Concilium: Collaborative Diagnosis of Broken Overlay Routes

James W. Mickens and Brian D. Noble
EECS Department, University of Michigan
Ann Arbor, MI, 48109
jmickens,bnoble @umich.edu

Abstract

In a peer-to-peer overlay network, hosts cooperate to for-
ward messages. When a message does not reach its final
destination, there are two possible explanations. An inter-
mediate overlay host may have dropped the message due to
misconfiguration or malice. Alternatively, a bad link in the
underlying IP network may have prevented an earnest, prop-
erly configured host from forwarding the data. In this paper,
we describe how overlay peers can distinguish between the
two situations and ascribe blame appropriately. We gener-
ate probabilistic notions of blame using distributed network
tomography, fuzzy logic, and secure routing primitives. By
comparing application-level drop rates with network char-
acteristics inferred from tomography, we can estimate the
likelihood that message loss is due to a misbehaving overlay
host or a poor link in the underlying IP network. Since faulty
nodes can submit inaccurate tomographic data to the collec-
tive, we also discuss mechanisms for detecting such misbe-
havior.

1 Introduction

Peer-to-peer systems scale because they distribute respon-
sibility across many nodes. For example, in cooperative over-
lay networks, hosts can route messages to each other in a
small number of hops using local forwarding state whose size
is logarithmic in the total number of peers [17, 19]. When all
peers behave properly, such designs lead to elegant, scalable
systems. But what happens when some hosts misbehave?
Real-life experience with large distributed services suggests
that faulty local configurations inevitably arise [16]. Some
nodes may also try to actively subvert the system. Thus,
dependable peer-to-peer frameworks must expect that ma-
chines will occasionally drop messages, delete data, or oth-
erwise misbehave.

Consider an overlay-level route that starts at host A, goes
through B, and terminates at C. If C' does not receive a
message from A, did B shirk its forwarding responsibilities,
or were there faulty IP-level links that prevented B from
receiving the message or sending it to C'? In this paper,

we show how to ascribe blame in such situations, providing
mechanisms for identifying fault points in end-to-end over-
lay routes. Once the system has detected a misbehaving over-
lay forwarder or a bad link in the core IP network, it can route
around the problem. It can also notify the owner of the mal-
functioning component, who may not be aware of the local
fault. Both actions can improve the overall reliability of the
distributed service.

Our new diagnostic system, named Concilium, generates
probabilistic notions of blame using distributed network to-
mography [1, 10], fuzzy logic [5], and secure overlay rout-
ing [7]. By comparing application-level drop rates with net-
work characteristics inferred from tomography, Concilium
generates the likelihood that message loss is due to a misbe-
having overlay host or a poor path in the underlying IP net-
work. Unlike Fatih [15] or packet obituary systems [2], Con-
cilium does not require modification to core Internet routers.
In contrast to RON [1], Concilium detects hosts which con-
tribute faulty tomographic data to their peers.

2 Secure Overlays

Structured peer-to-peer overlays provide a decentralized,
self-managing routing infrastructure atop preexisting IP net-
works. Each host is associated with an overlay identifier.
When a host must forward a message, it consults locally
maintained routing state to determine the next hop. In over-
lays like Pastry [17] and Chord [19], the local routing state
consists of two logical components. The leaf table points to
the peers with the numerically closest identifiers to the local
host’s identifier. The jump table points to peers whose iden-
tifiers differ from the local one by increasing, exponentially
spaced distances. Messages are typically forwarded using
jump tables until the last hop.

Castro et al introduced secure overlay routing [7] to pre-
vent malicious nodes from subverting the forwarding pro-
cess. In a secure routing framework, messages are delivered
with very high probability if the fraction of non-faulty hosts
is at least 75%. Concilium uses several features of secure
routing to protect its distributed tomographic protocol. We
briefly describe these features before discussing Concilium
in more depth.

Before a host can join a secure overlay, it must acquire
a certificate from a central authority. The certificate binds
the host’s IP address to a public key and an overlay iden-
tifier. Since identifiers are static and randomly assigned,
adversaries cannot deliberately move their hosts to advan-
tageous regions of the identifier space. Hosts also enforce
strict constraints on the peers which can occupy each jump
table slot. For example, in standard Pastry [17], a peer in row
1 and column j of a routing table must share an i-character
identifier prefix with the local host and have j as its ¢ + 1
character; there are no constraints on the remaining charac-
ters. In secure Pastry, the peer must be the online host whose
identifier is closest to point p, where p is the local host identi-
fier with the ¢-th character substituted with j. These stronger
peering constraints, in concert with random identifier distri-
bution, limit the fraction of malicious peers in local routing
state to the fraction of malicious nodes in the total overlay.

Using a density test, a host can probabilistically detect
when peers misreport their leaf sets. By comparing the av-
erage inter-identifier spacing in its own leaf set to that of a
peer’s leaf set, a host can identify advertised leaf sets that are
too sparse. In the absence of such checks, an adversary could
suppress knowledge of peers that it does not control, forcing
routing traffic or data fetches to go through corrupt peers.

For performance reasons, peers maintain both secure rout-
ing tables and “standard” routing tables. Standard tables can
use techniques like proximity affinity [8] to minimize rout-
ing latency or maintenance bandwidth; secure routing is only
used when standard routing fails. Messages requiring Con-
cilium’s fault attribution must always be forwarded using se-
cure routing. Other messages can be forwarded using either
mechanism.

3 The Concilium Diagnostic Protocol

Concilium diagnoses faulty overlay routes using a multi-
step process. First, hosts exchange their routing tables so that
they can determine the first few hops that a locally forwarded
message will take. Second, hosts test IP-level network condi-
tions using locally-initiated network probes. By exchanging
the results of these tests, individual peers synthesize a global
picture of link quality throughout the Internet. By combin-
ing routing data with the collaborative map of network con-
ditions, nodes can identify broken IP links and misbehaving
overlay forwarders; the latter are defined as end-hosts which
drop messages when the IP-level paths to their routing peers
are good.

When a host is deemed faulty, Concilium issues a fault
accusation against that host. Each accusation is provisional,
since the accused host may be able to prove its innocence by
showing that messages were actually being dropped further
down the route. If the accused host can generate a verifiable
fault rebuttal, Concilium will revise its original accusation.
Otherwise, hosts may refuse to peer with the accused node
or treat its behavior with extra suspicion.

In this section, we describe the Concilium protocol in the
context of a particular implementation strategy. We then dis-
cuss alternative implementations.

3.1 Validating Routing State

To troubleshoot end-to-end overlay routes, Concilium
must validate the routing state that peers self-report. Con-
cilium validates leaf sets using Castro’s test and introduces a
new test to verify jump tables. Like Castro’s leaf test, Concil-
ium’s jump table test is a density check. However, instead of
examining the average inter-identifier spacing in a jump ta-
ble, it checks how many slots are occupied. Jump tables with
low occupancy are considered suspicious. For the sake of
concreteness, we describe the test in the context of a secure
Pastry overlay, but the test can be extended to other overlays
in a straightforward manner.

In secure Pastry, overlay identifiers are ¢ characters long
and each character can assume one of v different values. £ is
typically 32 or 40, and v is usually 16. Each node maintains a
jump table with ¢ rows and v columns. The identifier in row ¢
and column j shares an ¢ character prefix with the local host’s
identifier and has an 4 + 1-th character of j. Assuming that
identifiers are randomly distributed throughout the identifier
space, the probability that a node does not have a particular
prefix of length £p,¢ i is 1 — (1/v)%resi=. The probability
that an entry in row 7 of a routing table is filled is equal to
one minus the probability that no identifier exists with the
appropriate prefix. Thus,

N—-1

1\t
Pr(entry filledinrowi) = 1— [1 - ()] e

v

where N is the total number of nodes in the overlay. Nodes
can estimate N by inspecting the inter-identifier spacing in
their leaf sets [13].

Let p; ; denote the probability that an entry in row ¢ and
column j is filled, as given by Equation 1. Each p; ; is an in-
dependent Bernoulli random variable, so the occupancy dis-
tribution for the entire table is governed by a Poisson bino-
mial distribution. The mean and variance are

1 14 v 1 0 v
/«LZ%ZZPM‘ UQZ%ZZ(pi,j_N)2'

i=1 j=1 i=1 j=1

Computing exact values for the Poisson binomial distribution
is intractable for non-trivial numbers of Bernoulli variables.
Thus, it is difficult to directly calculate the likelihood that a
table contains a particular number of occupied slots. Fortu-
nately, since o2 is high, we can use a normal approximation
with little loss in accuracy [12]. In this approximation, the
mean p4 and the variance Ui are

to = Lo Ui = lop(l — p) — oo,

The cumulative distribution function for table occupancy is
&(1tg, 0g) where ¢() is the cdf for the normal distribution.
To test whether an advertised jump table is too sparse, a
host compares its local jump table density dj,cq; to the ad-
vertised dpeer. If Ydpeer < diocqr for some small v > 1,
the peer’s jump table is deemed invalid. In Section 4.1, we
use ¢(ue, 04) to select y based on the resulting likelihood of
false positives and false negatives.

The occupancy test prevents malicious hosts from adver-
tising jump tables that are too sparse. We also wish to pre-
vent hosts from advertising tables that are too dense. Since
identifiers are centrally issued, a misbehaving host cannot
fabricate an identifier for an arbitrary jump table slot. How-
ever, a host can collect identifiers from peers that have gone
offline and use these identifiers to inflate its advertised ta-
ble density [7]. To protect against inflation attacks, Concil-
ium requires a jump table entry referencing peer H to con-
tain a signed timestamp from H. Whenever host G probes
H for availability, H piggybacks a signed timestamp upon
the probe response. Later, when G advertises its jump table,
it includes the signed timestamps for each non-empty entry.
Peers will reject the table if it has stale timestamps.

3.2 Collecting Tomographic Data

Each host H is connected to its routing peers by a set
of links in the underlying IP network. These links induce a
communication tree Ty whose root is H and whose leaves
are H’s routing peers. We define the forest F'y as the union
of the tree rooted at A and the trees rooted at each of H’s
routing peers. Concilium’s goal is to estimate link quality
in Fi. To do so, each tree root periodically probes the link
quality in its tree. Peers then exchange their tomographic
results to create a collaborative estimate of link quality in
Fy.

Before a host can initiate the tomography process, it must
determine the physical IP links which comprise its tree.
These link maps can be derived using tools such as Rock-
etFuel [18]. Internet routes are often stable for at least a
day [21], so topological data need not be fetched often.

Once the topology is known, hosts infer link quality us-
ing lightweight proactive probing and heavyweight reac-
tive probing. Lightweight tomography uses the availabil-
ity probes that hosts already send to their routing table
peers [17, 19]. The period of these probes is a minute or
less, and the duration of high loss events in IP links is on
the order of tens of minutes [14]. Thus, H can use these
preexisting probes to detect high intensity packet loss inside
Tyr. More specifically, H schedules a lightweight probe of
Ty as a periodic task whose inter-arrival time is picked ran-
domly and uniformly from the range [0, maz_probe_time];
max_probe_time is on the order of one or two minutes. H
probes its entire routing table at once using a simplified ver-
sion of Duffield’s striped unicast scheme [10]. H generates a
single probe packet for each routing peer, but it issues these
packets back to back. Since these packets will stay close to

each other as they traverse shared interior routers, they emu-
late a single multicast packet sent to the leaves of a multicast
tree. If H receives acknowledgments from all peers, it as-
sumes that there is no link loss. Otherwise, it sends a few
more probes to silent peers to determine if they are truly of-
fline or situated along a lossy IP link.

If link loss is detected or H’s application-level messages
are not being acknowledged, H initiates heavyweight prob-
ing. Heavyweight tomography also uses striped unicast prob-
ing, but H sends many probes to each leaf using Duffield’s
full scheme. Loss rates for each root-leaf path are inferred
using the number of acknowledgments received from each
leaf host. Using maximum likelihood estimators, these end-
to-end loss rates induce loss rates for each internal IP link.

When H initiates heavyweight probing, it asks its rout-
ing peers do the same. This ensures the availability of fine-
grained, high quality tomographic data for the entire forest
during the speculated fault period. To avoid probe-induced
congestion, each peer waits for a small, randomly picked
time before initiating heavyweight tomography.

After H has probed Ty using lightweight or heavyweight
mechanisms, it sends a timestamped snapshot of T and its
summarized probe results to its routing peers. The probe re-
sults for each path can be encoded in a few bits representing
predefined loss rates. H signs the tomographic snapshot with
its public key, both to prevent spoofing attacks and to prevent
H from disavowing previously advertised probe results.

Each leaf node in T is one of H'’s routing peers, so H
implicitly advertises its forwarding state when it publishes its
tomographic data. This data also includes the signed fresh-
ness timestamps for each routing entry as described in Sec-
tion 3.1. When a node receives a snapshot from H, it verifies
all the signatures, checks the freshness of each entry, and
performs the density checks. If any of these tests fail, the
node may issue a fault accusation against H as described in
Section 3.4. Regardless, the node archives H’s snapshot. As
the node receives snapshots from other peers, it constructs a
distributed view of the forwarding paths emanating from its
routing peers and the quality of IP links in these paths.

3.3 Error-checking Tomographic Data

Striped unicast tomography assumes that leaf nodes will
return acknowledgments for received probes. A faulty or ma-
licious leaf can try to respond to probes that were actually
lost in the network, or drop acknowledgments for probes that
were received. The former only affects inferences over the
last mile to the misbehaving leaf, but the latter can ruin many
inferences throughout the tree [3]. Fortunately, we can de-
tect both types of misbehavior. To detect spurious responses
to non-received probes, the probing node includes nonces in
its probes. To detect leaves which faultily suppress acknowl-
edgments, the probing node applies statistical tests to verify
that the acknowledgment patterns of its leaves are consistent
with each other [3]. Thus, an intentionally malicious leaf can
accomplish the most damage by responding correctly to the

probes of other nodes, but misreporting the results of its own
probes. We explore this issue further in Section 4.3.

We assume that interior IP routers can be faulty but not
actively malicious. We assume that they do not interfere with
probes or their responses in a byzantine way.

3.4 Attributing Fault

Armed with link measurements and routing information,
each Concilium node can issue accusations for dropped mes-
sages. Suppose that at time ¢, host A sends a message to Z
through B. By checking its copy of B’s routing table, A can
determine the host C' to which B will forward the message. If
A never receives a signed acknowledgment from Z, it checks
its tomographic data for probes which test links in the path
between B and C. If one or more links were probed as down,
Concilium assigns blame to the network. Otherwise, Con-
cilium determines that B was faulty. This judgment may be
erroneous, since the true culprit may lie downstream from B.
We describe how Concilium recovers from these mistakes in
Section 3.5. For now, we restrict our attention to the original
issuance of blame.

Let B — C represent the path between B and C, and let
probes be the set of probe results covering links in B — C.
We allow this set to contain results from probes initiated
within the interval [t — A, ¢t + A], where A might equal sixty
seconds. Let probes(link) be the set of probes covering a
particular link. For p € probes(link), let p.l_up € {0 or 1}
be the probed status of the link, with 1 representing a link
that was up and O representing a failed link. Let a € [0, 1] be
the accuracy of probes in diagnosing link failure. Returning
to our running example, when A fails to receive an acknowl-
edgment from Z, it ascribes blame to B as follows:

Pr(B faulty) = Pr(B — C good)
=1—-Pr(B — C bad))
=1— Pr(B — C has > 1 bad link)
where Pr(B — C has > 1 bad link) equals

matieb—c (|probes(1)]

3)
We use max as the OR operator from fuzzy logic [5]. In the
context of Equation 3, it selects the link in B — C' for which
A has the highest confidence that it was bad, with each probe
result weighed equally. For example, suppose that) and R
probe a link as down (0) and S probes the same link as up
(1). If a equals 0.8, A believes that the link was bad with
confidence (1/3)(0.8)+(1/3)(0.8)+(1/3)(0.2)=0.6.
Importantly, when A judges the trustworthiness of B, it
does not incorporate B’s probe results into Equation 3. This
prevents a malicious B from influencing the amount of blame
that A ascribes to it. For example, if A included B’s probe
results in Equation 3, B could reduce its level of blame by
claiming that it probed a link in B — C' as down.

ZpEpTobes(l) [plup(l —a)+(1— p.lup)a]>

Using Equation 2, A determines the amount of blame that
it ascribes to B for a particular dropped message. If the
blame is larger than a threshold described in Section 4.3, A
assigns a guilty verdict to B; otherwise, A assigns a guilty
verdict to the network. A maintains a sliding window of the
last w verdicts that it issued for B, archiving the tomographic
data used to make each verdict. If B receives m or more
guilty verdicts in this window, A inserts a formal fault ac-
cusation into a DHT which exists atop the secure overlay.
The insertion key for the accusation is B’s public key, and
the accusation contains all of the signed tomographic data
that A used to derive its fault assessments. Insertions and
fetches of the formal accusation are secured using Castro’s
techniques [7], and the statement is signed by A so that it can
be held accountable for spurious accusations. When another
host considers B as a routing peer, it first retrieves accusa-
tions against B from the DHT. For each accusation, the host
uses the associated tomographic data to independently verify
the fault calculations. If the host verifies the accusations, it
considers B to be a “bad peer” and sanctions it according to
network-specific policies.

3.5 Revising Incorrect Fault Attributions

As currently described, a Concilium node cannot ascribe
blame beyond the next overlay hop. Returning to our run-
ning example, if A does not receive a signed acknowledg-
ment from Z, and A estimates all links in B — C'to be good,
then A will always blame B for dropping the message, even
if B successfully forwarded the message and it was actu-
ally dropped further downstream. To correctly ascribe blame
in these situations, Concilium uses recursive stewardship of
messages and recursive revision of fault accusations.

Whenever a peer along A — Z forwards a message, it
treats the message as if it were generated locally—in other
words, each forwarding peer expects to receive an acknowl-
edgment from Z. If Z receives the message successfully,
it routes its acknowledgment along the reverse forwarding
path. If Z never receives the message or its acknowledgment
is dropped along the reverse path, a chain of guilty verdicts
will be issued. By considering them as a whole, Concilium
can determine where blame should ultimately be placed. For
example, suppose that D faultily drops A’s message to Z
along A - B — C — D — ... Z and that all IP links are
good. Using recursive stewardship, B and C' will await an
acknowledgment from Z. When this acknowledgment does
not arrive, A will blame B, B will blame C, and C will
blame D. D will not be able to blame a forwarding peer
since it lacks incriminating tomographic data—D’s peers in
Fp will not have probed any links as down !, and D can-
not fabricate such probes itself because a node’s own probes
are ignored when calculating blame for that node. Thus, the
accusation chain stops at D and nodes absolve themselves

IThis assumes that the nodes in Fp are not colluding with D. We return
to the issue of colluding nodes in Section 4.

of unfair blame by pushing locally generated verdicts up-
stream. First, C presents its guilty verdict against D to B. B
examines the signed, timestamped tomographic data in the
verdict, verifies the blame calculation, and amends its accu-
sation against C' to be an accusation against D. B presents
its amended verdict to A. After A verifies the inference, it
amends its accusation against B to an accusation against D.
Innocent nodes have now been exonerated, and blame has
been fairly attributed to D. Note that an amended accusation
contains the signed, timestamped data from both the origi-
nal verdict and the revision that was pushed upstream. This
allows amended verdicts to be self-verifying.

Faulty nodes may not push revision information upstream.
They do so at their own peril, since they will receive the
blame for the message drop. For example, if C' does not
push its accusation against D to B, then B will not amend its
original fault claim against C, and A will eventually blame
C, not D, for the message drop.

A faulty node may receive a revision but refuse to update
its local accusation. For example, A may receive B’s blame
against a node further downstream but continue to blame B.
To guard against such misbehavior, B archives its local fault
attributions and revisions. If another host believes that B is
untrustworthy, it allows B to defend itself before any puni-
tive steps are taken. The host presents B with the relevant
formal accusations. If B can rebut these accusations using
its local archives, the other host will recalculate B’s trust-
worthiness in light of the new evidence.

3.6 Preventing Spurious Accusations

Up to this point, we have focused on detecting hosts which
fail to forward messages. However, the original message
sender can also misbehave. Suppose that each link in B — C'
is good. If A accuses B of dropping its message without ac-
tually sending one to B, other nodes will believe the accu-
sation; they will verify the tomographic information in A’s
accusation and derive the same blame probability as A.

To prevent such spurious accusations, Concilium uses for-
warding commitments. When A sends a message through B,
B sends a signed statement to A indicating its willingness
to forward the message. The commitment includes a times-
tamp, A’s identifier, B’s identifier, and the identifier of the
ultimate destination Z. When A issues an accusation against
B, it includes this forwarding commitment along with the
relevant tomographic data and routing state. In this fashion,
B can only be blamed for dropping messages that it agreed to
forward. B can batch its commitments and asynchronously
piggyback them upon its responses to A’s availability probes.
Like message stewardship and accusation revision, forward-
ing commitment is also recursive.

A malicious B may refuse to issue forwarding commit-
ments for A’s packets. Without support from core IP routers
on the path between A and B, there is no way for Concil-
ium to establish that A actually sent a message to B, or that

B sent a forwarding commitment which A ignored. Lacking
such knowledge, Concilium cannot comment on the trust-
worthiness of either peer. Fortunately, B’s misbehavior can
be detected by other mechanisms. For example, if overlay
hosts are part of a decentralized reputation system such as
Creedence [20], A can issue a vote of no confidence in B
using this reputation system. Since honest hosts trust each
other’s votes, they will eventually determine that B makes a
poor peer and treat it accordingly.

Note that standalone reputation systems cannot replace
Concilium’s full accusation protocol. Reputation systems al-
low a node to make a direct accusation against the next hop
in a route, but they provide no structured way to propagate
accusations against nodes that are farther downstream. Using
recursive stewardship of messages and recursive revision of
accusations, Concilium provides such a capability. Concil-
ium also provides self-validating accusations which can be
confirmed by arbitrary third parties.

3.7 Implementation Options

Up to now, we have assumed that each node performs
its own tomographic probing. However, hosts which trust
each other and reside in the same stub network can consol-
idate probing responsibility. For example, hosts could take
turns issuing the probes for the multi-forest induced by their
collective routing state. Alternatively, all hosts could de-
fer probing responsibility to a shared administrative machine
such as a RON gateway [1]. Either solution would make
heavyweight probing less onerous, since the bandwidth cost
for probing shared links could be amortized across multiple
nodes.

As described in Section 3.4, a fault judgment is based on
the acknowledgment of an individual message reception. If
two peers exchange many packets, it may be useful for a sin-
gle acknowledgment to cover multiple messages. The ac-
knowledgment could indicate loss rates in several ways [15],
e.g., through simple counters indicating how many pack-
ets arrived, or packet hashes identifying the specific packets
which were received.

Concilium’s goal is to find misbehaving overlay hosts and
broken IP links, but it is agnostic about the response to its
fault identifications. Broken IP links are often discovered
quickly by the responsible ISP, so an overlay may simply
avoid certain overlay paths until the fault is fixed [1]. With
respect to faulty overlay hosts, Concilium allows each sys-
tem to set an appropriate sanctioning policy. For example,
accused hosts may not be trusted to forward sensitive mes-
sages.

If the overlay is used as a substrate for a higher level ser-
vice such as a DHT, then honest nodes must not make local
decisions to evict accused nodes from leaf sets. Otherwise,
inconsistent routing [6] will arise and the higher level service
may break. A network can mandate that a node be univer-
sally blacklisted if it receives accusations at a certain rate.

80
O Simulation {“I’
70 O Analytic Prediction

60

g [l

N o N N N N ©
S & LSS
N P IR

Average Number of Occupied
Jump Table Slots

Total Number of Overlay Hosts

Figure 1. Modeling jump table occupancy

In such an environment, nodes would check the accusation
repository before agreeing to peer with a new host. If the
prospective peer was discovered to be faulty, it would not be
added to the local routing table.

4 Evaluation

In this section, we use extensive simulations to evaluate
the accuracy of our jump table check, the coverage proper-
ties of our collaborative tomography, and the error rate of
our accusation algorithm. We also investigate the bandwidth
overhead of the Concilium protocol.

4.1 Jump Table Validation

Peers exchange their routing state so that Concilium can
determine the IP-level tomographic data needed to make
fault accusations at the overlay level. If peers can adver-
tise incorrect routing tables without detection, innocent peers
may be accused and faulty peers may go unpunished. Thus,
the success of Concilium hinges on its ability to detect fraud-
ulent routing advertisements. In this section, we analyze
Concilium’s jump table tests; we defer an analysis of leaf
set checks to Castro’s work [7].

Our jump table test uses the cdf ¢(py,04) to model the
distribution of occupancy fractions. Figure 1 compares the
occupancy levels predicted by the analytic model with the
occupancy levels seen in Monte Carlo simulations of table
occupancy (y-bars indicate standard deviations). We see that
the ¢(ue,0,) distribution accurately approximates real oc-
cupancy levels.

Our density test declares that a jump table is faulty if
Ydpeer < diocar- The test can produce both false positives
and false negatives. A false positive occurs if a non-faulty
peer has a legitimately sparse jump table but is deemed faulty
anyways. The likelihood of a false positive is equivalent to

PT(’deeer < dlocal) = Z
0<d; <tv

= 3 |6t 3) - ot D)

0<d; <t

{Pr(di)Pr(d < Ci’)]

Pr(false positive)

(a) False positive probability.

Pr(false negative)

1

— A
S el
e ey
.‘

277]

(b) False negative probability.
100%

80%

o M False Positive Rate
& 60% O False Negative Rate
2 40%

w
20%

0%

N

S Ss° $°
SO IR

<°

Colluding, Malicious Host Fraction

(c) Overall misclassification rate when -y is chosen to minimize
the sum of the two error probabilities.

Figure 2. Error rates (no suppression attacks)

Figure 2(a) depicts the false positive rate as a function of y
and the fraction c of colluding malicious nodes. This graph
assumes that malicious nodes may drop messages, but they
may not try to go offline in a concerted attempt to skew local
density estimates [7]. Thus, the false positive rate is indepen-
dent of the fraction of malicious peers. Later in this section,
we will revisit this graph in the context of suppression at-
tacks.
The likelihood of a false negative is

Pr(vdpeer > diocat) = Y [Pr(di)Pr(d < vd;)]
0<d; <tv

S [@(di T 1) - o(d - St

2 2
0<d; <tv

Pr(false positive)

Pr(false negative)

1

(b) False negative probability.

100%

80% —
@ M False Positive Rate
S60% OFalse Negative Rate
240%
]

20%

0%

Q\m Q°\° (g\c

S° S°S° S° S0 S° e
CECHRNICOIO

o o

o
N /\‘o

R IIPEN SRS |
PRI I

Colluding, Malicious Host Fraction

(c) Overall misclassification rate when +y is chosen to minimize
the sum of the two error probabilities.

Figure 3. Error rates (suppression attacks)

A false negative occurs when a peer advertises a jump ta-
ble that only contains attacker-controlled nodes and the table
passes the density test. Figure 2(b) shows the false negative
probability in the absence of suppression attacks. Due to the
properties of secure routing tables, an attacker is expected to
control only ¢ percent of all nodes in a jump table. Thus, the
density of the attacker’s fraudulent table is modeled as that
of a legitimate table in an overlay with Nc total hosts. In the
previous equation, when we calculate Pr(d;), i.e., the prob-
ability that the advertised jump table contains d; nodes, we
use Equation 1 but set the number of nodes to Nec.

Using Figures 2(a) and (b), we can choose the v which
minimizes some error metric. For example, Figure 2(c)
shows the misclassification rate when -y is chosen to mini-
mize the sum of the false positive probability and the false

100%

0 E
0 8% 3
- @
‘(;1' Q
1l n
8 @ 60%]
52 % of i 15 &
3 [% of Forest Links =
S0 40% |, Covered £
g T # of Vouching 13
Q Peers o
S 20% z
& 05 %
HH*
0% 0

0 5 10 15 20 25 30 35 40
Number of Included Peer Trees

Figure 4. Trees Sampled vs. Forest Coverage

negative probability. If 30% of all peers are malicious and
colluding, the false positive rate is 8.5% and the false nega-
tive rate is 14.8%. If 20% of hosts collude, the false negative
rate decreases to 3.5%.

Figure 3 shows misclassification rates when adversaries
can launch suppression attacks. We model these attacks by
supplying our false positive/negative equations with the ap-
propriately skewed versions of IV as we did above. Like Cas-
tro’s density tests for leaf sets [7], our jump table checks are
not very reliable if more than 20% of hosts are malicious and
colluding. For example, with a ¢ of 20%, the false positive
rate is 10.1% but the false negative rate is already 21.1%.
Devising effective defenses against suppression attacks is an
important area for future research. However, we note that ¢
represents the largest set of colluding malicious nodes. The
total number of malicious nodes may be much larger, but
their power is limited by the extent to which they can coor-
dinate the suppression of their identifiers.

4.2 Link Coverage

To test the coverage of tomographic probing and the accu-
racy of Concilium’s accusation algorithm, we used a discrete
event network simulator. The simulator modeled link fail-
ure, tomographic probing, the collaborative dissemination of
probe results, and three types of message events (message
sent, message acknowledged, message not acknowledged).
The simulator placed a Pastry overlay atop an IP topology
gathered by the SCAN project [11]. The topology con-
tained peering information for 112,969 routers connected by
181,639 links. Following the methodology of Chen et al [9],
we defined end hosts as routers with only one link and ran-
domly selected 3% of these machines to be Pastry nodes. The
resulting overlay possessed 1,131 nodes.

In the simulations, 5% of links were bad at any moment.
Average link downtime was 15 minutes with a standard devi-
ation of 7.5 minutes; this accords with empirical observations
of high loss incidents lasting for a few tens of minutes [14].
Failures were biased towards links at the edge of the net-
work [14]. To select a new link for failure, we randomly
picked an overlay host and a random peer in that host’s rout-
ing state. We then used a beta distribution with =0.9 and

(=0.6 to select the depth of the link that would fail. Simu-
lations lasted for two virtual hours. We did not model fluc-
tuating machine availability since we wanted to focus on the
fundamental properties of our fault inference algorithm.

Figure 4 shows the average percentage of IP links in Fy
that are covered when H includes a given number of peer
trees. If a node probes only its own tree, it can gather to-
mographic data for 25% of its forest links. Increasing the
number of included peer trees results in large initial gains,
but the improvement in coverage diminishes as more trees
are included. This is because only a few trees are needed
to cover highly shared links in the center of the Internet, but
many trees are needed to cover all of the last-mile links that
are only used by a few hosts.

As shown in Figure 4, gathering probe results from more
peers increases the average number of hosts that test a given
link and can potentially vouch for the status of that link at an
arbitrary time. By increasing the number of vouching peers
for a link, we improve the quality of tomographic inferences
for that link. Greater link coverage also reduces the ability of
malicious nodes to taint the diagnostic process by submitting
bad tomographic data.

4.3 Accuracy of Fault Accusations

Accurate fault accusation requires accurate tomography.
Duffield et al reported high levels of accuracy for striped
unicast probing, with inferred link loss rates within 1% of
the actual ones [10]. High accuracy rates have also been re-
ported for other tomographic techniques [14]. In this section,
we assume that hosts can identify whether a link was up or
down with 90% accuracy.

Given the probe accuracy, we are interested in the amount
of blame assigned to a forwarding peer when a message is
dropped. Figure 5 depicts the probability distribution func-
tions for the blame that Concilium assigns to faulty and non-
faulty nodes. We generated the pdf by taking each triple of
hosts (A, B, C) ? and picking ten random times within the
simulation period for A to route a message through B — C.
By comparing the actual link state along B — C' to the to-
mographic information available to A at that time, we deter-
mined the amount of blame that A would assign to B if A did
not receive an acknowledgment from the message recipient.
B was a faulty node if it dropped a message despite B — C'
being good; it was non-faulty if at least one link in B — C
was bad. Due to space constraints, we do not show results
for the recursive revision of accusations; thus, the simulator
ensured that a message was dropped either by B or a network
link along B — C, not by another peer or link further down
the overlay route to the destination host.

Figure 5(a) depicts the blame pdf when all peers faith-
fully reported their probe results. Figure 5(b) depicts the
blame pdf when 20% of peers colluded to maliciously flip

2This selection was constrained by the routing tables of each node, i.e.,
B had to be in A’s routing table and C had to be in B’s routing table.

their probe results. In the latter scenario, when a non-faulty
node was being judged, malicious peers would always claim
that their probed links were up (increasing the false posi-
tive rate); when a malicious peer was being judged, other
malicious peers would always claim that their probed links
were down (increasing the false negative rate). Comparing
Figure 5(a) to Figure 5(b), we see that incorporating erro-
neous probe results into Equation 2 causes more blame to
be assigned to non-faulty nodes and less blame to be as-
signed to faulty ones. However, Concilium can still make
accurate fault accusations using a thresholding scheme which
produces binary verdicts. For example, suppose that for any
message drop, nodes receiving less than 40% blame are pro-
claimed innocent and all other nodes receive a guilty verdict.
If all peers report their probe results faithfully, then innocent
peers will receive guilty verdicts 1.8% of the time whereas
faulty peers will receive guilty verdicts 93.8% of the time. If
20% of peers collude and contribute malicious probe results,
then innocent peers will receive guilty verdicts 8.4% of the
time and faulty peers will receive guilty verdicts 71.3% of
the time.

A host issues a formal accusation against a peer if that
peer accumulates at least m guilty verdicts for the w most
recent message drops. To determine the false positive and
false negative rates of formal accusations, let py,,q be the
probability that a non-faulty node receives a guilty verdict for
a message drop, and psqui¢y be the probability that a faulty
node receives a guilty verdict; these probabilities are derived
from the blame pdfs and thresholds as described in the pre-
vious paragraph. Let W be a random variable describing the
number of guilty verdicts in a w-slot window. W is a bi-
nomial random variable, meaning that the error rates can be
described as follows:

Pr(false positive) = Pr(W > m)

w w e
= (k>p§ood(1 7p900d) ¥
Pr(false negative) = Pr(W < m)

1

m—
W\ —k
= <k)pfaulty(1 _pfaulty)w
k=0

Figure 6 depicts the error rates with a blame pdf threshold of
40% and a sliding window size of 100. If all nodes faithfully
report probe results, then we can drive both error rates below
1% with an m of 6. If 20% of hosts maliciously invert their
probe results, we can achieve equivalent error rates with an
m of 16.

4.4 Bandwidth Requirements

Concilium has two primary sources of network overhead.
Peers must exchange signed, timestamped copies of their
routing state, and they must perform tomographic probing.
We expect local routing state to reference jy + 16 peers,

Non-faulty peer
————— Faulty peer

Probability

0 0.1125 0.2375 0.3625 0.4875 0.6125 0.7375 0.8625 0.9875
Blame Received

(a) The two pdfs are very distinct when nodes correctly report

their tomographic data.

Non-faulty peer

25%
~~~~~ Faulty peer

20%

15%

Probability

10%

5%

0% . .

0 0.1125 0.2375 0.3625 0.4875 0.6125 0.7375 0.8625 0.9875
Blame Received

(b) The pdfs are less distinct when 20% of peers maliciously

invert probe results, but Concilium can still make accurate judg-

ments using a thresholding scheme.

Figure 5. PDFs for blame as generated by Equation 2 (max_probe_time=120 secs, A=60 secs)

100%

80%

60%

40%

False Positives

20%

0%

False Positives
False Negatives

100%

80%

60%

40%

20%

0%

1

15 22 29 36 43 50 57 64 71 78 85 92 99

False Negatives

100%

80%

60%

40%

False Positives

20%

0%

False Positives
— —False Negatives

1

8

15 22 29 36 43 50 57 64 71 78 85 92 99

100%

80%

60%

40%

20%

0%

False Negatives

m = minimum # of guilty verdicts triggering accusation

(a) If nodes faithfully report probe results, an m of 6 drives
both error rates below 1%.

m = minimum # of guilty verdicts triggering accusation

(b) If 20% of hosts are colluding and malicious, an m of 16
drives both error rates below 1%.

Figure 6. Accusation error (w=100)

where 16 is the number of leaf nodes. Each routing en-
try contains a 16 byte node identifier and a 4 byte fresh-
ness timestamp. Using PSS-R [4] with 1024 bit public keys,
both quantities plus a signature consume 144 bytes. The ex-
changed routing state also includes tomographic probe re-
sults for the IP path to each routing peer. As explained in
Section 3.2, the results for each path can be encoded in a few
bits. Assuming 1 byte for each path summary and a 100,000
node overlay, an entire advertised routing table is about 11.5
kilobytes. This overhead can be decreased by sending diffs
for updated entries instead of entire tables.

In the absence of forwarding faults, lightweight tomog-
raphy requires no additional bandwidth beyond that already
required for availability probing. The outgoing bandwidth
required for heavyweight striped probing of a tree is

(|leaves € Tyl
2

In a 100,000 node overlay, the average node has 77 entries
in its local routing state. Suppose that each node sends 100
stripes to each ordered pair of peers, that each stripe contains
two UDP probes, and that each probe is 30 bytes long (28
bytes for IP+UDP headers and 16 bits for a nonce). Probing
an entire tree will require 16.7 MB of outgoing network traf-
fic. Incoming probes will require no more than this amount
and less if there are legitimately lossy network links.

) (stripes_per_pair)(stripe_size)(pkt_size).

The probing cost can be reduced in several ways. If IP
multicast were widely deployed, we could reduce the probe
traffic sent from the root of a tree to its leaf nodes. Also,
as described in Section 3.7, cooperative hosts on the same
stub network can share probe results, reducing the probing
bandwidth for the collective.

5 Related Work

Packet obituary systems [2] allow end hosts to determine
the autonomous system (AS) which dropped a particular
packet. Each AS deploys an “accountability box” at each
border link. When an incoming packet hits a box, the box
records the next AS that the packet will traverse. Boxes pe-
riodically push these records along the reverse box paths, al-
lowing each packet source to determine the last AS which
successfully received their datagrams. Concilium differs
from obituary systems in three ways. First, Concilium does
not require the modification of core Internet routers. Sec-
ond, Concilium protects and validates its network data us-
ing various cryptographic and statistical techniques. Finally,
obituary systems cannot arbitrate between two adjacent ASes
when the first claims that the second dropped its packet, and
the second claims that the first never sent the packet. Concil-
ium resolves such disputes using reputation systems.



Concilium assumes that end hosts may be malicious but
core routers will not fail in a byzantine way. Fatih [15] is
designed to detect core routers which maliciously drop or re-
order packets. Each router maintains a summary of the traf-
fic it has forwarded. Signed versions of these summaries are
periodically exchanged with other routers, and misbehavior
is detected by comparing summaries from routers that share
links. Like obituary systems, Fatih requires modification to
core Internet infrastructure.

In RON [1], each stub network has a special gateway
which sits between the stub and the larger Internet. The RON
gateways monitor the loss, latency, and throughput along the
O(N?) paths which connect them. When a gateway must
forward a locally generated packet outside its stub, it for-
wards the message through other RON gateways if the de-
fault IP path is poor. Like Concilium, RONs use active prob-
ing to detect link quality. The key difference is that RON
always ascribes blame to the network—misbehaving RON
nodes must be detected and removed by human operators.
Concilium provides a mechanism for blaming the network
or an overlay node.

6 Conclusions

In this paper, we introduce Concilium, a distributed diag-
nostic protocol for overlay networks. By aggregating peer-
advertised routing state, Concilium determines forwarding
paths at the overlay level. Using collaborative network to-
mography, Concilium discovers the IP links which com-
prise these paths and the quality of these links. By combin-
ing the topological and tomographic data with application-
level message acknowledgments, Concilium judges whether
dropped overlay messages are due to failures in the core In-
ternet or failures in overlay forwarders. Concilium’s fault ac-
cusations are self-verifying and robust to tampering, but they
may place blame on nodes which are the victim of misbe-
havior further downstream in their routes. Thus, Concilium
provides mechanisms to revise such incorrect accusations. It
also has methods for detecting peers which publish faulty
routing state or tomographic data.

References

[1] D. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Mor-
ris. Resilient Overlay Networks. In Proceedings of SOSP,
pages 131-145, Banff, Canada, October 2001.

[2] K. Argyraki, P. Maniatis, D. Cheriton, and S. Shenker. Pro-
viding Packet Obituaries. In Proceedings of ACM SIGCOMM
HotNets, San Diego, CA, November 2004.

[3] V. Arya, T. Turletti, and C. Hoffmann. Feedback Verification
for Trustworthy Tomography. In Proceedings of IPS-MoMe,
Warsaw, Poland, March 2005.

[4] M. Bellare and P. Rogaway. The Exact Security of Digital
Signatures — How to Sign with RSA and Rabin. Advances in
Cryptology—-EUROCRYPT ’96, 1070:399-416, 1996.

[5] R. Bellman and M. Giertz. On the analytic formalism of the
theory of fuzzy sets. Information Sciences, 5:149-156, 1973.

(6]

(9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

M. Castro, M. Costa, and A. Rowstron. Performance and de-
pendability of structured peer-to-peer overlays. In Proceed-
ings of DSN, Florence, Italy, June 2004.

M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S.
Wallach. Secure routing for structured peer-to-peer overlay
networks. In Proceedings of OSDI, pages 299-314, Boston,
MA, December 2002.

M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Prox-
imity neighbor selection in tree-based structured peer-to-peer
overlays. Technical Report MSR-TR-2003-52, Microsoft Re-
search, 2003.

Y. Chen, D. Bindel, H. Song, and R. Katz. An Algebraic
Approach to Practical and Scalable Overlay Network Mon-
itoring. In Proceedings of ACM SIGCOMM, pages 55-66,
Portland, OR, September 2004.

N. Duffield, F. L. Presti, V. Paxson, and D. Towsley. Infer-
ring Link Loss Using Striped Unicast Probes. In Proceedings
of IEEE INFOCOM, pages 915-923, Anchorage, AK, April
2001.

R. Govindan and H. Tangmunarunkit. Heuristics for Internet
Map Discovery. In Proceedings of IEEE INFOCOM, pages
1371-1380, Tel Aviv, Israel, March 2000.

R. Jurgelenaite, P. Lucas, and T. Heskes. Exploring the
noisy threshold function in designing bayesian networks. In
Proceedings of SGAI International Conference on Innovative
Techniques and Applications of Artificial Intelligence, pages
133-146, Cambridge, UK, December 2005.

R. Mahajan, M. Castro, and A. Rowstron. Controlling the
cost of reliability in peer-to-peer overlays. In Proceedings of
the 2nd IPTPS, Berkeley, CA, February 2003.

R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. User-
level Internet Path Diagnosis. In Proceedings of SOSP, pages
106-119, Lake George, NY, October 2003.

A. Mizrak, Y.-C. Cheng, K. Marzullo, and S. Savage. Fatih:
Detecting and Isolating Malicious Routers. In Proceedings of
DSN, pages 538-547, Yokohama, Japan, June 2005.

D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why
do Internet services fail, and what can be done about it? In
Proceedings of USITS, March 2003.

A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In Proceedings of the IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), Heidel-
berg, Germany, November 2001.

N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP
topologies with Rocketfuel. In Proceedings of ACM SIG-
COMM, pages 133-145, Pittsburgh, PA, August 2002.

1. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakr-
ishnan. Chord: A scalabale peer-to-peer lookup service for
Internet applications. In Proceedings of ACM SIGCOMM,
pages 149-160, San Diego, CA, August 2001.

K. Walsh and E. G. Sirer. Experience with an Object Repu-
tation System for Peer-to-Peer Filesharing. In Proceedings of
NSDI, pages 1-14, San Jose, CA, May 2006.

Y. Zhang, V. Paxson, and S. Shenker. The Stationarity of In-
ternet Path Properties: Routing, Loss, and Throughput. Tech-
nical Report, AT&T Center for Internet Research at ICSI,
May 2000.



