodes A and ‘panda’ are connected by a large “volume” of paths.

by following paths in the graph. Application areas for such
algorithms include:

e Query-to-document ‘search’. Given a query, find
relevant documents, as in adhoc search. Relevant doc-
uments should be ranked highly regardless of whether
they are adjacent to the query. Search is the focus of
this paper.

e Query-to-query ‘suggestion’. Given a query, find
other queries that the user might like to run. This is
more difficult to evaluate, but approaches already exist
for finding related queries using the click graph [4, 13].

e Document-to-query ‘annotation’. Given a docu-
ment, attach related queries to it. This method for
creating document surrogates, based entirely on the
click graph, was studied in [15].

e Document-to-document ‘relevance feedback’.
Given an example document that is relevant to the
user, find additional relevant documents.

Two of the above approaches [4, 13] use the graph to iden-
tify query-to-query similarity followed by the application of
clustering algorithms. Xue et al [15] use the graph to find
document-to-document similarities. Annotations (query as-
sociations) are then spread amongst similar documents. All
three papers make use of co-click/co-visitation information,

for example, two queries are similar if they have overlap-
ping sets of clicked documents. Xue et al also try an iter-
ative algorithm, based on query-to-query and document-to-
document similarity.

The focus of this paper is the search problem. However,
the Markov random walk methods studied here handles all
these cases. We discuss other cases briefly in Section 5.

3. RANDOM WALK MODEL

To derive our probabilistic retrieval model, we first pro-
pose a basic query formulation model. The model captures a
process that starts from an information need and ends with
a query.

We assume that query formulation begins with the user
imagining a single document, representing their information
need. They then think of a query that is associated with
the document. The process might stop at that query, at
which point they issue the query. Alternatively, the query
makes them imagine another document, and that document
makes them imagine another query. This thought process of
query-document and document-query transition can repeat,
or it can stop at a query which is then issued.

Our model, detailed in Section 3.1, makes a number of
simplifying assumptions. The user has limited memory, so
forgets their previous location after each transition. Al-
though they do not remember their starting point, our model
limits the number of transitions to keep them in the vicinity



of their information need. We do not base our model on a
real study of query formulation behavior, but instead esti-
mate our transition probabilities from clicks of many users.
It is also a simplifying assumption to use a single document
to represent the information need.

This model can also be thought of as a noise process. It
starts with a desired document, then adds noise via taking
some number of steps. Given a document, this noise process
describes a probability distribution over queries. Mathemat-
ically, it corresponds to a Markov random walk. The bene-
fits of such a walk are robustness to spurious clicks (edges)
and, by considering multiple weighted paths in the graph,
implicitly finding a cluster of nodes.

Our retrieval model is obtained by inverting the query
formulation model. It starts from an observed query, and
attempts to undo the noise, inferring the underlying infor-
mation need. This inference is done by conditioning the
query formulation model on the observed query. The result
is a distribution over documents, describing how likely they
are to be the users original document. This corresponds to
a Markov random walk in the opposite (‘backwards’) direc-
tion, compared to the query formulation walk, with similar
noise reduction and clustering benefits.

The probability distribution over documents allows us to
rank according to the probability ranking principle. Docu-
ments are ranked in descending order of the probability that
they were the information need.

3.1 Random Walk Computation

Our probabilistic model and notation are heavily influ-
enced by Szummer and Jaakkola [10]. Let D be the set of
documents, and Q be the set of queries. We construct a
graph whose nodes V are the union of these, ¥V = DU Q.
The edges £ correspond to user clicks, with weights given
by click counts Cj, associating node j to k.

We define transition probabilities Pyqj¢(k | j) from j to k
by normalizing the click counts out of node j, so Ppyqj:(k |
J) = Cjx/ >, Cji, where i ranges over all nodes. The nota-
tion Py, (k| j) will denote the transition probability from
node j at step t1 to node k at time step t2. While the counts
Cji are symmetric, the transition probabilities Pyi1)(k | 5)
generally are not, because the normalisation varies across
nodes.

The original click edges form a bipartite graph, but we
extend it by adding self-transitions to the nodes. Let the
self-transition probability be s. Then the transition proba-
bilities become

Pt+1|t(k | ]) =

{(1 —5)Cix/ 22 Cii Yk # ] )

when k = j.

Self-transitions allow the random walk to stay in place, and
reinforce the importance of the starting point by slowing
diffusion to other nodes. In query formulation terms, this
corresponds to the user favouring the current query or doc-
ument, and not changing it for a step.

We can organise the one-step transition probabilities as a
matrix A whose j, k-th entry is Pyyq)¢(k | j). The matrix A
is row stochastic so that rows sum to 1.

Now we perform the random walk: we calculate the prob-
ability of transitioning from node j to node k in ¢ steps,
denoted Py o(k | j), and equal to Pyo(k | j) = [A"]jk.

The random walk sums the probabilities of all paths of
length t between the two nodes. It gives a measure of the

volume of paths [10] between these two nodes; if there are
many paths the transition probability will be higher. See
Figure 1 for an example.

For retrieval, we calculate the backward random walk:
given that we ended a t-step walk at node j, we find the
probability of starting at node k, denoted Py;(k | j). This
is calculated by Bayes rule Py (k | j) o« Pyo(j | k)Po(k),
assuming that the starting points are chosen uniformly at
random, Py(k) = 1/N, where N is the number of nodes.
The normalisation required by Bayes rule can be written as
a matrix multiplication, so that Po(k | 7) = [A"Z ™ ']x;,
where Z is diagonal and Z;; = >_,[A"];;. Finally, we rank
the documents according to Py (k | j).

Since our click datasets are large, we compute the ran-
dom walks in an efficient way as follows. We represent the
transitions as a sparse matrix A. For a backward walk, we
encode the distribution at step ¢ as a vector q; with a sin-
gle unit entry corresponding to the query node j. Then
we calculate Py.(k | j) = [Z%A(...(A(qu)))}k, in or-
der of the parentheses, and where Z; normalises the re-
sult to sum to one over k. This is efficient because these
matrix operations are sparse. Similarly, to calculate a for-
ward random walk we encode the start distribution as a row
vector v; with a unit entry at query node j, and obtain
Puo(k | ) = [((v;4)A) .. ) Al

3.2 Forward vs. Backward Walks

We have proposed to rank retrieved documents by Py ( |
j). Previously, forward random walks that correspond to
Pyo(k | j) have been assumed in spectral clustering, PageR-
ank, and various contexts (Section 3.6). Note, PageRank
is a query-independent forward random walk on the link
graph, which proceeds to its stationary distribution. Ours
is a query-dependent backward random walk on the click
graph, where walk length is moderated by ¢ and s.

In statistics, the backward walk model is referred to as
diagnostic: to find the “cause” of the query j, we infer what
documents k the walk may have arisen from. In contrast, the
forward walk model is predictive: we start from a query j,
and calculate probabilities of ending documents Pyjq(k | j).

To illustrate the difference, consider the limit of infinite
walks, t — oo. The forward random walk approaches the
stationary distribution (assuming ergodic transitions), which
gives high probability to nodes with large numbers of clicks.
The backward random walk approaches the prior starting
distribution, which we have taken to be uniform. We be-
lieve that the backward walk is a more natural formulation
for our retrieval task, and results (section 4.2) show that it
performs better.

3.3 Clustering Effect

The random walk implicitly performs a soft clustering of
nodes [11]. As the walk gets longer, the identity of nodes
in clusters blurs together. Given an end node that is part
of a cluster, we have similar probabilities of having started
the walk from any node in the cluster, but lower probability
for nodes outside the cluster. The clusters do not have hard
boundaries, and a ranking of nodes is still retained for finite
walks, as the start point probabilities do not become exactly
equal.

To illustrate this, consider a synthetic document-query
graph containing two clusters (Figure 2). We apply back-
ward walks with self-transition probability of 0.9. Query
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Figure 2: Two clusters (left figure). A one step walk
ending at Q4 is just as likely to have come from D2
as D4 (right figure, point marked t=1), even though
D2 is in a different cluster. A walk of medium length
finds D4 a more likely starting point, exhibiting a
clustering effect. (The shown probabilities are con-
ditioned on starting at a document).
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Figure 3: A walk with zero self-transition proba-
bility will make exactly ¢ non-self transitions (¢ =
1,11,101 shown here). In general, the number of non-
self transitions has a binomial distribution, shown
here for 5 different walks.

node Q4 is adjacent to several documents and a 1-step walk
finds them equally probable. A longer walk exhibits a clus-
tering effect, finding the adjacent node from the same cluster
(D4) more likely. The clustering also suppresses the effect
of spurious edges that may be due to noise (such as the edge
spanning the two clusters in the example). A very long walk
finds all nodes to be equally likely starting points.

3.4 Walk Parameters

The behaviour of the Markov random walk is affected by
the transition matrix and the number of steps in the walk.
The number of steps determines the resolution of the walk.
A short walk preserves information about the starting node
at a fine scale; start nodes close to the end node have much
higher probability than the others, and nodes further away
cannot even be reached and have zero probability. A long
walk preserves only coarse information about what cluster
of nodes the walk was started from.

5 0 /A0 \1000
Figure 4: Document-query transition. In our model,

the most likely transition from D2 is to Q2, because
the edge has 50 clicks (as opposed to 10).

We can choose the number of steps t based on a few heuris-
tics. If t+1 equals the diameter of a singly connected graph,
then we can ensure that Py (k | j) > 0 so each node in-
fluences every other node. However, this scheme ignores
transition probabilities. Instead, the mizing time of a graph
measures the time it takes to approach the stationary dis-
tribution. The graph mixes faster the smaller the second
largest eigenvalue A2 of the transition matrix A (the largest
eigenvalue is always 1). We wish to choose ¢ so that we
are relatively far from the stationary distribution, where all
information about the query has been lost.

The self-transition parameter determines how quickly the
walk diffuses. It is related to the number of steps in the walk,
but slightly different. A self-transition probability close to 1
corresponds to a slow walk, which mostly stays at the same
node. Such a walk requires a large number of steps before
other nodes accumulate any significant probability. A self-
transition probability of O corresponds to a fast walk, which
forces a change of node at each step. Figure 3 shows how
many non-self transitions are made for the parameter set-
tings used in our experiments. Alternatively, one can also
use a decaying exponential distribution over walk lengths,
which puts more emphasis on shorter walks, but still in-
cludes arbitrarily long walks (capped for computational rea-
sons). Initial experiments show that this performs at least
as well as the others.

3.5 Alternative Transition Model

For query-document transitions, it seems natural to prefer
the most-clicked document for the query. For document-
query transitions it is not so clear. Our main model treats
documents and queries symmetrically (eq. 1) so prefers the
query with the most clicks. The advantage of this is that
the walk will prefer to follow edges where we have the most
evidence of relevance. A potential disadvantage is that the
walk will prefer popular queries. Figure 4 shows a case where
D2 has 5% of the Q2 clicks and 67% of the Q1 clicks, yet
under our transition model Q2 is the more likely transition.

We tried a model that normalizes document-query transi-
tions differently, namely by probability rather than by click
count,

Cik/ 22; Cii Vi€ Q
P15 1 k) 22y Perae(d 1 k) Vi €D.

(2)
Here transitions from documents are invariant to the popu-
larity (absolute click-counts) of queries. We do not present
evaluation results for this alternative model, but we note
that when tested it performed slightly worse than our main
model. Another model that merits further study is to com-
bine both absolute and relative click-counts.

Pk ] 7) = {



3.6 Related Models

Lafferty and Zhai [8] perform a random walk on a different
graph, the document-term graph. However, their walk is a
forward walk and experiments only show very short 2-step
walks, which do not offer much robustness against spurious
links or clustering behaviour. Toutanova and Manning et
al. [12] also use short 2- and 3-step walks to induce word de-
pendencies for resolving prepositional phrase attachments.
They have several different types of node transitions, based
on observed word cooccurrences, morphology, WordNet syn-
onyms, and others. They combine the transitions via learned
mixture weights. In the machine learning literature, Markov
random walks have been employed for clustering of data vec-
tors [11] and for semi-supervised classification [10].

Spectral clustering techniques [9] are closely related to
forward Markov random walks. They begin from a similar
transition matrix A, but clustering is based on the eigenvec-
tors of this matrix. The eigenvectors of the forward random
walk Pyo(k | j) = A" are the same, as they are invariant to
the choice of t. The random walk weights the eigenvectors
by powers of their corresponding eigenvalues A*. For high
t, only the top eigenvectors will remain significant, just as
used in spectral techniques.

The backward random walk differs. The representation
Poji(k | j) = [A*Z"]i; is normalised by a diagonal matrix
Z~1, that ensures that the columns of A sum to 1. This
normalisation does not preserve the right-side eigenvalues or
eigenvectors.

4. EXPERIMENTS

4.1 Dataset and Evaluation Method

Our click logs were extracted from a 14-day log of web
usage, which includes 12.5 million clicks from a number of
commercial image search engines. The set contains 5 million
image URLs. There are 1.6 million queries after converting
to lower case and normalizing white space. There are 5.9
million unique query-URL click pairs (edges). We observe
a number of power-law distributions, including URLs-per-
query, queries-per-URL and repetitions of query-URL pairs.

We chose image search because image search logs have the
characteristics typical of other click logs, such as power law
degree distribution and many ‘missing edges’ [15]. Yet im-
age click logs have a relatively low level of noise. Users can
quickly glance at a number of thumbnails before they click,
and the thumbnails are very accurate summaries of image
content, so there are fewer speculative clicks. The set of
judged images with distance 1 from the query had precision
of 75%. This shows that we have sufficient high-quality con-
nections without applying additional noise reduction tech-
niques [5, 1] and can concentrate on our random walk model.

To make the dataset size more manageable we perform a
two-stage pruning of the graph. We first remove URLs that
are only connected to one query, then remove queries that
are only connected to one URL. Our pruned graph has 1.1
million edges, 505,000 URLs and 202,000 queries. We note
that pruning may also have decreased noise in the dataset,
although we did not attempt to quantify this effect.

The query set for evaluation is sampled, with uniform
probability, from the set of query nodes. Thus a rare query
is just as likely as a popular query. This study is concerned
with sparsity in click data, so we believe a sampling strategy

that yields less popular and therefore low-degree queries is
reasonable. We rejected pornographic queries and queries
that were too difficult to judge (such as URL fragments)
giving a set of 45 queries.!

Our relevance judgments are to pool depth 20. Evaluating
the 45 queries for all the approaches described in Section 4.2
required 2278 relevance judgments in total. Before judging
each query, the assessor was allowed to research the query
using web resources such as Wikipedia. Judges were then
shown full-sized images, with no other information such as
URL or position in the graph. Each image was judged to
be relevant or irrelevant, identifying 818 relevant images in
total. Because the pool size was small, and because in many
cases the relevance of an image is evident quickly, the present
authors were able to carry out all judging.

Considering the aforementioned 75% relevance rate within
a query’s judged clicked images, we do not have a breakdown
of why the 25% irrelevant were clicked. In some cases it is
difficult to judge relevance based on viewing the thumbnail
alone, for example in group photos it is sometimes difficult
for the user to see who is present based on the thumbnail.
In other cases, the user’s underlying information need might
differ from that assumed by the assessor (and from those of
other users who typed the same query). We have also been
quite strict in our judging, perhaps assuming a knowledge-
able and focused user. For example, for the query ‘vassily
kandinsky’ we would not judge an image of a Miré painting
as relevant, but a user who is not knowledgeable or who is
not focused on finding Kandinsky might click on a Miré. We
take the stricter interpretation because we are interested in
building a precise retrieval system.

Given a fully-judged top 20, we can accurately measure
precision at 20 (P@20) and also mean average precision at
cutoff 20 (MAP@20). However, since we are exploring meth-
ods that increase the number of retrievable images, it is also
interesting to consider recall, despite the shallow pools. So
for analysis we also consider precision-recall graphs.

4.2 Results

Each random walk configuration is denoted by a string
such as ‘1-0-forward’. This means a 1-step forward walk with
zero self-transition probability. We consider 1-O-forward to
be our baseline, since it is equivalent to ranking a query’s
URLs in descending order of click count. We also include
a control system ‘dist’” which will be used to help us ana-
lyze ranking effects: it ranks images in ascending order of
their graph distance from the query, with random ordering
within each equidistant image set. The main variables of
study are walk length (1, 11 or 101 steps), self-transition
probability (0 or 0.9) and direction forward vs. backward.

! Judged queries: god of war; ninja metal gear solid; wall-
paper bmw; sahin nuri; seth cohen; catalonia map; apollo
creed; the fastest cars in the world; lindsay lohan parent
trap; pics of space; christina aguilera fighter; fiat bravo 2007;
tattoos angelina jolie; zatchbell; matthew macfadyen; psp
background; denver broncos cheerleaders; robbie williams
feel; the perfect man hilary duff; wrestling cards; kenny
miller; vassily kandinsky; black metal; unicorn and fairy;
muppet show; candace cameron bure; orc hunter; hilary duff
as lizzie mcguire; funny osama bin laden pictures; adu; my
fair lady; tiger paintings; ryan and marissa the oc; bunkers;
heidi muller; world strongest boy; stars wallpaper; pyramid
picture; humming birds; the titanic leonardo dicaprio; slam
dunk contest; billabong pro; the pirates of the caribbean;
jenny garth; dunkirk.



System P@20 MAPQ20
101-0.9-backward  0.487* 0.567*
11-0-backward 0.482*%  0.546*
11-0.9-backward  0.473* 0.564*
11-0.9-forward 0.446*  0.529*
101-0.9-forward 0.442*  0.498*
11-0-forward 0.438*%  0.485*
dist 0.339* 0.412
101-0-backward 0.331* 0.319
101-0-forward 0.263 0.252
1-0.9-backward 0.218 0.350
1-0-forward 0.218 0.335
1-0-backward 0.218 0.350
1-0.9-forward 0.218 0.335
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Table 1: Overall comparison of systems on 45
queries. The best system is a 101-step backward
walk with 0.9 self-transition. Results that differ sig-
nificantly (paired t-test p < 0.01) from the baseline
system 1-0-forward are marked with **’.
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Figure 5: Total number of images retrieved across
45 queries, broken down by graph distance. The one
step walk can only find adjacent images, so retrieves
in total 263 images, marked as a black cross.

The furthest node from any of our test queries is at dis-
tance 41, so the 101-step walk gives non-zero probability to
all reachable images. The walks are computed off-line and
the most expensive 101-step computation takes less than 20
seconds per query.

The overall results in Table 1 indicate that several of the
longer walks are significantly better than the baseline 1-step
forward walk. The best method on both metrics is the 101-
step backward walk with 0.9 self-transition probability. It
is significantly better than the forward walk with the same
parameters (101-0.9-forward) with p = 0.020 for P@20 and
p = 0.032 for MAP@20. It is also significantly better than
the same walk with zero self transition (101-0-backward)
with p < 107* for P@20 and p < 10~ for MAP@20. How-
ever, it is statistically indistinguishable from the backward
11-step walks.

A key advantage of the 11-step and 101-step walks is that
they can find relevant documents other than those directly
clicked for the query. Figure 5 shows longer walks that re-
turn roughly the same number of distance-1 images, but also
significant numbers from further afield. The 101-step walk

Figure 6: The proportion, at each distance level, of
total retrieved (Figure 5) that were relevant.

with zero self-transition possibly goes too far, returning too
few distance-1 images.

Figure 6 shows the proportion of results within each dis-
tance group that were relevant. The retrieved distance 1
images have 0.75 precision, while those at distances 7 and
above are mostly irrelevant. The 101-0-backward walk finds
12/59 relevant at distance 9, 2/10 relevant at distance 11
and 0/4 relevant at distance 13. It finds relevant images
that no other system finds, but retrieves too few items at
distances 1 and 3 (Figure 5), where high precision may be
achieved.

The 1-step walks seem to be failing because they retrieve
too few images. Another way of seeing this is in a precision-
recall curve (which we calculate to rank 1000 although our
pool depth is only 20, assuming unjudged are irrelevant). At
the leftmost points of Figure 7 the 1-step walks have higher
precision than other approaches. However, they have lower
precision at all other points in this interpolated precision-
recall graph, being unable to recall our set of known-relevant
images. The figure also compares forward walks to backward
walks, with backward walks superior in every case. Figure 8
shows the effect of switching self-transition probability from
0 to 0.9. The 101-step walk moves from being a poor per-
former to one of the best three.

For comparison, we also show the curve for the ‘dist’ base-
line, which lists images in order of graph distance from the
query. Although it starts well, its performance drops at
higher recall points. There is a clear gap between this sim-
ple method and the best random walk approaches, which
are able to rank images based on the structure of the graph,
rather than simply distance.

S. DISCUSSION AND CONCLUSION

We have applied a Markov random walk model to the
click graph, giving us a high-quality ranking of documents
for a given query, including those that are as-yet unclicked
for that query. In practice, the approach enables us to show
users more images that are relevant than previously possible.
In some cases, users will click on the result, creating a new
edge in the graph. In this way, applying diverse ranking
methods can address the sparsity of the click graph.

A backward walk was more effective than a forward walk
in every case (Figure 7). This supports the notion under-
lying our backward walk, modeling the inverse of the query
formulation process. The user moves from an imagined doc-
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Figure 8: Precision-recall curves of backward walks
with and without self-transitions. The control run
‘dist’ is also included.

ument to a query via some noisy process. Given the user’s
query, we infer their likely starting point.

As for the length of the walk, we got the best results from
a walk of 11 steps, or a walk of 101 steps with high self-
transition probability. In general, a longer walk can find
query-document pairs connected by many different paths.
We believe that this makes it more robust to noise than a
purely distance-based ranking (‘dist’).

Tuning the parameters is beyond the scope of the current
study, and we also have an insufficient number of queries to
perform a training-test split. However, after finalizing the
results of our main experiments (i.e. this is not tuning) we
analyzed the parameter sensitivity of MAP@20 for a back-
ward walk. Figure 9 indicates that the model performs well
for a wide range of parameters, for our test set of 45 queries.
The best results (the white region) are bounded to the right
by a diagonal line representing a fairly constant mean length
of no more than 3-10 non-self transitions. The left vertical
edge shows that good results require walks of at least 5 steps,
in order to reach enough nodes. 5-step walks appear rela-
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Figure 9: Parameter sensitivity for a backwards
walk. Each contour shows a 0.01 variation in
MAP@20. Grid intersections indicate the param-
eter combinations tried. The large plateau has the
highest MAP@20 (0.56-0.57).

tively insensitive to self-transition probability: the 5-step
walk with 0.98 self-transition probability has a mean length
of only 0.1 non-self transitions, but the walk still ranks all
nodes within 5 steps away.

Another post-finalization experiment was to modify the
transition probabilities. As noted in Section 3.5 we tried
a model that normalizes document-query transitions differ-
ently, giving less preference to popular queries. However,
this led to a slight drop in performance. We also tried as-
signing uniform probability to all non-self transitions, which
gave us a 5—10% drop in P@20. This indicates that our use
of click counts is helpful but not essential. In future work
we could try other transition models, and perhaps even de-
velop separate query-document and document-query transi-
tion models.

We have studied adhoc retrieval in this paper. However,
we believe this approach — particularly a long backward
random walk with high self-transition probability — could
be effective in many of the applications listed in Section 2.
We give an example of annotation in Figure 10. Given an
image k, queries are ranked according to Py.(¢ | k), the
probability that we started at query g, given that we ended a
t-step walk at k. The image is of a boxer puppy. We see that
the top 10 queries given by the backward random walk all
contain both the concept ‘puppy’ and ‘boxer’, while adding
new vocabulary to the image such as ‘pups’ and ‘baby’. One
of the associated queries is at distance 5 from the given
image. By contrast, the ranking based purely on distance
tends to find queries that are ‘boxer’ or ‘puppies’ but seldom
both.

We could imagine applications beyond those listed in Sec-
tion 2. In the case of relevance feedback, the set of given
nodes might be mixed, including both documents and the
user’s original query. In the query-to-document case, we
might start from multiple query nodes. For example, tak-
ing a large set of ‘adult’ queries as input, and producing a
labeling of documents, for use in adult filtering.

We also have a prototype based on clicks from Web docu-
ment engines, rather than image engines. Early indications



Annotation using a random walk:

P Query Distance
0.075 boxer dog puppies 3
0.066  boxer puppy pics 3
0.060 boxer puppies 1
0.056  puppy boxer 3
0.056  boxer puppy pictures 3
0.049 boxer pups 3
0.049  boxer puppy 3
0.038 puppy boxers 5
0.034  boxer pup 3
0.030 baby boxer 3

Annotation using distance alone:
Query Distance
boxer puppies
boxer dog
boxer dog puppies
boxer
pictures of boxer dogs
akc puppies pics
boxer dogs
boxer pups
boxers dog
puppies for sale

e
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Figure 10: Annotation. The given image k£ has only
been clicked for one query ‘boxer puppies’, which
can be interpreted as annotation [14]. We employ
a 101-0.9-backward walk to find ten annotations, as
well as showing ten annotations based on graph dis-
tance alone.

are promising that the system can be effective, even without
any special noise reduction. This is perhaps not surprising,
given positive results of previous studies using Web docu-
ment co-click information, such as Xue et al [15].

Given our probabilistic model, another possible step would
be to incorporate document content and query content, by
incorporating a language model. This could further extend
the reach of our click-based models, in particular when lan-
guage models can be applied to find relevant documents that
are not yet part of the click graph.
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