
Verification of Object Relational Maps

Krishna K. Mehra Sriram K. Rajamani
Microsoft Research India

A. Prasad Sistla
University of Illinois at Chicago

Sumit K. Jha
Carnegie Melon University

Abstract

Enterprise software systems need to deal with two dom-
inant data models. While object oriented languages (such
as Java, C#, C++) are the dominant ways to write busi-
ness logic, relational databases are the dominant ways to
store data. Object-Relational (OR) maps are widely used
to mediate between these two data models. We present a
system to verify correctness of OR maps. We formulate sim-
ple correctness conditions for OR maps, and convert these
conditions to validity of formulas in first order logic. We
have built a verification tool called ROUNDTRIP that is able
to both validate and find errors in OR maps defined in the
ESQL language of the Microsoft EDM data model.

1 Introduction

Automated methods for verifying the correctness of
computer systems have gained prominence in the last
decade due to their successful application to certain classes
of practical problems. Such classes include verification of
hardware systems such as processors, pipelines and cache
coherency protocols, and low-level software such as device
drivers. The area of database software has been largely
untouched by these developments partly due to the com-
plexity of these systems. Mainstream application software,
that interfaces with databases, needs to deal with both ob-
ject oriented and relational data models. While object ori-
ented languages such as Java and C# are in widespread use
for writing business logic, relational databases continue to
dominate persistent storage of data. Mediating between the
object oriented and relational data models is an important
problem [10, 7]. Object-Relational maps (OR maps) are the
most common ways to do this mediation. In this paper, we
describe methods based on theorem provers for verifying
OR maps and describe a tool that is based on these meth-
ods. To the best of our knowledge, ours is the first effort in
this area.

There are several ways to write or semi-automatically
generate OR maps, and several tools and techniques have
been developed [3]. Regardless of the technique used to
generate the maps, OR maps can be specified using two
queries (or views):

1. a query view, Q, that maps relations in the database to
objects in the program, and

2. an update view, U , that maps objects in the program to
relations in the database.

If the user writes an object into a database and reads it
back, it is reasonable to expect to obtain the same value that
was written. More formally, the compositions Q ◦ U and
U ◦ Q need to be identity maps (with appropriate integrity
constraints on input domains). This condition is called the
round tripping condition.

In practice, round tripping is validated using testing.
Thus, several test instances of data models are generated,
either manually, or automatically, and the round tripping
condition is checked on these instances. In this paper, we
propose to use formal verification to validate round tripping
of OR maps. We formulate the round tripping condition as
validity of a first order logic formula. Then, we use tech-
niques from first order logic theorem proving to check this
formula. The approach has the same benefits as other suc-
cessful uses of formal verification. In several cases, we can
prove that an OR map works for all test inputs. In several
cases, we can also automatically generate counterexamples
which are test cases that do not satisfy the round tripping
condition.

Any effort to formally verify OR maps encounters two
major technical difficulties:

• In order to model object oriented features present in
OR maps, the relational schema needs to be extended
to include features such as complex types and inheri-
tance, and the relational algebra needs to be extended
with operators such as field reference, type casting, ad-
dress and dereference. While translating standard rela-

1

tional algebra to first order logic is well known, trans-
lating such extensions is non trivial.

• While existing first order logic theorem provers are
able to prove validity of formulas generated from cor-
rect OR maps, these resolution based theorem provers
have difficulty in generating counter-models for for-
mulas. Existing approaches for model generation for
first-order logic can not scale for formulas arising from
incorrect OR maps due to high arity of relations in-
volved.

In this paper, we present techniques to overcome the above
difficulties.

We present a small and simplified language called Ex-
tended Relational Algebra (ERA) to model object oriented
extensions to relational algebra. We present a formal induc-
tive translation of ERA to first order logic (FOL) and ar-
gue that our translation is sound. The translation uses some
non-standard choices of encoding ERA relations to FOL
relations. Every type in ERA becomes a relation in FOL.
Such an encoding allows us to model inheritance and sub-
typing cleanly using implications between FOL relations in
the type hierarchy. It also enables us to handle complex
types, taking addresses of entities, and dereferencing ad-
dresses uniformly.

We tried to use off-the-shelf FOL theorem provers to val-
idate the generated FOL formulas. While the provers work
well for valid formulas, we found that they do not generate
counter models for invalid formulas. Existing approaches to
first order logic model generation, such as ALLOY [14] at-
tempt to search for a small model by bounding the number
of distinct constants in the model. In the presence of rela-
tions with large arities, this approach does not scale. With
c constants, and a relation of arity a, they use ca boolean
variables, which does not scale for large values of a. Us-
ing the constant bounding approach, we find that we cannot
even generate the SAT formulas for several of our examples.
Thus, we were forced to write our own model generation
tool using boolean SAT solvers. In our model generator, we
also bound the maximum number of rows in our relations
by k, in addition to bounding the number of constraints by
c. This leads to formulas with a× k × log(c) boolean vari-
ables. We find that this approach scales to handle our exam-
ples. Our experimental results indicate that we can indeed
find counter-models with small number of rows (say 2 or 3)
for all examples that we have encountered.

We have implemented a verification tool ROUNDTRIP, to
check correctness of OR maps. Our system is able to handle
object and relational schema’s provided in Microsoft’s En-
tity Data Model (EDM) language [2], and query and update
views provided in Microsoft’s Extended SQL (ESQL) [2]
language. ROUNDTRIP is able to prove the correctness, or
find counter-models for most examples we have tried in a

few minutes. ERA is close to ESQL but has been simplified
for readability. Although, we give the translation from ERA
to FOL in this paper, ROUNDTRIP does a direct translation
from ESQL to FOL.

There has been prior work on translating object oriented
query languages to relational query languages and relational
calculus [1, 24, 19, 23]. However, a practical query lan-
guage such as ESQL has several object oriented features
such as dereferencing, type casting, dynamic type check-
ing, attribute renaming, and complex case splitting. Further-
more, these features can be nested within each other in very
complex ways. In order to build a tool for verifying such
a language, it is essential that use an inductive translation,
i.e., a translation where we can walk up the Abstract Syn-
tax Tree (AST) for the query and construct the formula of
a node in the AST in terms of the formulas of the children.
We believe that such a construction is quite non-trivial, and
does not exist in the literature, to the best of our knowledge.
For instance, we track bindings and existential quantifiers
across several nodes in the AST, and handle them quite in-
tricately. The inductive translation of ESQL to first order
logic is a main contribution of our work.

We also believe that our techniques used in the transla-
tion to SAT formulas, for generating counter models, are
new and have lower complexity in terms of the number of
boolean variables as given earlier. Moreover, we provide
formal semantics (for ERA) and the proof of correctness for
our translation. As far as we know, this is the only formal
proof of correctness for such complex translations. How-
ever, due to lack of space, we have not presented them in
this paper. The formal semantics and proof of correctness
are given in our technical report [18].

The paper is organized as follows. Section 2 motivates
the problem with examples. Section 3 defines ERA and
presents it semantics. Section 4 states the round trip prob-
lem formally. Section 5 gives the translation from ERA
to FOL. Section 6 presents experimental results. Section 7
contains discussion of related work and future extensions.

2 Overview

We first illustrate issues in checking correctness of OR
maps in a simpler setting with only relations, and without
object oriented features. Suppose we have an entity set
Orders(id, amount), but two relations:

1. SmallOrders(id, amount) for orders with amount
less than $100, and

2. BigOrders(id, amount) for orders with amount
greater than or equal to $100.

All the views/queries are specified using a syntax similar to
ESQL. Update views are used to map objects to relations in

A1 ∀x, y SmallOrders(x, y) ⇔ (Orders(x, y) ∧ (y < 100))
A2 ∀x, y BigOrders(x, y) ⇔ (Orders(x, y) ∧ (y ≥ 100))
A3 ∀x, y Ordersnew(x, y) ⇔ (SmallOrders(x, y) ∨BigOrders(x, y))
A′

2 ∀x, y BigOrders(x, y) ⇔ (Orders(x, y) ∧ (y > 100))
C ∀x, y Ordersnew(x, y) ⇔ Orders(x, y)

Figure 1. Axioms and Conjectures for Example 1

A1 ∀ V, x, y, z CCustomerType(V, x, y, z) ⇒ CPersonType(V, x, y)
A2 ∀ x, y, z, w CPersonType(CPersons, x, y)∧

((∃ a CCustomerType(CPersons, x, y, a)∧
AddressType(a, z, w))∨

(¬∃ a CCustomerType(Cpersons, x, y, a)∧
z = null ∧ w = null)) ⇔ SpersonType(SPersons, x, y, z, w)

A3 ∀ x, y, a ∃z, w(SPersonType(SPersons, x, y, z, w)∧
w 6= null ∧AddressType(a, z, w)) ⇔ CCustomerType(CPersonsnew, x, y, a)

A4 ∀x, y ∃z, w SPersonType(SPersons, x, y, z, w) ⇔ CPersonType(CPersonsnew, x, y)
C1 ∀ x, y CPersonType(CPersons, x, y) ⇔ CPersonType(CPersonsnew, x, y) ∧

∀ x, y, a CCustomerType(CPersons, x, y, a) ⇔ CCustomerType(CPersonsnew, x, y, a)

Figure 2. Axioms and Conjectures for Example 2

the database, while query views are used to map database
relations to objects.
Suppose we are given the following update view for
SmallOrders:
SELECT (id,amount) FROM Orders

WHERE amount < 100

Further, suppose that we are given the following update
view for BigOrders:

SELECT (id,amount) FROM Orders
WHERE amount >= 100

This can be translated to the FOL formulas given in A1

and A2 in figure 1. 1

Suppose we are given the query view for Orders:

SELECT (id,amount) FROM SmallOrders
UNION ALL

SELECT (id,amount) FROM BigOrders

This can translate to the FOL formula given in A3 (fig-
ure 1). Note Ordersnew is a new relation. We can now for-
mulate the roundtrip verification condition as proving the
conjecture C using the axioms A1, A2 and A3, which can
be readily proved by using an off-the-shelf FOL theorem
prover.

Now, suppose we made a mistake and wrote the update
view for BigOrders as:

SELECT (id,amount) FROM Orders
WHERE amount > 100

1Please note that our current implementation uses first-order logic with
equality. We have included this example which uses relational operators
like less-than for ease of explanation.

This translates to the FOL formula in A′
2.

Now, if we try to prove conjecture C using the ax-
ioms A1, A

′
2, and A3, we find that we are unable to

do so. By using a model generator, we can generate a
counter model Orders = {(1, 100)}, SmallOrders = {},
BigOrders = {}, and Ordersnew = {}.

While the above examples illustrate both correct, and
incorrect OR maps, they are too simplistic. Realistic
OR maps include object oriented features which com-
plicate translation to first order logic. To illustrate
some of these complications, consider the following en-
tity schema types: (1) CPersonType(id, name), and (2)
CCustomerType(addr : AddressType(state, zip)) :
CPersonType. Here CCustomerType inherits from
CPersonType and adds an extra property addr, which
is of a complex type AddressType with two fields state
and zip. Suppose the database schema has only one type
SPersonType(id, name, state, zip). Further, suppose we
have one entity set CPersons in the object model of
type CPersonType, and one entity set SPersons in the
database of type SPersonType.

How do we represent the entity set CPersons in
FOL? One complication is that CPersons can have ob-
jects of type both CPersonType and CCustomerType.
In certain queries, an object of type CCustomerType
might be cast into its super-type CPersonType, and
later down-cast into an object of type CCustomerType.
To handle such cases uniformly, we create one relation
in the FOL for each type in the entity schema. The
actual entity set is present as a name in the first at-
tribute of the relation. In our current example, since
we have two types CPersonType and CCustomerType,

we have two FOL relations CPersonType(r, id, name)
and CCustomerType(r, id, name, a), where a is of type
AddressType. Conceptually we can think about a as
being a foreign key that indexes in AddrType. Since
AddrType is a complex type, we have a FOL relation
AddressType(a, state, zip), where a is the key of the re-
lation. Inheritance is modeled using the axiom A1 (fig-
ure 2), states that every CCustomerType object is also a
CPersonType object.

Suppose update view U for SPerons is given as:
SELECT id, name,
TREAT(CPersons as CCustomerType).addr.state,
TREAT(CPersons as CCustomerType).addr.zip

FROM CPersons

Translating this to FOL is far more complicated than in
the pure relational case (see figure 2). Axiom A2 relates
SPersons to CPersons, taking into account that objects
in CPersons could be either of type CPersonType, or
of type CCustomerType. In the latter case, the last at-
tribute of CCustomerType is a foreign key a for the rela-
tion AddressType.

Let the query view Q for CPersons be given by the
following ESQL statement:
SELECT VALUE CCustomerType(id, name, addr)
FROM

SELECT id, name,
AddressType(state, zip) AS addr

FROM SPersons
WHERE !IsNull(Spersons.zip)

UNION ALL
SELECT VALUE CPersonType(id, name) FROM

SELECT id, name FROM SPersons
WHERE IsNull(Spersons.zip)

Then, we can generate the FOL formula for Q as in A3

and A4 (figure 2). Now, to prove the round trip condi-
tion, we need to prove the conjecture C1 which states that
CPersons and CPersonsnew are equivalent using axioms
A1, A2, A3, and A4.

In general, a view is defined by an ESQL command e of
the form SELECT p FROM r WHERE c, in which p, r
and c may all contain object oriented constructs. The trans-
lation of such expressions is quite non-trivial and is done in-
ductively using a functionF from query expressions to FOL
formulas. Formula F(e) is defined in terms of F(p), F(r)
and F(c). It turns out, that in order to do the translation in-
ductively, at each expression node e, we need to maintain a
list of variables E(e) that need to be existentially quantified
and a formula B(e) that defines bindings to these variables.
Section 5 gives the inductive translation formally.

3 Extended Relational Algebra

In this section, we describe the syntax and some aspects
of the semantics of Extended Relational Algebra (ERA).

The full formal semantics can be obtained from [18]. We
use ERA to study object oriented extensions to traditional
relational algebra.

We give the syntax of the ERA using the BNF notation
given in figure 3. The basic operators in this algebra are σ
(Selection), ρ (Renaming), Π(Projection),× (cross product)
and the set union and difference. It also has type casting,
type checking, pointer referencing and dereferencing, etc.

The grammar has six non-terminal symbols. Among
these τ defines types. We assume that in the definition
of a type the name id uniquely identifies the type. Each
expression generated from r is an ERA expression. Se-
mantically it denotes a set of entities or simply a relation.
The non-terminals e, p, f define entity, property and field
expressions, respectively. Finally c defines conditions.
Each expression generated from the non-terminal e denotes
a single entity or tuple. In the first rule for e, s is an
entity set or an identifier/variable that renames an entity set
(using the rename operation). In the entity expressions the
expressions treat e as τ cast an entity of some base type to
one of it’s subtypes or vice versa. Also, & generates the
address and ∗ dereferences an address. Note that . is used
to access attributes of an entity, while the · notation is used
to access sub-fields of a complex type.

3.1 ERA semantics

An EDM database D is a triple (T,ESN, type) where
T is a set of types and ESN is a set of entity sets, and type
is a function that associates a type with each entity set. We
assume that there is a function key that given an entity type
τ gives the fields in the entity that define the key for the
entity sets of that type; We assume that all key fields are of
base type.

An ERA expression is a string generated from the non-
terminal r. We say that an ERA expression is a rename
operation if it is of the form ρs(r′). We say that it renames
an entity set eid with the variable s if either r′ = eid or
r′ itself renames eid with some variable s′. We say that a
variable s refers to the entity set eid in ERA expression r′

if there is a sub-expression r of r′ that renames eid with s
and r does not appear in the scope of a projection or another
rename operation and does not appear in the scope of ∪ or
\. For an entity set eid, we can view it as a variable when
used in an entity expression. In this case, we say that eid
references eid in r, if eid appears as a sub-expression in r
and does not appear in the scope of a projection, rename, ∪
or \.
Example 1: Consider the entity type
CPersonType(id, name) and it’s sub-type
CCustomerType(addr : AddressType(state, zip)) :
CPersonType as given in section 2. Let

Types τ ::= int | bool | string (base types)
| id(τ1, τ2, . . . , τn) (complex type)
| id(τ1, τ2, . . . , τn) :: τ (sub type)
| refτ (τ1, τ2, . . . , τr) (ref type)

Relations r ::= eid (table name)
| ρs(r) (rename r to s)
| σc(r) (select)
| Πp1,p2,...,pk

(r) (project)
| r1 × r2 (cross product)
| r1 ∪ r2 | r1 \ r2 (set operations)

Entity expression e ::= s (identifier, table name)
| treat e as τ (type cast)
| *p (dereference)

PropertyExpressions p ::= f (field)
| & e (address)

Field f ::= e.i (field access)
| f · i (sub-field access)

Conditions c ::= isof(e, τ) (type check)
| isnull(p) (null check)
| p1 = p2 (value equality check)
| c1 ∧ c2 | c1 ∨ c2 | ¬c (boolean combinations)

Figure 3. BNF for Extended Relational Algebra

COrderType(Oid, Odesc) be another entity type.
Let CPersons and COrders be entity sets of types
CPersonType and COrderType, respectively. In the
ERA expression ρs(CPersons) × COrders, s refers to
the entity set CPersons. On the other hand in the ERA
expression ρt(ρs(CPersons)) × COrders s does not
refer to the entity set CPersons.

Types of entity and property expressions.

Now, for every w which is either an entity, or a prop-
erty or a field expression, and for every ERA expression
r, we define expr type(w, r) which is the type of w in r
and we also define V ar(w, r) which is the variable that
w denotes in r. For an entity expression w that does not
contain *, V ar(w) is the entity set variable specified in w;
further, if w does not contain treat then expr type(w, r)
is the entity type referenced by V ar(w); if w contains
treat then expr type(w, r) may be the type mentioned in
the treat clause. If w contains * then V ar(w) = Null
and expr type(w, r) is the type of entity the pointer points
to. For an entity expression w = e, V ar(e, r) and
expr type(e, r) are formally defined as follows.

• If e = s then V ar(e, r) = s. Further more, if s
references entity set eid in r then expr type(e, r) =
type(eid).

• If e = treat e′ as τ then V ar(e, r) = V ar(e′, r).
In this case, if τ is a sub-type of expr type(e′, r) then
expr type(e, r) = τ ; otherwise, expr type(e, r) =
expr type(e′, r).

• If e = ∗p and expr type(p, r) = refτ for some entity
type τ , then V ar(e, r) = Null and expr type(e, r) =
τ .

For a property or a field expression w, V ar(w, r) and
expr type(w, r) are defined as follows.

• If w is the property expression &e then V ar(w, r) =
Null. In this case, if expr type(e, r) = τ then
expr type(w, r) = refτ .

• For a property expression w, if w = f where f is a
field expression, expr type(w, r) = expr type(f, r)
and V ar(w, r) = V ar(f, r).

• If w is a field expression then we do as follows. It
should be easy to see that w = e.i1 · i2 . . . · ik
for some entity expression e. If expr type(e, r) =
id(τ1, . . . , τn) then we define expr type(w, r) to be
the type of the sub-attribute (id.i1 · . . . · ik). If e does
not contain ∗ then V ar(w, r) = s.i1 · . . . · ik where
s = V ar(e, r). If e contains ∗ then V ar(e, r) = Null.

Example 2: Let r be the ERA expression
ρs(CPersons) × COrders. It should be easy
to see that expr type(s, r) is CPersonType and
expr type(treat s as CCustomerType, r) is
CCustomerType.

It should be easy to see that for any entity or property ex-
pression w, expr type(w, r) and V ar(w, r) are easily com-
puted using the above definitions.

4 Formulation

Let P be the set of all physical database states, and E be
a set of all entity database states. We consider two ERA re-
lational expressions: (1) an update view U , and (2) a query
view Q. Semantically, U : E → P and Q : P → E .

The round-trip condition from the entity side requires
that Q·U be the identity map. However this may not hold as
it does not take into consideration the integrity constraints
the entities and databases are supposed to satisfy. Let E ′
be the set of all elements of E that satisfy the integrity con-
straints of the EDM data declaration. Let P ′ be the image
of E ′ under the mapping U , i.e., P ′ = {U(s) : s ∈ E′}.
We say that the pair of maps (U,Q) satisfy the round-trip
condition from the entity side, if ∀s ∈ E ′Q(U(s)) = s. Let
U ′ be the mapping which is a restriction of U to E ′. Then
the above condition is equivalent to requiring that Q ·U ′ be
the identity function on domain E ′. Similarly, we say that
the pair (U,Q) satisfies the round-trip condition from the
database side if ∀t ∈ P ′ U(Q(t)) = t. Now we have the
following lemma which is easily proved.

Lemma 1: ∀t ∈ P ′ U(Q(t)) = t iff ∀t ∈ E ′ Q(U(t)) = t
The central question in the paper is to check if

a pair (U,Q) satisfies the round-trip condition:∀s ∈
E ′ Q(U(s)) = s. Our approach is to translate the ERA
relational expressions U and Q into first order logic, and
use first order logic theorem proving to check the round-trip
condition.

5 Translation of ERA to FOL

Corresponding to the EDM database D =
(T,ESN, type), we define a canonical relational database
E. As indicated earlier, for each type τ = id(τ1, . . . , τn),
we have a relation id(name, a1, . . . , am) where name is

an entity set (i.e., its name) if τ is an entity type, otherwise
name is of type integer that is a key for the relation. If τi

is of complex type id′(τ ′1, . . . , τ
′
k) then ai is of type integer

and is a foreign key referencing the table id′(τ ′1, . . . , τ
′
k).

Note that some of the complex types and subtypes
are entity types. In our translation, for each such type
τ = id(τ1, . . . , τn), we use a relation pkeyτ that cap-
tures the one-one relationship between pointers to entities
in entity sets and keys of such entities. Let key(τ) =
(τi1 , . . . , τik

). The arity of pkeyτ is k + 2. Formally, if
pkeyτ (u, p, d1, . . . , dk) is true then it indicates that p is the
pointer to the entity with key values d1, ..., dk in the entity
set u. As part of the axioms, we assert the following: (a) p
is the key of this relation, i.e., no two tuples have the same
p values; this asserts that pointers are unique. (b) the at-
tributes u, d1 . . . , dk also form a key indicating that this is
a one-one relationship; (c) for each entity set u of type τ
and for each key value present in the relation u, there exists
a tuple in pkeyτ with the same values for d1, . . . , dk; (d)
for each entity set eid and for every tuple t in pkeyτ such
that t.u = eid there exists a tuple in eid with the same key
values as t.d1, t.d2, . . . , t.dk.

For each relational expression r′ generated by r, we de-
fine a FOL formula F(r′). Intuitively, this formula has the
property that, in any database state s, the result of evalu-
ating r′ on s outputs a relation which is exactly the set of
tuples that satisfy F(r′) in the interpretation s. Similarly,
for each expression f which is an entity expression or prop-
erty or field or condition, we generate a formula F(f). For
an expression f , which is an entity expression or property
or field, we generate a set E(f) of variables that need to be
existentially quantified and a formula B(f) that defines a
binding on these variables. Actually, F(f), E(f) and B(f)
not only depend on f but they also depend on the ERA ex-
pression r in whose context they are being defined. In these
definition r is clear from the context, otherwise we will ex-
plicitly mention r.

For any FOL formula F , let free var(F) denote the se-
quence of free variables that appear in F ; the ordering of
these variables is appropriately defined. For a sequence of
variables ~X , of the same length as free var(F), we let
F (~X) denote the formula obtained by substituting the vari-
ables in ~X for the free variables in F in the given order.
For each identifier g, we have a set of first order variables
{g · i : i ≥ 1}. For each relational expression r′, F(r′)
is defined inductively based on its outer most connective, as
follows. We also define a vector free var(F(r′)) of vari-
ables that appear free in F(r′).

• r′ = eid: Let type(eid) = id(τ1, . . . , τn).
Then, F(eid) = id(eid, eid · 1, . . . , eid · n) and
free var(F(r′)) = (eid · 1, . . . , eid · n).

• r′ = ρs(r): Let n be the number of free variables in

F(r) and ~Y = (s·1, . . . , s·n). This translation simply
renames the free variables in F(r) to be those in ~Y .
Formally, F(r′) = F(r)(~Y) and free var(F(r′)) =
(~Y).

• r′ = σc(r): In this case, F(r′) = F(r) ∧ F(c) and
free var(F(r′)) = free var(F(r)).

• r′ = Πp1,...,pn(r): In this case, for each i = 1, ..., n,
F(pi) is a single variable. Let C be the formula∧n

i=1 B(pi) and ~Y =
⋃n

i=1 E(pi). Let ~X be the set of
variables y such that y is not in {F(pi) : 1 ≤ i ≤ n},
and such that y appears either in ~Y or in F(r) as a free
variable. Then, F(r′) = ∃ ~X(F(r) ∧ C). We define
free var(F(r′)) = (F(p1), . . . ,F(pn)).

• r′ = r1 × r2: In this case, we assume that the
formulas F(r1) and F(r2) do not have any com-
mon free variables. If this is not satisfied, the vari-
ables are renamed to satisfy this property. We define
F(r′) = F(r1) ∧ F(r2) and free var(F(r′)) is ob-
tained by concatenating the vectors free var(F(r1))
and free var(F(r2)) in that order.

• r′ = r1 ∪ r2 or r′ = r1 \ r2: If r′ = r1 ∪ r2

then F(r′) = F(r1) ∨ F(r2). If r′ = r1 \ r2

then F(r′) = F(r1) ∧ ¬F(r2). Here we assume that
free var(F(r1)) = free var(F(r2)). We define
free var(F(r′)) = free var(F(r1)).

Now we define the translation for entity expressions. For
an entity expression e′, F(e′), E(e′) and B(e′) are defined
inductively as follows. We assume that these definitions are
given in the context of the ERA expression r. If e′ is not a
legal entity expression in r then F(e′) = Null, B(e′) =
true and E(e′) = ∅. If e′ is a legal entity expression in r
then the above value are defined as follows.

• e′ = s: Let expr type(s, r) = id(τ1, . . . , τn). (Recall
that expr type(s, r) is defined in section 3). Let eid
be the entity set referenced by s in r. Then, F(e′) =
id(eid, s · 1, . . . , s ·n), B(e′) = true and E(e′) = ∅.

• e′ = treat e as τ : Let τ = id′(τ ′1, . . . , τ
′
n) and let

F(e) = id(u, v · 1, . . . , v ·m) for some u, v, m. Here
u can be a constant or a variable. If τ is a super type of
expr type(e, r) then F(e′) = F(e), B(e′) = B(e)
and E(e′) = E(e). Now, assume that τ is subtype of
type(u) and hence n > m. In this case, if the entity
belongs to the subtype τ then the additional attributes
of the entity are retrieved, otherwise null values are
retrieved. This is done by defining F(e′), B(e′) as fol-
lows.

– F(e′) = id′(u, v · 1, . . . , v · n);

– B(e′) = B(e) ∧ (id′(u, v · 1, ·, v · n) ∨ g)
where g = ¬∃ym+1, ..., yn id′(u, v · 1, . . . , v ·
m, ym+1, . . . , yn)

∧
m<i≤n(v · i = cNull);

– E(e′) = E(e) ∪ {v · j : m < j ≤ n}.

• e′ = ∗p: Let expr type(p, r) = refτ where τ =
id(τ1, . . . τn), key(τ) = (i1, . . . , ik) and v and j be
new names. Recall that key(τ) gives the attributes of
the key. In this case F(p) is a variable. Using the re-
lation pkeyτ that relates pointers to key values of en-
tities, we retrieve the key fields, the entity name and
the entity. If this is a dangling pointer then we retrieve
Null values. This is done by appropriately defining
B(e′).

– F(e′) = id(j, v · 1, . . . , v · n);

– B(e′) ::= B(p) ∧ (g ∨ h) where
g = pkeyτ (j,F(p), v · i1, . . . , v ·
ik) ∧ id(j, v · 1, . . . , v · n) and h =
(¬∃(j′, y1, . . . , yk)pkeyτ (j′,F(p), y1, . . . , yk)∧

1≤i≤n(v · i = cNull));

– E(e′) = E(p) ∪ {j, v · 1, . . . , v · n}.

Now we give the translation of property expressions. For
a property expression p, F(p),B(p) and E(p) are defined as
follows.

• p = f : In this case, F(p) = F(f), B(p) = B(f) and
E(p) = E(f).

• p = &e: let F(e) = id(u, v · 1, . . . , v · n) for some
id, u, v and n. Here u can be a variable or an entity
name. Let expr type(e, r) = τ = id(τ1, . . . τn),
key(τ) = (i1, . . . , ik) and x be a new first order vari-
able. Using the key values of u and the relation pkeyτ ,
we retrieve the pointer to e by appropriately defining
B(e).

– F(p) = x;

– B(p) = B(e) ∧pkeyτ (u, x, v · i1, . . . , v · ik);

– E(p) = E(e) ∪ {x}.

For any field expression f ′, F(f ′),B(f ′) and E(f ′) are de-
fined as follows.

• f ′ = e.k: Here we have two cases. In the first case,
F(e) = Null; in this case e is not legal but e.k or
a sub-attribute of it is a variable in V ar(r); we define
F(f ′) = e.k, B(f ′) = true and E(f ′) = ∅. In the
second case, F(e) = id(u, v · 1, . . . , v · n) for some
u, v, n. We define F(f ′) to be v · k, B(f ′) = B(e)
and E(f ′) = E(e).

• f ′ = f · k: If f is not legal in r then F(f ′) =
f · k, B(f ′) = true and E(f ′) = ∅. Otherwise, let
expr type(f, r) = id(τ1, . . . τn). In this case, f is an
attribute of complex type. It’s sub-fields are stored in
the relation id. The attribute f is a key of this relation
and the sub-field f · k is retrieved from this relation.
This is achieved using B(f ′).

– F(f ′) = f · k;

– B(f ′) = B(f)∧g where g = id(f, f ·1, . . . , f ·
n)∨ (¬∃y1, . . . , yn id(f, y1, . . . , yn)∧

∧n
j=1(f ·

j = cNull)). Note that the first disjunct in g
retrieves the sub-fields from the relation id and
the second retrieves null values if no such tuple
exists in id;

– E(f ′) = E(f) ∪ {f · 1, . . . f · n}.

Now we define F(c),B(c) and E(c) for a condition c. In
this case all the bindings of various fields referenced in c are
merged with the main formula and all existential variables
are existentially quantified. We give only two cases. Other
cases are similar and are left out due to space consideration.

• c = IsNull(p): In this case,

– F(c) = ∃E(p)(B(p) ∧ (F(p) = cNull)).

• c = IsOf(e, τ): Let τ = id′(τ ′1, . . . τ
′
n). In this case,

F(e) = id(u, v · 1, . . . , v ·m) for some u, v, m.

– F(c) = ∃(E(e)∪ {v · j : m < j ≤ n})(B(e)∧
id′(u, v · 1, . . . , v · n)).

6 Implementation

Our implementation ROUNDTRIP takes as input the ob-
ject and the database schema expressed in the EDM lan-
guage [2], and the query and update views expressed in
the ESQL language [2] and produces the first-order logic
formulas. ROUNDTRIP generates the axioms for the pri-
mary key constraints and the other domain constraints as
described above, and then axioms for the queries. It then
runs FOL theorem prover, E-PROVER [21], on the generated
formula to verify correctness. Theorem provers such as E-
PROVER try to prove correctness of a FOL formula F(e)
by proving unsatisfiability of the formula ¬F(e). How-
ever, in most cases where the round-tripping condition is
not satisfied (the FOL formula is satisfiable), they time out.
If E-PROVER does not terminate within 120 seconds, then
ROUNDTRIP runs our custom model generator on the for-
mula ¬F(e).

Model Generation. Our custom model generator trans-
lates the first-order logic formula into a boolean satisfiabil-
ity problem instance, and use a off-the-shelf SAT solver for
searching for a correct model. The translation from FOL
to SAT is parameterized by: (1) a maximum bound on the
number of tuples in every relation k, and (2) the number of
constants in the domain c.

Existing approaches [14, 8, 17] encode a predicate P
of arity a into boolean variables of type Pv1,...,va

, each of
which indicate if the instance P (v1, . . . , va) is true. Since
each of the variables vi can take any of the values from
(1..c), there are ca variables. We have a new translation
wherein the predicate is translated into a set of k rows, each
of which contains a boolean variable Pi to indicate if that
row is valid, and a set of a variables each of size log2(c).
These a variables provide the valuation to the row when it
is valid. Thus, the number of variables is k∗(1+a∗log2(c)).

We first encode the FOL formula into a quantified
boolean formula (QBF) using the above scheme. The QBF
formula is now converted into a SAT instance. We use
Binary Decision Diagrams [5] to perform these quantifi-
cations, since the nesting of quantifiers is quite deep, and
directly eliminating quantifiers does not scale. We then
convert the BDD for the formula after quantifier elimina-
tion into a set of equivalent CNF clauses and feed it to the
SAT solver. Since we have bounded constants and rows in
the translation process, if the SAT solver provides a model,
then the model indeed is a model for the FOL formula and
we can display it to the user in a suitable format. In case,
the SAT solver says that the boolean formula is UNSAT, we
need to increase k and c and repeat the process.
Empirical results. We ran experiments on a set of test cases
from the ADO.NET Benchmark v3 suite obtained from a
product group at Microsoft. We ran these experiments on
a Pentium 4, 1800 Mhz processor with 2GB RAM. We ran
these experiments with a timeout of 120s for E-PROVER.
Our model generator bounded the number of rows as 2, and
the number of constants in the domain as 32. We use Min-
isat [11] for SAT solving.

Figure 4 shows our empirical results. The first 16 ex-
amples are correct examples (i.e. the roundtrip condition
is satisfied). The last 5 examples are incorrect examples.
We manually introduced bugs in these examples to test our
model generation.

The first column is the name of the test case. Columns 2
through 5 give some idea of the size of the example, includ-
ing the number of EDM types, and the average and maxi-
mum arities of the relations. “Trans time” is the time taken
by the ESQL-FOL translator, “TP time” is the time taken
by E-PROVER, “MG Rslt” is the result of our custom model
generator and “MG time” is the time taken by it. The model
generator is run only if E-PROVER is not able to finish in
120s. “Num clauses” and “Num literals” give some mea-

Problem #- Avg Max Trans TP Num Num MG MG
Name types Arity Arity Time Time clauses ltrls Rslt Time
Aruba437719 1 9 3.4 6 2.5 18.8
Aruba437719 2 9 3.7 6 2.5 1.8
Aruba437719 3 9 3.4 6 2.5 1.8
Assn1-1 0 17 5.0 11 19.2 0.3
Assn1-1 1 23 4.2 11 19.2 0.4
Assn1-1 2 17 5.1 11 19.2 0.5
dpmud-smpl 0 16 5.5 11 31.2 0.6
dpmud-smpl 1 22 4.2 11 31.2 0.4
FOJ1 0 11 2.9 6 4.3 timeout 682615 171262 UNSAT 26.3
Inheritance 0 6 5.7 7 1.5 48.3
Inheritance 1 6 5.8 7 1.5 2.4
InhVrtclPr 1 10 2.5 5 2.1 8.2
SelfAssn 0 17 2.6 6 5.6 0.2
SelfAssn 1 11 3.4 6 5.6 0.3
SmplMapTwo 0 10 4.3 7 1.9 9.1
Union1 2 11 5.0 8 3.6 timeout 1044966 262020 UNSAT 37.6
InhTPH2 0* 6 5.7 7 1.4 timeout 233485 58875 SAT 9.9
InhTPH2 1* 6 5.8 7 1.4 timeout 252723 63679 UNSAT 10.4
InhVrtclPr 0* 7 2.0 3 2.2 timeout 100922 25605 SAT 5.5
InhVrtclPr 1* 10 2.5 5 2.2 timeout 436059 109450 SAT 17.4
InvSmplMp 0* 5 2.4 3 1.2 timeout 27459 7188 SAT 3.8

Figure 4. Empirical results from the ROUNDTRIP tool

sure of the size of the generated SAT formula.
We find that E-PROVER is able to scale quite well for

most correct examples. In most examples E-PROVER takes
even less time than the ESQL-FOL translator. In 4 out of
6 case where E-PROVER times out our model generator is
able to find a model. In 2 cases, the model generator says
correct (UNSAT). We examined these cases, and found that
our manually introduced bugs did not affect the correctness
of these examples, as specified by the roundtrip condition.

7 Discussion

Formal methods have been successful in validating hard-
ware [6, 15], low-level software [4], and protocol software
[13, 12]. To the best of our knowledge, ours is the first such
effort to validate data access in databases.

The relationship between Relational Algebra or SQL and
first order logic is well known, and can be found in database
text books [22, 1]. As indicated in the introduction, there
have also been works [1, 24, 19, 23] on translating object
oriented models and query languages in to relation mod-
els and query languages, and also into relational calculus.
However, none of these handled the complexity of a prac-
tical query language such as ESQL (with OO extensions)
used in a real product supporting many features. The pointer

referencing and dereferencing, type casting, dynamic type
checking, attribute renaming, complex case splitting, can
all be nested within each other in ESQL in complex ways.
Queries can be arbitrarily nested and a variety of joins,
including outer joins, can be used. Most of the works
[1, 24, 19, 23] handle path expressions (i.e., complex types)
and some form of sub-typing. None of them handle pointer
referencing and dereferencing, dynamic type checking, etc.
Also many of these translations are informally given and no
correctness proofs are presented. There have also been ex-
tensions of traditional Relational Algebra to nested models
and object oriented models [1, 24, 19]. These extensions do
not allow constructs for pointer referencing, dereferencing
and dynamic type checking as ERA does.

Roundtrip verification is related to query equivalence in
relational algebra. By restricting relational algebra we can
obtain fragments for which query equivalence is decidable.
Examples of such fragments are conjunctive queries, and
queries where the project operator is not applied to subex-
pressions with the difference operator (i.e, no negation in-
side an existential quantification) [20]. Query equivalence
has also been studied for such restricted fragments with ex-
tensions such as Datalog [16] or aggregate queries [9]. All
of the above efforts have been theoretical investigations, and
have not resulted in practical tools, since the queries that ap-

pear in practice can fall outside these decidable fragments.
In contrast, we do not constrain the query language, and we
have been able to build a practically useful tool using theo-
rem proving.

We believe that our approach can also help with other
verification problems in databases such as (1) verifying cor-
rectness of query optimizers, and (2) verifying query equiv-
alence when queries need to be changed for the purpose of
SQL migration. We also believe that our approach to first
order logic model generation scales better than existing ap-
proaches, and plan to investigate it further.
Acknowledgment. We thank Atul Adya and Sergey Melnik
for advice, discussions, and help in supplying the examples
used for our empirical evaluation. We thank Sumit Gul-
wani for discussions in formulating the approach. We thank
Supratik Chakraborty for comments on a draft of this paper.

References

[1] Abiteboul, R. Hull, and V. Vianu. Foundations of Database
Systems. Addison-Wesley, 1997.

[2] A. Adya, J. Blakeley, S. Melnik, S. Muralidhar, and the
ADO.NET Team. Anatomy of the ADO.NET entity frame-
work. In SIGMOD, 2007.

[3] A. Adya, S. Melnik, and P. Bernstein. Compiling mappings
to bridge applications and databases. In SIGMOD, 2007.

[4] T. Ball and S. K. Rajamani. Automatically validating tempo-
ral safety properties of interfaces. In SPIN 01, LNCS 2057.
Springer-Verlag, 2001.

[5] R. E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEE Trans. Computers, 35(8):677–691,
1986.

[6] J. Burch, D. Dill, E. Clarke, K. McMillan, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. In LICS,
pages 428–439, 1990.

[7] M. J. Carey and D. J. DeWitt. Of objects and databases:
A decade of turmoil. In VLDB 96: Very Large Databases,
pages 3–14, 1996.

[8] K. Claessen and N. Sörensson. Paradox model finder –
http://www.cs.chalmers.se/ koen/paradox/.

[9] S. Cohen, Y. Sagiv, and W. Nutt. Equivalences among ag-
gregate queries with negation. ACM Trans. Comput. Log.,
6(2):328–360, 2005.

[10] W. Cook and A. Ibrahim. Integrating programming lan-
guages and databases: What is the problem? In
ODBMS.ORG, Expert Article, 2006.

[11] N. Eén and N. Sörensson. An extensible SAT-solver. In SAT
03: Satisfiability Testing, pages 502–518, 2003.

[12] P. Godefroid. Model checking for programming languages
using Verisoft. In POPL 97, pages 174–186, 1997.

[13] G. J. Holzmann and M. H. Smith. Automating software fea-
ture verification. Bell Labs Tech Journal, 5(2):72–87, - 2000.

[14] D. Jackson. Alloy: A new technology for software mod-
elling. In TACAS, 2002.

[15] M. Kaufmann, P. Manolios, and J. Moore. Computer-Aided
Reasoning: ACL2 Case Studies. Kluwer, 2000.

[16] A. Y. Levy, I. S. Mumick, Y. Sagiv, and O. Shmueli. Equiva-
lence, query-reachability, and satisfiability in datalog exten-
sions. In PODS, 1993.

[17] W. McCune. Mace4 reference manual and guide. CoRR,
cs.SC/0310055, 2003.

[18] K. Mehra, S. K. Rajamani, A. P. Sistla, and S. Jha. Verifica-
tion of Object Relational Maps. Technical Report MSR-TR-
2007-71, Microsoft Research, 2007.

[19] J. Paredaens and D. V. Gucht. Converting nested algebra
expressions to flat algebra expressions. ACM Transactions
on Database Systems, 17(1):65–93, 1992.

[20] Y. Sagiv and M. Yannakakis. Equivalences among relational
expressions with the union difference operators. J. ACM,
27(4):633–655, 1980.

[21] S. Schulz. E - a brainiac theorem prover. AI Commun., 15(2-
3):111–126, 2002.

[22] A. Silberschatz, H. Korth, and S. Sudarshan. Database Sys-
tems Concepts. McGraw-Hill Higher Education, 2001.

[23] L. Wong. Normal forms and conservative properties for
query languages over collection types. In PODS, pages 26–
36, 1993.

[24] C. T. Yu and N. Meng. Principles of Database Query Pro-
cessing for Advanced Applications. Morgan Caufman, 1997.

