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ABSTRACT
Mobile phones have two sensors: a camera and a microphone. Our
goal in this position paper it to explore the use of these sensors for
building an audio-visual sensor network that exploits the deployed
base of millions of mobile phones worldwide. Among the several
salient features of such a sensor network, we focus on mobility.
Mobility is advantageous since it yields significant advantage in
spatial coverage. However, due to the uncontrolled nature of de-
vice motion, it is difficult to sample a required region with a given
device. We propose a data centric abstraction to deal with this diffi-
culty. Rather than treating the physical devices as our sensor nodes,
we introduce a layer of static virtual sensor nodes corresponding to
the sampled data locations. The virtual nodes corresponding to the
required region to be sensed can be queried directly to obtain data
samples for that region. We discuss how the locations of the vir-
tual sensor nodes can be enhanced, and sometimes derived, using
the visual data content itself. Experiments with real data are pre-
sented to expose some of the practical considerations for our design
approach.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer Communi-
cation Networks—Distributed Systems

General Terms
Algorithms, Design, Management

Keywords
mobile sensing, network organization, coverage, spatial resolution

1. INTRODUCTION
Mobile phones can be used as sensor nodes [1]. They all have

a microphone, and most have a camera. Not only can the audio-
visual data be processed to derive other interesting sensing modal-
ities, but also additional sensors can be connected to a phone [18]
using Bluetooth. Mobile phones are connected to a network in-
frastructure and have some form of data connectivity, ranging from
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short message service (SMS) capability to broadband wireless con-
nectivity (eg. GPRS, 3G). The challenges in power management
that affect many unattended sensor network deployments become
relatively benign here, since a phone can be easily recharged in its
user’s car, office, or home. These features make it feasible to use
a phone as a sensor and thus we propose to build a sensor network
using multiple individual owned cellular phones as its sensing sub-
strate.

1.1 Sensing Advantages
Using mobile phones has several advantages for sensor network-

ing applications. Firstly, a large number of cell-phones already ex-
ists around the world, providing the physical sensing infrastructure.
Deploying the sensing hardware and providing it with network and
power requires significant effort in other sensor networking sys-
tems.

Secondly, such a system can take advantage of the community
effect. Many useful systems have been built where several contrib-
utors each develop and share a small component of a much larger
system, such as Wikipedia, Linux, and other Web 2.0 applications.
Such an approach, sometimes referred to as peer production [2],
can leverage small amounts of sensor data contributed by mobile
phone users to enable useful sensing applications. For example, a
single mobile phone owner taking pictures of broken sidewalks on
her fitness running route in an urban neighborhood may generate
a dataset with very limited utility but if several such runners share
their data, the utility grows significantly and the dataset may sud-
denly become useful for more activities such as damage mapping
for city repair planning, new running route planning in runners’
e-groups, or urban lifestyle modeling for sports goods related busi-
ness dashboards.

Thirdly, mobile phones can provide coverage where static sen-
sors are hard to deploy and maintain. No single entity may have
the access rights to place sensors across the complete coverage do-
main required by an application, such as a combination of subway
stations, public parks, and shopping malls. The number of static
sensors required to cover the same spatial expanse as covered by a
single mobile device1 may be prohibitively expensive to deploy.

Further, each mobile device is associated with a human user,
whose assistance can sometimes be used to enhance application
functionality, such as by pointing the cellphone camera at the ob-
ject of interest. Human assistance may be very limited, and may
depend on application, but can often help overcome certain hurdles
that are hard to overcome otherwise.

While the advantages of a shared system include the vast cov-

1There is a trade-off between spatial and temporal coverage when
motion is used. Clearly, mobile phones may not cater to applica-
tions where continuous coverage in time is critical.



erage expanse that a single dedicated system may never be able to
match, the sharing of physical resources among multiple applica-
tions, has certain limitations compared to dedicated and application
specific sensor networks. These trade-offs include difficulty in pro-
viding performance guarantees, limitations in control of the sensor
nodes, more complex privacy and data ownership management, and
ensuring protection from malicious users. Such issues affect many
open and shared system, and community feedback techniques such
as used in Wikipedia and Web 2.0 applications, may help reduce
their severity. Our objective is to develop a system that provides
best effort service and allows multiple sensing applications to lever-
age shared resources to the extent available.

1.2 Usage Scenarios
There are many examples of applications that are feasible using

sensor networks of shared mobile phones. In many cases, there is
an inherent incentive for the user to take samples and share them
within a larger user group, such as in the previous example of a run-
ner mapping broken sidewalks for her health enthusiasts e-group,
for car drivers in vulnerable river valleys to report flooded roads, for
hikers to click pictures of trail blockages after a rainstorm, for shop-
pers to share window displays from shopping malls, home owners
to map noise levels in their community, commuters to map pollu-
tion levels across their city, and so on. In other instances, incen-
tives can be provided by the users who need the sensor data. For
instance, a surfer who lives some distance from the beach, may
place a request for current images showing wave conditions at the
beach in a region of his interest (such as, by using a map based in-
terface) and offer a small monetary compensation in return. Phone
users currently at the beach who happen to be members of a surf-
ing group, or who have subscribed for data requests with monetary
compensation, receive this request as an SMS, and may respond
with pictures using very little effort. They may accumulate the
small compensations from such contributions to pay part of their
phone bill. Similar techniques may be used by news networks to
get instant news coverage even before their correspondent reaches
the scene, businesses to map customer interest at malls, and other
applications that can use the audio-visual feeds to compute metrics
of interest.

Many of these applications are based on sensor data that users
may share without significant privacy concerns. However, where
privacy or data ownership is a concern, the data may be shared
within restricted groups only and while the trusted coordination
system may archive and index all data, applications may be only
able to access restricted portions of it. Such an approach has been
used in existing image sharing systems such as the Flickr web ser-
vice [5] that archives all images but allows applications to access
only the data for which they are authorized. Some of the techniques
we discuss in this paper for location based abstraction, do not use
the raw image data but some features derived from it. For highly
sensitive data, the contributors could locally compute the relevant
features (which do not reveal the human understandable visual con-
tent) and share those. The coordination system could use the fea-
tures to build the proposed abstraction and data indices. When an
application accesses the actual data, the data is served by the data
owner, according to their desired control and access policies.

The emerging shift in the Internet to user generated content such
as blogs or moblogs, shared images, and amateur produced videos
also indicates a trend toward the possibility of shared sensing using
mobile devices.

1.3 Key Contributions
Our overall project goals are to provide coordination and net-

working mechanisms that allow multiple sensing applications to
access third party shared resources in an efficient manner. Specif-
ically, the first form of shared resources considered are mobile
phones, due to their widespread availability. Building such a sen-
sor network using uncoordinated mobile phones, where each phone
is serving a different individual, the system as a whole is serving
multiple sensing applications, and the phones move without any
application’s control, involves many challenging issues. We dis-
cuss some of these challenges and present one approach to realiz-
ing a coherent shared sensor network based on this volatile swarm
of mobile devices, in section 2.

Presenting the data collected by this highly volatile swarm in a
usable manner to the sensor network applications makes it critical
to obtain location information. Mobility helps increase the spatial
coverage significantly, possibly by orders of magnitude, but with-
out location, the samples taken by a mobile device cannot be as-
sociated with the corresponding spatial coverage. We discuss how
location can be obtained at mobile devices using current technol-
ogy. We also discuss how the audio-visual nature of the sensed data
can be exploited to enhance location accuracy in section 3.

2. SYSTEM DESIGN

2.1 Assumptions and Requirements
We consider a sensor network of mobile phones which is built as

a shared system. Each phone serves its local user’s needs first, such
as making and receiving voice calls. The user continues to use any
software, such as calenders or games, installed on their phone as
they need. The sensor networking application only uses the phones
as its sensors when available. Thus, the system can only work in
best effort mode without any expectation of hard guarantees.

Our system does not control or even know the motion plan of
the devices. Sensing requirements must be dynamically mapped to
relevant devices in the underlying swarm of sensor devices.

Unlike dedicated and application specific sensor networks where
most devices are homogeneous with known configurations, in the
shared mobile phone sensor network, devices may be highly het-
erogeneous, not only in their hardware resources and bandwidth
availability but also in terms of human user’s willingness to share.
We require the sensor networking application to be able to accept
the privacy and sharing policies set by the local user of each device.
Thus, different mobile phones may participate in the shared sensor
network to varying degrees, based on their privacy sensitivity, will-
ingness to share battery energy and bandwidth, device performance
and capabilities, local workload, and willingness to provide human
assistance for various applications.

2.2 System Architecture
In most current sensor network deployments, sensor nodes are

accessed directly using their node ID’s or network addresses. While
each phone has a unique network address (a phone number, among
other unique identifiers) and can be accessed using that identity,
this approach leads to difficulties in managing the spatial coverage
due to node mobility. Also, this approach requires the application
to know the network identities of the mobile phones in advance,
which is a significant overhead for the application due to the large
number of phones in the shared system.

We propose to use a data based abstraction that does not rely on
the node identities of the physical devices. A layer of virtual sensor
nodes is superimposed on the physical sensor network. A virtual
sensor node at any point in space is based on data samples taken
at that point. It is thus static. The stream of data coming from a
virtual sensor node corresponds to data samples taken by a single or



multiple physical nodes when they visited that location. The stream
may be sparse in time if that location is visited infrequently. Figure
1 illustrates this abstraction. The figure shows three key entities in
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Figure 1: A block diagram of the shared sensor system.

the system. The first is the set of physicalmobile devicesthat sense
the world. The second is thevirtual sensor layer. This exists only
in the network infrastructure. The third are theapplicationsthat
wish to use the sensor network of mobile phones.

All applications access the virtual sensor layer to obtain sensor
data or to program sensing tasks. The physical nodes connect to
the network infrastructure as convenient to upload data and may
optionally download sensing commands submitted by applications.
They may upload data in response to the sensing commands or sim-
ply based on what the device user wishes to share. The network
infrastructure must populate the virtual nodes and the data streams
of the virtual nodes based on the uploaded data. In our current pro-
totype, the network infrastructure is a server hosting a web-service
that allows the physical nodes to upload their sensed data (images,
video, audio). The virtual nodes are all hosted by this server in
the prototype using a database with data samples indexed by lo-
cation. The location attribute serves as the virtual node address.
While our prototype uses a single machine, in a production system,
the virtual node hosting workload may be distributed among multi-
ple servers, such as hierarchically organized by geographic regions,
sensor modality or other criteria.

The virtual sensor layer can solve several problems in the shared
mobile phone sensor network design. First, the addresses of the
virtual nodes are naturally location based and the applications do
not have to discover or manage the identities of the physical sensor
nodes. The application may not care which specific phone cap-
tured an image as long as the required image is available to it. Of
course, the physical device’s identity may be stored as an attribute
associated with the data for applications that need it, when the de-
vice owner allows sharing their identity. Secondly, this removes
the complications due to mobility, since the application no longer
tracks the motion trajectories of physical mobile devices to deter-
mine which nodes to contact for its sensing needs. Thirdly, the
physical device may not always be connected to the network, or
may not wished to be contacted. For instance, the device may only
upload its data at a convenient time, such as when it has spare band-
width available. The virtual sensor layer makes this disconnected
operation transparent to the applications as they always access the
virtual nodes, which are available as long as the network infrastruc-
ture is available.

There are many other aspects of the system that present chal-

lenging and interesting design problems. A mechanism must be
provided for the mobile phones to efficiently provide the collected
sample data to the virtual sensor layer. The use of resources in com-
munication and storage of data can be optimized by computing the
value or relevance of the data for an application. The privacy of the
mobile phone users and the sensed individuals should be respected
and the data sharing methods must allow for the privacy sensitiv-
ity to vary across individuals and with the user’s spatio-temporal
context. Since, the system is shared, methods are also needed to
ensure the integrity of the data provided by unknown contributors.
Another issue is the variability in the quality of data introduced
by sensing with different phones passing through the same area.
The data may need to be carefully calibrated with respect to each
other and changes in data quality within the data stream of a single
virtual node must be made known to the applications. A further
challenge is to allow efficient programming mechanisms for multi-
ple applications run concurrently. Mechanisms are also needed to
allow applications to seek human assistance in their data collection
processes. In our prototype, a data publishing client has been devel-
oped for mobile phones that uses the server’s web service to upload
its sensed audio-visual data. The client can be configured to collect
data automatically or only when the human user explicitly triggers
a data sample capture, such as taking a picture. Mechanisms to pro-
gram the data collection activity in response to application needs is
part of our ongoing work. A prototype of our system that addresses
some of these challenges appears in [9]. There are many other pos-
sible ways to architect the shared mobile phone sensor network and
many design variations even within the above architecture, that are
not discussed here. The focus of the remainder of this paper is on
obtaining location information for making the volatile sensor layer
easy to access for applications.

3. LOCATION
To realize the virtual sensor layer proposed above, a key re-

quirement is that the data samples collected by a phone be location
stamped. There are many methods to obtain location on a mobile
phone:

1. Cell-tower triangulation: The cell-phone network typically
knows the location of a phone using signal strength measure-
ments at a phone from one or more cellular base stations.
This location is accurate to several meters when the phone
is in a region with three or more base stations in range. The
location accuracy falls to the granularity of a mile or more
when only one base station is in range, such as in rural areas.
This location information can be accessed using commercial
products such as the Mappoint Location Server [11] when the
phone is connected to a cellular network that does make this
information visible to non-operator owned applications, such
as Sprint in the US, TeliaSonera in Europe, or Bell Mobility
in Canada.

2. Phone GPS:Many recently released and forthcoming mo-
bile phones have built in GPS receivers and these phones can
know their location using the GPS system. The location in-
formation is accurate to several meters when the phone has
good GPS satellite visibility, such as under open sky. The
location is typically not available when indoors.

3. Wireless LAN triangulation: Many mobile phones, espe-
cially newer models, have built in wireless LAN capability.
Location can be obtained using WLAN signal strength based
triangulation when multiple access points with known loca-
tion are in range achieving accuracy of under a meter, or sim-



ply by the location of the access point when only one is in
range, achieving an accuracy of several meters. When the
location of the access point itself is not known, the location
may be estimated from the external IP address for the access
point. These techniques are accessible on WLAN connected
devices through already available services such as the “Lo-
cate Me” feature on Local.Live.com.

4. Human entered tags: The phone user may key in tags for
all or some of the images taken by her. Some of these tags
may include address or landmark information that helps infer
the location.

3.1 Content Match and Location
A combination of the above techniques may be applied in prac-

tice to location-stamp the samples collected by a phone. However,
all these methods have limitations in terms of accuracy and avail-
ability. One method to help overcome some of these limitations
is to exploit the visual data content itself to enhance the location
accuracy for sample points and also to obtain location in scenarios
where the above methods are unavailable. The underlying assump-
tion in exploiting the visual data is that two or more images taken
at the same location are likely to have some common visual com-
ponent. This enables the following location enhancing alternatives.
For images that have no or highly inaccurate location, such as from
human entered landmark tags or from the registered home address
for a mobile device, matching the content of the image against
other images with known locations can help assign a more accu-
rate location stamp to the image. In situations where the location
data is somewhat inaccurate, such as indoor locations when GPS is
used, or rural locations when cell-tower triangulation is used, con-
tent based matching can help place related images together. For
instance, for all images taken within a building, such techniques
may help differentiate among images taken in different rooms. We
explore the use of visual data content for location enhancement in
the latter scenario in more detail.

Note that while content matching helps assign location to visual
data alone, correlating the location with the time-stamp of the im-
age also tells us the location of the mobile device at the time the
image was taken. Thus, all other data samples from the same de-
vice, such as audio data or samples from other sensors connected
to the phone, taken with nearby time-stamps, can be assigned a
location-stamp as well.

Suppose a large number of images is contributed by several mo-
bile phones participating in the shared sensor network. Suppose
next that these images have been separated into multiple virtual
nodes based on the location stamps, where images with location
stamps within a small threshold distanceδ of each other are as-
signed the same virtual node.

Consider a virtual node corresponding to several images taken
within a building. Suppose that mobile phones that used GPS lo-
cation assigned the last known GPS location, obtained just before
GPS satellite visibility was lost - the location of the building en-
trance. Then, all these images corresponding to different floors and
rooms within the building would be assigned to the data stream of
this single virtual node. Also included in the same stream would
be images that had location stamps withinδ of this virtual node’s
location but in fact correspond to other locations, such as an im-
age taken a mile or more away but assigned the same location due
to cell-tower localization error. Our goal is to show that content
matching can be a useful technique to cluster together images that
belong to the same location (such as a room) within the building
and separate out images assigned to this virtual node in error.

3.2 Algorithms
We use the term zones to refer to the finer granularity regions

within a common geographic vicinity. For instance, different shops
in a mall, or different aisles in a store, may be termed as different
zones. The problem of refining location based on content for a set
of images assigned the same locations by the applicable location
technology may be broken up into three parts.

First, for each new image that is assigned to this geographic
vicinity, we need to determine which zone within that vicinity it
belongs to. If the zones are known, then, a suitable matching tech-
nique is needed to select the most closely matching zone for the
image, and to reject false matches. Each zone may contain mul-
tiple existing images, and the new image may yield matches with
multiple images in different zones.

Second, the zones themselves may not be known a priori, and
may be required to be determined from the image data itself. This is
a hard problem since neither the number of zones, nor a distribution
of images among those zones may be known.

Third, the zones may have to be associated with geographic lo-
cation. Matching the images by content and separating them into
matching zones does not itself yield information about which zone
is located in which physical area of the geographic vicinity.

There are several possible methods to compare the content of im-
age data, such as color histograms, texture matching, and key fea-
ture matching. However, none of the content matching techniques
is perfect and yield a non-negligible number of false matches. The
false match problem is acute in our problem setting since all images
being compared do belong to the same geographic vicinity. For in-
stance, images taken in different rooms of a building are likely to
contain some similar content. We select key feature matching [10]
due to its robustness to lighting changes, image size variation, and
imaging device changes. Key features correspond to selected ob-
jects in a scene such as corners or peculiar textures that are expected
to be preserved across images taken from different points of view
and in different lighting. Key features in two images that corre-
spond to the same physical object are likely to match. Fig 2 shows
two images with matching key features. It may be seen that while
some matches correspond to the same physical objects, there are
false matches also.

Figure 2: Key featres for content matching.

We focus on the problem of zone discovery. Several methods are
already available to match a given image against multiple images
but the problem of automatically discovering the zones themselves
is sparsely addressed.



We use the following procedures to exploit key feature based
content matching for location assignment. Supposeni represents
the number of key features in an imagei andnij represents the
number of matching key features across two imagesi andj. We
define a matching metricm(i, j) between two images based on
their key features as:

m(i, j) =
nij

ni + nj
if i 6= j (1)

andm(i, i) = 0,∀i.
Zone Discovery Algorithm:SupposeN images have been as-

signed to a geographic vicinity and we wish to separate these into
K zones whereK is unknown.

Consider a graphG with N vertices each corresponding to an
image and weighted edges between them, where the weight of the
edge between verticesvi andvj is mij . Define a binary relationR,
that relates each node to its neighbor connected with the maximum
weighted edge:

R(vi, vj) =

�
vj | max

j∈{1,...,N}
mij

�
(2)

subject tomij being higher than a threshold,m0. We cluster to-
gether images that belong to the same zone by computing the tran-
sitive closure,R∗ of this relationship for all vertices. The algo-
rithm starts computing a path from a vertexvi to its neighbor with
the maximum weighted connecting edge, until, another node in the
same path or in a previously assigned sub-graph (path generated
from a previously processed node) is reached. This separatesG
into multiple sub-graphs,g(k), each corresponding to a zone. This
is a conservative procedure in the sense that images assigned the
same zone are likely to belong to the same physical zone, but mul-
tiple zones may have been generated for a single physical zone,
such as when there is insufficient overlap among images from two
different corners of a room. Other possibilities such as based on
unsupervised learning, using small training sets, or whenK can be
determined using alternate means are also of interest, and are part
of our ongoing work.

As sensors feed in more data samples, each new image must be
assigned to one of the previously determined zones. While it is pos-
sible to re-compute the zones each time a new image is obtained,
that has a high computational overhead. Instead, the new image
may be assigned to one of the existing zones based on its content
match. Prior work has considered this problem [17, 7] when an im-
age data-set with known locations is available or constructed from a
dense corpus of overlapping images, and test images are compared
against this set to determine the location of the test image. Further
scalability concerns have been addressed in [12, 15] for matching
against large number of images. These techniques are applicable
to our problem scenario. However, the problem is simplified in our
scenario since rather than comparing a test image against the en-
tire corpus of previously known images, we only need to compare
it within a small number of zones of a geographic vicinity and the
number of images representing each zone is likely to be small.

As an illustration, consider using key feature based content match.
Suppose a small number of imagesnk has been assigned to a zone
k, wherek = {1, ..., K}. We use the following metric to match a
new imagei against multiple images in zonek:

Mk(i) =
1

nk

nkX
j=1

m(k, j) (3)

wherem(k, j) is the normalized key feature based match score as
defined in (1). The zone assigned to the image is simply thek that
yields maximumMk(i).

The zone assignment process can also be iteratively used to re-
fine the zones determined previously, such as when many images
with two or more competing zone matches are found, it may lead
to merging the separate competing zones into a single zone. It is
worth noting that the binary relation defined in (2) may be asym-
metric and this can indeed lead to such merging depending on the
order in which the images arrive.

Each zone also needs to be associated with a physical location.
This could be achieved based on some of the images for which fine
grained location is known, such as through human supervision, op-
portunistic GPS signal received near windows, or when the number
of images is sufficiently large, using geometric 3D reconstruction
from the images themselves.

4. EXPERIMENTS
In this section we illustrate some the algorithms proposed above

on real image data. We collected 150 images within a building, with
a majority corresponding to two distinct zones: a conference room
and a kitchen lounge, and the rest arbitrarily distributed across
building corridors and an individual office on the same floor. All
these images represent image samples contributed by mobile de-
vices that use GPS location and as the GPS signal is unavailable
indoors, all these images are assigned the same GPS location - that
of the building entrance. Our goal is to explore content match-
ing methods to separate these images into distinct zones within the
building.

We first computed the key features and the inter-image match
as defined in (1) for all image pairs. Then, we applied algorithm
1 to separate the images into distinct zones. Also, to enable us
to measure the algorithm’s error, we manually recorded the true
zone for each image. The error is defined as follows: for each
assigned zone, we check whether all the images belong to the same
true physical zone. The true physical zone of an assigned zone is
taken to to be the physical zone corresponding to the majority of
the images for that assigned zone. Images which do not belong to
the corresponding physical zone are counted as erroneous images
and dividing this count by the total number of images assigned to
the zone yields a normalized error for each assigned zone.
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Figure 3: Distribution of zone errors.

We obtained an aggregate error of 12.52% averaged over all
zones. However, the error has a high variation, with some zones
showing zero error and others showing a very high error. A his-
togram of the error across 16 zones is shown in Figure 3. It may
be seen that while most zones have a very low error, there are
some zones with very high error. Manually examining the data



corresponding to those zones revealed that these are zones which
correspond to physical zones with small number of images. This
is understandable as key feature matching is likely to yield fewer
true matches in these cases making it more likely for the maximum
weight neighbor to be a false match.

Another parameter determined by the algorithm is the number of
zones. As mentioned, the algorithm is conservative in combining
images into the same zone, causing it to overestimate the number
of zones. Multiple zones are generated for the same physical zone
when there is insufficient overlap among images. In our dataset, we
obtained 16 zones, as opposed to five true zones.

The second aspect illustrated experimentally is the assignment
of zones to images when the zones themselves are known. In our
data-set, the first 100 images correspond to the two zones with ma-
jority of the images. We used 45 of these as a base set which has
been divided into their true zones. The remaining images were as-
signed to the two zones using the metric in (3). Comparing the
results with the ground truth, yields 20.01% error, where an error
implies that the image was assigned to the wrong zone. More con-
servative zone assignment methods may be used to reduce the error,
at the possible expense of leaving some images unassigned. As the
number of images grows, the error will decrease since more over-
lap and matching regions will exist among images. The results also
indicate the limitations of the specific key features used in this im-
plementation for computing image matches, and suggest the need
for exploring other content matching techniques to realize our data
centric abstraction.

5. RELATED WORK
Several projects have considered the use of mobile devices for

building sensor networks. Specifically, the use of mobile phones
has been proposed in [16, 13]. Large scale sensor networks using
mobile devices dedicated to sensing, and carried by people or ve-
hicles, have also been proposed [1, 8, 4, 3, 14]. Our techniques
of using location based virtual sensor nodes rather than application
level tracking of the highly mobile physical devices is relevant to
all these projects. The use of visual data content for location en-
hancement is applicable as well, when the mobile sensors have a
camera as part of their sensor suites.

The use of similarity among multiple data samples, specifically
text documents and images, has also been considered in [6] for data
collected by a single individual. Our goal is to leverage data sim-
ilarities in sensor data from multiple individuals to provide a lo-
cation based abstraction. Sharing of sensor data is already avail-
able atearthcam.com for sharing network camera feeds, on
weatherunderground.com for posting weather sensor data,
andsensorbase.org for some other sensors. These applica-
tions demonstrate the viability of sharing sensor data and also mo-
tivate the need for methods that facilitate sharing, such as the ones
presented in this paper.

6. CONCLUSIONS
We proposed to use the large number of mobile devices present

in our environment as a sensor network. Among many interesting
challenges in realizing this vision, we focused on using location
information to make this highly volatile and mobile swarm of sen-
sor devices usable by sensor networking application without having
to track the device motion trajectories. In addition to using many
of the available location technologies, we showed that for audio-
visual sensor data, the data content itself can be exploited to re-
fine location granularity. Even when the physical location cannot
be determined, clustering together images which correspond to the

same zone within a larger geographic vicinity can be advantageous
for application interested in sensing a specific zone. While the con-
tent based techniques are directly applicable to visual data, correlat-
ing the time-stamps and device identities across samples can allow
the network infrastructure to organize samples from other sensing
modalities into location based virtual nodes as well. We have pre-
sented some of our very initial experience in organizing a mobile
device based sensor network. This domain presents several inter-
esting research problems, and the audio-visual nature of the sensed
data can be exploited in solving some of them. Future work in-
cludes exploring sophisticated content matching, such as based on
combination of multiple image features, the use of motion trajecto-
ries learned from motion patterns, and correlation of other sensor
data in inferring user location.
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