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Abstract

In this paper, we present ShieldGen, a system for au-
tomatically generating a data patch or a vulnerability
signature for an unknown vulnerability, given a zero-day
attack instance. The key novelty in our work is that we
leverage knowledge of the data format to generate new
potential attack instances, which we call probes, and use
a zero-day detector as an oracle to determine if an in-
stance can still exploit the vulnerability; the feedback of
the oracle guides our search for the vulnerability signa-
ture. We have implemented a ShieldGen prototype and
experimented with three known vulnerabilities. The gen-
erated signatures have no false positives and a low rate
of false negatives due to imperfect data format specifi-
cations and the sampling technique used in our probe
generation. Overall, they are significantly more precise
than the signatures generated by existing schemes. We
have also conducted a detailed study of 25 vulnerabil-
ities for which Microsoft has issued security bulletins
between 2003 and 2006. We estimate that ShieldGen
can produce high quality signatures for a large portion
of those vulnerabilities and that the signatures are su-
perior to the signatures generated by existing schemes.

1. Introduction

Recently, we have seen a rise in zero-day attacks that
exploit unknown vulnerabilities [25]. Unfortunately,
current practice in new vulnerability analysis and protec-
tion generation is mostly manual. In this paper, we aim
to automate this process and enable fast, patch-level pro-
tection generation for an unknown vulnerability, given

the observation of a zero-day exploit of the vulnerabil-
ity.

In particular, we consider a fast, patch-level protec-
tion to be in the form of a data patch rather than the
more traditional software patch. A data patch serves as
a policy for a data filter, and is based on the vulnerability
or the software flaw that needs to be protected. The filter
uses the data patch to identify parts of the input data to
cleanse as it is being consumed. As a result, the sanitized
data stream will not exploit the vulnerability. Shield vul-
nerability signatures [29], which are used by firewalls
to filter malicious network traffic, are examples of data
patches for network input. Similarly, files can be crafted
maliciously to exploit a vulnerability in an application
that consumes file input (e.g., WMF vulnerability [26]).
With the rise of such exploits, anti-virus software ven-
dors have started using vulnerability signatures for data
files to defend against new attack variants. “Data patch”
and “vulnerability signature” are used interchangeably
in this paper. We use the term “data patch” when empha-
sizing its purpose as a patch and the term “vulnerability
signature” when emphasizing its form as a signature.

By being data-driven, data patches can take the
form of signatures that can be automatically distributed
and enacted on vulnerable hosts. This style of pro-
tection cannot be achieved by the traditional software
patches since applying a software patch is inherently
user-driven. Even with automatic patch download, users
often still need to enact the downloaded patch by restart-
ing the application or rebooting the machine. Further-
more, in an enterprise environment, patches are typically
tested prior to deployment in order to avoid the poten-
tially high cost of recovering from a faulty patch. In
contrast, rolling back a data patch is as simple as remov-
ing the vulnerability signature.

In this paper, we present ShieldGen, a system for
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Figure 1. The ShieldGen System Overview

automatically generating a data patch for an unknown
vulnerability, given a zero-day attack instance. The
key novelty in ShieldGen is that we leverage knowl-
edge of the data format to generate new potential at-
tack instances and use a zero-day detector as an oracle
to guide the search of vulnerability signatures. In par-
ticular, we assume knowledge of the data format of a
zero-day attack, such as the protocol format that is used
by a network-based attack or the file format that is used
by a file-based attack. This is a reasonable assumption in
that the type of data input that is consumed by an appli-
cation is often known, and it is common practice to have
data formats specified for the purpose of interoperability
across vendors or simply for the purpose of documenta-
tion in a proprietary setting.

In our design, we employ a zero-day attack detector
to detect zero-day attacks with high confidence. The de-
tected zero-day attack is sent to our system for produc-
ing a data patch. Then, we construct new potential attack
instances, which we call probes, based on the data for-
mat information. We send the probes back to the oracle,
namely the zero-day attack detector, to see whether these
probes succeed as real attacks. Answers from the oracle
will then guide our system to construct new probes, to
discard attack-specific parts in the original attack data
as well as retain the inherent, vulnerability-specific part.
The output of our system is a vulnerability signature in
the form of a refinement of the data format specification
that embeds a vulnerability predicate — a set of boolean
conditions on data fields. For stateful network-based at-
tacks, our system is able to capture the protocol context
such as the protocol state at which an attack message
can be sent. Figure 1 gives an overview of the Shield-
Gen system.

The number of probes used by ShieldGen for deriv-
ing a vulnerability signature is the key measure of its

efficiency. Hence, a goal of our probe generation algo-
rithm is to minimize the number of probes. To this end,
we leverage semantic information and constraints in the
data format specification. For example, we enforce the
dependency constraints across data fields so that we will
not generate invalid probes.

We have implemented a ShieldGen prototype. For
evaluation, we have experimented with the vulnerabili-
ties behind Slammer [17], Blaster [28], and a WMF [26]
attack. The generated signatures have no false positives.
They have a low rate of false negatives, due to the im-
precision of data format specifications and the sampling
technique used in our probe generation. We also con-
ducted a pencil-and-paper evaluation on the vulnerabil-
ity coverage of our approach. We examined 377 vul-
nerabilities from Microsoft Security Bulletins issued be-
tween 2003 and 2006. At least 157 out of these 377 vul-
nerabilities had data input as an attack vector and are
potentially data patchable. We selected 25 vulnerabili-
ties that we can understand from this set and analyzed
them in detail. We estimate ShieldGen to be effective
for 19 of the 25 vulnerabilities. We also estimate that
Vigilante’s signature scheme [4] would be effective for
only 6 of the 25 vulnerabilities.

The rest of the paper is organized as follows. We
first present the related work in Section 2 and position
ShieldGen in relation to existing work in automatic sig-
nature generation. Then, we give background on the
building blocks of our system in Section 3. In Section 4,
we present the details of our design. In Section 5, we
present our implementation and evaluation that consists
of case studies of three vulnerabilities with which we
experimented using ShieldGen and a vulnerability cov-
erage study. We discuss future work in Section 6, and
finally conclude in Section 7.



2. Related Work

Automatic signature generation for zero-day attacks
has received much attention in the research literature. In
this section, we compare and contrast ShieldGen with
related work in automatic signature generation.

Early efforts such as Autograph [9], Earlybird [24],
and Honeycomb [10] are designed to generate attack sig-
natures for a single attack variant, searching for long in-
variant substrings from network traffic as signatures.

For capturing polymorphic attack variants, Poly-
graph [20] exemplifies the approach of finding multiple
invariant substrings from the network traffic. Polygraph
observes that multiple invariant substrings must often be
present in all variants of a worm payload for the worm to
function properly. These substrings typically correspond
to protocol framing, control data like return addresses,
and poorly obfuscated code. Polygraph still suffers from
significant false positives and false negatives because
legitimate traffic often contains multiple invariant sub-
strings, and polymorphic attacks could hijack control
data without using an invariant substring [6].

The above work generates signatures from network
traffic alone. A fundamental drawback of such mecha-
nisms is that carefully crafted attack traffic can mislead
them to generate incorrect signatures [23].

Some existing work leverages information about vul-
nerable applications for improving both the accuracy
and the coverage of signatures. Nemean [32] employs
protocol specifications to provide more protocol con-
text to their attack signatures and tries to generalize the
signature for observed attack instances. Nemean’s sig-
nature is a finite state automaton (FSA) inferred from
clusters of similar connections or sessions. The edges
in a connection-level FSA can be either fields or mes-
sages, and the edges in a session-level FSA are connec-
tions. It generalizes the signatures by replacing certain
variable data elements with a wild card. Unlike Shield-
Gen, (1) Nemean’s generalization is dependent on at-
tack instances observed. This can make the resulting
signatures too specific. For example, attack variants that
make use of a different message sequence cannot be cap-
tured by Nemean. Also, the wild card-based generaliza-
tion cannot filter attack variants of buffer overrun vul-
nerabilities. (2) The validity of Nemean’s generaliza-
tion is unchecked, which can lead to over-generalization
and false positives. In contrast, ShieldGen generates
new attack instances based on a single attack instance
along with a data format specification without relying
on just observed attack instances, and ShieldGen’s sig-
nature generalization process is validated by the oracle.

COVERS [11] uses an address-space randomization-
based zero-day detector and a regular-expression-based
protocol specification to generate signatures for buffer
overrun vulnerabilities. A key difference between
ShieldGen’s signatures and that of COVERS is that
ShieldGen’s signatures incorporate protocol context in
which attacks can happen, such as at what protocol state
an attack can happen; COVERS’ signatures do not con-
tain any protocol context but only a pattern matching
predicate for a particular protocol message. Signatures
without protocol context can result in false negatives
when different message sequences lead to the same at-
tack and result in false positives when pattern-matching
a message at a non-vulnerable protocol state [29]. In
COVERS’ signature generation, it uses the length of the
vulnerable input field as the buffer limit for the buffer
overrun condition in its signature; this can cause false
negatives for attacks that have shorter buffer length than
that of the observed attack instance. In ShieldGen, we
find out the buffer limit with the help of our zero-day
detector which is based on dynamic data flow analysis.
Our experimental results indicate that this buffer limit
yields zero false positives and harmless false negatives
(Section 4.3.2 and Section 5.1.1). Furthermore, the cov-
erage of ShieldGen’s signatures is much greater because
of our use of data format-informed probing to the oracle.

Previous research efforts we have discussed so far
are dependent on attack instances observed. The Packet
Vaccine system [30] breaks this limitation by manipulat-
ing packet payloads and observing program reactions to
them.

Packet Vaccine generates signatures in three steps:
(1) It constructs packet vaccines or probes by random-
izing address-like strings. (2) It detects exploit by ob-
serving memory exception upon packet vaccine injec-
tion. (3) It generates signatures by finding in the at-
tack input the bytes that cannot take random values. In
step 3, it constructs packet vaccines for each byte other
than the address string by randomizing its value. The
similarity between Packet Vaccine and ShieldGen is that
they both leverage a feedback loop to improve the cov-
erage of signatures. (Our probing and feedback mech-
anism was developed independently.) However, com-
pared to ShieldGen, Packet Vaccine has two limitations:
(1) Its main probing scheme randomizes each byte rather
than leveraging data format information. Compared to
ShieldGen’s data format-informed probing, its probing
strategy suffers from significantly more probes particu-
larly when multiple messages are involved in an attack.
In fact, the authors of Packet Vaccine mentioned that
their scheme works more reliably for text-based proto-



cols than the binary ones because of the lack of proto-
col knowledge for binary data formats. The authors of
Packet Vaccine briefly mentioned the benefit of leverag-
ing protocol specifications. However, it is unclear what
type of protocol specification language is considered and
how protocol specifications are leveraged. The latter in-
cludes many intricate issues to which most of this paper
is devoted. (2) Packet Vaccine can only detect control-
flow hijacking attacks while ShieldGen uses a zero-day
detector that can detect a wider range of attacks. For
example, Packet Vaccine cannot detect exploits of the
WMF vulnerability [26].

Newsome and Song [21] hinted the research direc-
tion of probing a zero-day detector oracle to find attack
invariants. They proposed flipping bits of the original
attack data to generate probes. Such a probing method
would be prohibitively expensive. ShieldGen’s leverage
of the data format information scales down the number
of probes significantly and is critical for the practicality
of such a scheme. Much of this paper is devoted to the
techniques on how to leverage the data format informa-
tion to generate useful probes.

Another category of automatic signature generation
work uses program analysis for binary or source code.

Costa et al. [4], Crandall et al. [6], and Newsome
et al. [19] use dynamic data flow analysis over the ex-
ecution on an attack input and generate a signature in
the form of symbolic predicates. Such attack signa-
tures are inherently specific to the attack input used
in the data flow analysis. In ShieldGen, we general-
ize attack-specific symbolic predicate-based signatures
to cover significantly more attack variants with data
format-informed probing to the oracle.

Brumley et al. [3] use static program analysis to ex-
tract the program logic that processes the attack data and
triggers the vulnerability. The extracted logic can be ex-
pressed in the form of Turing Machines, symbolic predi-
cates, or regular expressions as vulnerability signatures.
Turing Machine-based signatures may not terminate,
and regular expressions are not sufficiently expressive
for many vulnerabilities. Symbolic predicates are the
most practical form. The authors introduce the notion
of Monomorphic Execution Path (MEP) and Polymor-
phic Execution Path (PEP) to describe the coverage of
vulnerability signatures. MEP considers the single exe-
cution path from the point at which attack input is con-
sumed to the point of compromise while PEP considers
many different paths. In fact, the signatures generated
by the three systems in the previous paragraph [4, 6, 19]
are MEP signatures. We call them execution trace-based
methods for the rest of the paper.

It has remained an open challenge to generate PEP
(the more vulnerability-specific kind of) signatures in
the form of symbolic predicates. One challenge is
the combinatorial explosion in the number of execution
paths. Another challenge is that with potentially large at-
tack data (e.g., a very long file maliciously crafted with
many iterative elements), the resulting symbolic predi-
cate will contain a large number of conditions (i.e., the
number of conditions grows with the number of itera-
tive elements in the input) many of which are unnec-
essary and overly restrictive causing high rates of false
negatives. Furthermore, in a stateful network-based at-
tack that takes place over a sequence of messages, the
vulnerability may only be triggered by the last message,
and there may be other message sequences that lead to
the same last message. In such a scenario, the symbolic
predicate generated over the message sequence will not
detect attacks that use other message sequences to reach
the same vulnerability. By comparison, the ShieldGen
approach can cope with these challenges much more
easily with knowledge of the data format.

3. Background

This section gives a brief summary of the two build-
ing blocks we use to construct ShieldGen: an oracle and
a data analyzer.

3.1. The Oracle: A Zero-day Attack De-
tector

A zero-day attack detector takes suspicious data as
input, and outputs with high confidence whether the data
contain an exploit. The suspicious data can be obtained
from crash dumps or from a honeyfarm. A zero-day at-
tack detector can take many forms [4, 7, 10, 24]. Detec-
tors based on dynamic data flow analysis [4, 5, 21] in-
strument the software that is to be monitored and track
how its input data (network packets or files) propagate in
its address space as the program executes. Detectors of
this type can use this information to test for a wide range
of vulnerability conditions. For example, a simple con-
dition would be to test before executing a ret instruc-
tion whether input data have propagated into the return
address on the stack. A small set of simple conditions
of this type is sufficient to give this type of detectors
very broad coverage for low-level control and data flow
vulnerabilities. This includes buffer overflows, arbitrary
vulnerabilities that result in code injection or overwrit-
ing of function pointers or return-to-libc style attacks.
On the other hand, data flow detectors are unlikely to



detect higher level vulnerabilities, such as incorrect ac-
cess control settings, incorrect security user interfaces or
sandboxing problems in scripting engines.

In ShieldGen, we use the Vigilante’s zero-day detec-
tor that is based on dynamic data flow analysis [4]. This
detector implements three vulnerability conditions. (1)
Tests for arbitrary execution control (AEC): The detec-
tor tests whether input data is about to be moved into
the instruction pointer. This will detect attempts to over-
write return addresses on the stack or function pointers
on the stack or heap. (2) Tests for arbitrary code execu-
tion (ACE): Before executing an instruction, the detector
tests whether the instruction depends on the program’s
input. This detects attempts to execute injected code.
(3) Tests for arbitrary function arguments (AFA): Before
performing certain critical system calls (e.g., creating a
process), the detector checks whether certain critical ar-
guments depend on the program’s input. In practice, this
detector has a low rate of false positives. False positives
can be eliminated completely at the expense of higher
rates of false negatives by means of a verification proce-
dure [4].

In addition to issuing an alert, the detector can also
provide detailed information about the exploit and the
vulnerability. This includes the complete data flow his-
tory and application state at the moment the vulnerabil-
ity was detected. The detector can output the positions
within the input stream of the values that triggered the
alert. For example, in the case of an AEC condition,
these are the bytes that were about to be loaded into the
instruction pointer. In the case of an ACE condition,
these are the bytes that were about to be executed. Fur-
thermore, the detector can output information about the
instruction that triggered the alert. For example, the de-
tector will output whether an AEC alert was triggered
while executing a ret instruction (overwritten return
address) or an indirect jmp or call instruction (over-
written function pointer). We use this information in
ShieldGen.

3.2. Data Format Specification and Data
Analyzer

We assume knowledge of the data format of the input
to the vulnerable application. We also assume the input
is not encrypted or obfuscated. We consider two types
of data: network data and file data.

A data analyzer is a tool that parses data according to
a data format specification, giving semantics and struc-
ture to the raw data. A data analyzer can operate ei-
ther online or offline. An online data analyzer can serve

as the main mechanism in data filters that prevent net-
work or file-based intrusions. For example, Shield [29]
employs a protocol analyzer to perform vulnerability-
driven filtering of application level protocol traffic; a file
analyzer can by employed by anti-virus software to pre-
vent file-based attacks that exploit file parsing vulnera-
bilities.

Recent work, such as binpac [22] and GAPA [2],
has advocated specifying the protocol format using a
domain-specific language, and then using a generic pro-
tocol analyzer runtime to parse protocol traffic according
to the specification. BinPac and GAPA are able to map
the protocol structure over the raw network data, pars-
ing packets into messages that contain various fields as
expressed in the specification, and extracting the proto-
col state information based on the sequence of messages
already parsed. In our work, we employ GAPA. We find
that GAPA can be readily used for file format specifi-
cation and analysis. A GAPA specification, in short a
Spec, specifies message format, protocol state machine,
and message handlers (of which there is one per pro-
tocol state) and carries out the protocol state transition.
The message format is expressed in an enhanced BNF
format similar to the one used in RFC’s. The run-time
value of earlier parts of the message may determine how
later parts of the message are parsed. For example, a
size field before an item array indicates the number of
items to parse at run-time; a field value in one message
may determine how to parse parts of a subsequent mes-
sage. Such context-sensitive characteristics of the data
formats are well supported in GAPA through enhancing
the BNF notation and embedding code in the BNF rules.

4. Design

4.1. Goals

We have the following goals for ShieldGen’s data
patch generation:

• No false positives. ShieldGen signatures should
have no more false positives than the oracle.

• Minimize the number of false negatives. The rate of
false negatives should be as low as possible.

• Minimize the number of probes. ShieldGen should
be reasonably efficient.

Ideally, we would also like the signature to be free of
false negatives. However, computing a signature that has
neither false positives nor false negatives is equivalent to
solving the halting problem [3].



protocol SQL {
transport = (1434/UDP);
grammar {
SQLMessage -> type:byte rest:".*";

};

state-machine SQLClientOrServer {
(S_Init, IN)->H_SQLMessage;
(S_Init, OUT)->H_SQLMessage;
initial_state = S_Init;
final_state = S_Final;

};

handler H_SQLMessage(SQLMessage) {
/* the if condition below is the

vulnerability predicate being
added by ShieldGen */

@SQLMessage {
if (type==0x04 && size(rest)>=97)

return EXPLOIT;
}
return S_Final;

};
};

Figure 2. Data Patch for the Vulnerability behind Slammer

4.2. ShieldGen’s Data Patch

The data patch generated by ShieldGen is a refine-
ment of the data format specification that is to be fed
to a data analyzer of a firewall or an anti-virus program
for patch-equivalent protection. The refinement includes
a vulnerability predicate on fields of the input. If the
predicate evaluates to true the input is classified as an
exploit and removed. In the GAPA language, the pred-
icate is expressed as a condition in an if-statement that
is inserted into the appropriate data handler. For net-
work data, the data handler is the message handler at
the protocol state at which attacks can happen. To adapt
GAPA for file data, the entire file is treated as one mes-
sage, the protocol state machine specification contains
just one state, and there is just one data handler. Fig-
ure 2 shows an example data patch for the vulnerability
behind the Slammer attack [17].

4.3. Data Patch Generation

4.3.1. Overview

Central to ShieldGen’s data patch generation is the
derivation of the vulnerability predicate. Figure 3 gives
an overview of the data patch generation procedure of
ShieldGen.

Our first step is to use our data analyzer and check
whether the input (i.e., the attack instance) violates any
data format constraints (e.g., the number of bytes in a
byte array must correspond to the value of its size field).
For the violated constraints, we construct probes that
satisfy the constraint (e.g., changing the size field to cor-
respond to the size of the byte array in the original attack
packet). If the probe is reported unsuccessful by the ora-
cle, namely it failed to exploit the vulnerability, the data
patch will simply be the data format specification that

enforces the corresponding data format constraint. If the
probe is successful, we move on to the next step.

Our next step is to generate the attack predicate. This
predicate is a conjunction of boolean conditions with
each data field (of the message used in the attack) equal-
ing the value in the attack input. We can easily obtain
the attack predicate by sending the attack input and its
data format to the data analyzer.

Of course, this predicate incurs no false positives in
attack detection, but is very restrictive and admits only
this attack input at its protocol state. The subsequent
steps of our algorithm relax or remove conditions that
are specific to the original attack input, so that we can
admit more attack variants. We do so by generating
probes, potential attack variants, based on the data for-
mat, and sending them to the oracle. If the oracle de-
termines that a probe is a new attack variant, we adjust
the vulnerability predicate so that the confirmed new at-
tack instance can be admitted as well. For example, if
all values of a data field have been tried, and the oracle
classifies all the corresponding probes as attacks, then
that field is a don’t-care field, and we can remove the
condition on the data field from the predicate.

One challenge in probe generation is that we must
generate legitimate messages that satisfy protocol se-
mantics including session semantics and cross-field cor-
relation within a message. For example, the session ID
field of all message of a session should be the same.
Some examples of field correlations within a message
are: length field = sizeof(all fields), checksum field =
checksum (all fields), hash field = hash (another field).
It is important that such semantics are obeyed in our
probes; otherwise, the oracle’s answer to illegitimate
probes could mislead our judgment on the field under
experiment. We include as much protocol semantics as
we know about a protocol into its Spec. In our prototype,
we have implemented protocol semantics for lengths and
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session IDs; previous work RolePlayer [8] has shown
that probes that obey these two semantics work well for
a wide range of protocols such as FTP, RPC, and SMB.
Note that a probe may contain multiple protocol mes-
sages including those messages that precede the offend-
ing message for session initiation and application con-
text setup.

The efficiency metric of such a probing scheme is
the number of probes. Some probes can be parallelized
while some need to be sequential, namely, if the con-
struction of a later probe is dependent on the outcome
of an earlier probe. Given enough machines, parallel
probes can be sped up by evaluating probes in parallel.

It is typically infeasible to probe the oracle with all
combinations of values of each data field that appears in
the input. Therefore, we reduce the number of probes in
the following ways.

First, there may be iterative elements in the attack
data, such as a sequence of records which may be ex-
pressed as “records → record records | nil;” or “itemAr-
ray → size:uint8 items:int[byte]” in the data format
Spec. Such iterative elements can also introduce numer-
ous, repetitive data fields which may not all matter to
the vulnerability predicate construction (e.g., it could be
the case that just a particular iterative element triggers
the vulnerability). Because we can recognize iterative
elements based on the Spec, we can issue a probe that
contains just one element to see whether the number of
elements matters; and then based on the oracle’s answer,
we issue subsequent probes. Being able to recognize it-

erative elements in the zero-day attack can significantly
reduces the number of probes.

Second, by obeying protocol semantics and elimi-
nating illegitimate probes, we can have a reduction in
the number of probes needed. It is possible that an ex-
pressed constraint may not actually be a constraint in an
implementation. For example, an application may allow
the size constraint to be violated. We use a probe to de-
termine whether such a constraint matters.

At last, for network input that contains a sequence of
messages, it is highly likely that the vulnerability pred-
icate is only dependent on the last message. This is be-
cause vulnerabilities are often localized. Given that mes-
sage handlers for each message are typically separate
code pieces, if an attack happens during the handling of
a message, the vulnerability likely affects the message
handling for that message only. In this case, having con-
ditions on data fields of earlier messages will cause false
negatives in the resulting vulnerability predicate which
will not capture attack variants that take a different mes-
sage sequence. Here, we make the assumption that only
the content of last message determines whether the in-
put exploits the vulnerability and that the data analyzer
naturally traces the protocol context before reaching the
handler of the last message. We will discuss exceptions
that violate this assumption in Section 6.

4.3.2. Probe Generation Algorithm

Now, we present our probe generation algorithm in
detail. When the oracle detects an attack, it also outputs



the byte offset of the offending byte in the input (Sec-
tion 3.1). In general, the offending byte may fall into an
arbitrary field in the input packet.

Buffer overrun heuristic for character strings: We
first want to find out whether we are dealing with a
buffer overrun vulnerability. We use a heuristic: If the
offending byte lies in the middle of a byte or unicode
string then ShieldGen diagnoses a buffer overrun and
adds the following condition as a refinement.

sizeof(buffer) >

offendingByte offset - bufferStart offset

The argument for why this heuristic is accurate de-
pends on the type of alert the Vigilante detector issued.

Case 1: ACE alerts: If the application was about to
execute a ret instruction when the alert was issued then
a return address on the stack was corrupted by input data.
It is almost certain that the cause of this condition was a
stack buffer overrun.

If the application was about to execute an indirect
jmp or call instruction then the corresponding func-
tion pointer contained input data. Even if this did rep-
resent legitimate application behavior (i.e., the applica-
tion intended to use input data as a function pointer),
an accurate Spec would declare this function pointer as
a four-byte integer, and not as a substring of a byte or
unicode string.

Case 2: AEC alerts: The application was about to
execute an instruction that originated in the middle of
a byte or unicode string in the input. It appears highly
likely that this was caused by a buffer overrun.

Case 3: AFA alerts: The application was about to
make a critical system call with a parameter that orig-
inated in the middle of a byte or unicode string in the
input. If this was legitimate application behavior, this
parameter should appear as a separate data field in an
accurate Spec. In this case, the parameter would not lie
in the middle of a larger string field. Again, this is a
strong indication of a buffer overrun.

Iteration removal: Many popular input formats in-
clude arbitrary sequences of largely independent ele-
ments (records). For example, HTML files contain
sequences of tags. Most audio and video files con-
sist of sequences of chunks of compressed audio or
video data. WMF files consist of a sequence of draw-
ing command records. In all cases, the file con-
tains a sequence of records. Rendering applications
typically have different handler functions for different
record types. For example, WMF record types include

Ellipse, Rectangle or Escape. Each record type
is processed by a corresponding handler function. Vul-
nerabilities are typically located in a particular handler
function. In this case, any input that contains a malicious
record is an attack — irrespective of what other records
may exist in the input. This poses special challenges to
execution-trace-based signature generation mechanisms
(Section 2).

In ShieldGen, we can cope with such iterative ele-
ments much more easily because they are well specified
in the Spec. A critical step in our algorithm is to remove
all iterative elements that are not necessary to exploit
the vulnerability. This not only reduces the number of
the probes needed but also improves the accuracy of the
generated signature. At a high level, we generate probes
from which we have removed some of the iterative ele-
ments and feed the probes into the oracle. If the probe
still exploits the vulnerability then the iterative elements
that were removed in the probe can be omitted. Oth-
erwise, one or more of the iterative elements that had
been removed from the probe are necessary and need to
be added. This search procedure is described in more
detail below.

In the theoretical worst case, this procedure may not
lead to any simplification of the input — namely if all it-
erative elements in the input are necessary to exploit the
vulnerability. However, for the real world vulnerabilities
we have observed, the procedure rapidly converges to a
probe in which only one or two iterative elements are
left. This is consistent with our observation that records
are independent and that vulnerabilities are typically lo-
cated in the handler for a particular record type.

In more detail, our search is aided by the fact that the
Vigilante detector identifies the offending data in the in-
put. The data analyzer can map this information to a par-
ticular iterative element — the offending element. Given
our heuristic observation that typically only one or two
iterative elements are necessary to exploit the vulnera-
bility, we generate the first probe by removing all iter-
ative elements except for the offending element. If the
minimal probe does not succeed as an attack, we have
to add iterative elements back into the probe to make it
work. Iteration can be hierarchical, namely, an iterative
element can have another iterative structure in it, and so
on. In our algorithm, we first add back all iterative ele-
ments from the original input at the lowest hierarchical
level where the offending byte is located. We send such
a probe to the oracle. If the oracle detects the probe as
an attack, we then try to eliminate the iterative elements
at the lowest level using a divide-and-conquer mecha-
nism: We split all the iterative elements at this level into



N parts (for some N > 1). We construct N parallel
probes with each probe dropping one of the N parts. If
a probe is successful, the associated iterative elements
can be dropped; otherwise, we further divide the 1/N
portion of the interactive elements N ways and send an-
other round of parallel probes. We do so until we find
the iterative elements that must exist to make a probe
work.

If the offending byte does not belong to any iterative
element, or we still do not have a successful attack after
adding iterative elements at all levels around the offend-
ing byte, then we need to add the iterative elements that
do not contain the offending byte. In this case, we take
an approach similar to how we add back elements con-
taining the offending byte. The only difference is that
we do it top-down, starting from the highest hierarchi-
cal level. We first use the divide-and-conquer mecha-
nism to find what elements at the highest level must be
added back. Then for each element that must be added
back, we go down one level inside it and use the same
mechanism to find out what elements in this lower level
must be added back. We continue this procedure until
we reach the lowest level.

Our iterative element removal shares the same intu-
ition as the hierarchical delta debugging technique [16],
which leverages the hierarchical structure of the input
data to expedite the procedure of minimizing failure-
inducing inputs for more effective debugging.

Eliminating irrelevant field conditions: Next, we
construct probes over the remaining data fields to elim-
inate don’t-care fields and to find additional values of
the data fields for which the attack succeeds. We cannot
afford sending probes in a combinatoric fashion which
would result in an exponential number of probes. In-
stead, we evaluate one field at a time, setting the values
of all other fields to their respective values in the original
input. We obey the data format semantics in our probe
construction as mentioned earlier.

We use the following sampling heuristics to further
reduce the number of probes for evaluating each field:
(1) For any base type data field such as integer, we try its
minimum value, its maximum value, and sample some
number of random values below and above the input
value. (2) For character strings, we generate a random
string by taking a random non-zero value for each byte;
and we send several samples of such random strings. (3)
For byte arrays, we use a random value for each byte
rather than non-zero value.

When all samples for a field lead to probes that ex-
ploit the vulnerability, we consider the field as a don’t-

care and remove it from the predicate. Our sampling
can produce both false negatives and false positives. In
our evaluation, we have not observed any cases in which
sampling introduces false positives. As discussed in
Section 6, it may be possible to avoid this problem by
leveraging Vigilante filter conditions.

At the end of this process we are left with a set of
input fields fi and values for each field Vi, such that the
attack will be triggered if value(fi) ∈ Vi for all i. The
output of our algorithm is the conjunction of these con-
ditions. This is our approximation of the vulnerability
predicate. It is possible to have more complex vulner-
ability conditions that involve complex calculations on
multiple fields. We discuss possible approaches to such
complex conditions in Section 6.

5. Implementation and Evaluation

We have developed a prototype of ShieldGen. Our
prototype system consists of a re-implementation of
the Vigilante [4] zero-day detector as our oracle, the
GAPA [2] data analyzer, and a 1,500 line perl script that
implements probe generation and vulnerability predicate
derivation.

We evaluate ShieldGen on its accuracy, efficiency,
and applicability in two ways. First, we conduct three
case studies, using ShieldGen to generate data patches
for three known vulnerabilities. We evaluate the accu-
racy of the data patches and efficiency of their genera-
tion. Second, we conduct a pencil-and-paper vulnera-
bility study to estimate ShieldGen’s coverage as well as
its potential accuracy. We measure efficiency in terms
of the number of parallel probes and the number of se-
quential probes (Section 4.3). Each probe takes about
10 seconds; we believe there is much room for efficiency
improvement for probe processing as we discuss in more
detail in Section 6.

5.1. Case Studies

We ran ShieldGen for three well known vulnerabili-
ties: the vulnerabilities behind Slammer [17] in the SQL
Server 2000 Resolution Service and Blaster [28] in the
Windows RPC service, and a Windows Metafile (WMF)
vulnerability [26]. We chose these case studies because
they cover both file-based and network-based vulnera-
bilities. For the latter, they cover both single message
and multiple-message based vulnerabilities: The vulner-
able WMF application uses file input while the vulnera-
ble SQL and RPC services take network input; exploits
against the SQL vulnerability are very simple and re-



quire just one packet while exploits against the RPC vul-
nerability are more complex and require a sequence of
messages.

We conducted our case study in an isolated testbed of
three virtual machines (VMs) running Microsoft Virtual
PC [15]. One VM is installed with an unpatched Win-
dows 2000 Server and runs the Vigilante-instrumented
SQL service and RPC service, serving as the oracle
for attacks exploiting the vulnerabilities behind Slam-
mer and Blaster. We use the second VM to send net-
work probes to the SQL or RPC service. The third VM
plays the role of the oracle for the attacks against the
WMF vulnerability. The VM is installed with an un-
patched version of Windows XP Professional (Service
Pack 2). We use the Windows Picture and Fax Viewer
as the WMF application. The WMF probes are gener-
ated in the same VM.

In our current prototype, during the base type field
sampling phase of the probe generation (Section 4.3),
we sample the minimum value, maximum value, one
random value that is smaller than the corresponding
value in the original attack data, and one random value
that is larger, if applicable. For strings and byte arrays,
we sample a random string or byte array for three times.

5.1.1. The SQL Vulnerability

The SQL vulnerability [12] is a stack buffer overrun
vulnerability in the SQL Server 2000 Resolution Ser-
vice (SSRS), which provides server resolution service
for multiple SQL server instances running on the same
machine. SSRS listens for requests on port 1434/udp
and returns the IP address and port number of the SQL
server instance that runs the requested database.

The message format of the UDP request consists of
just two fields, a byte followed by a byte array. We
obtained the original attack trace by launching an at-
tack from a standalone program that replaces the origi-
nal self-propagation payload in the Slammer worm with
a windows shell.

ShieldGen determined that the attack is a stack buffer
overrun from the output of Vigilante and constructed a
buffer overrun vulnerability condition. Then, ShieldGen
further issued four parallel probes to try different val-
ues on the first byte. ShieldGen successfully generated
the correct vulnerability signature as shown in Figure 2.
This signature adds two refinements to the GAPA Spec:
the first byte must be 0x04 and the minimal size of the
byte array must be 97 bytes. This signature yields no
false positives but may have harmless false negatives.
These false negatives would have input longer than the
allocated buffer size but shorter than the minimal size

to overwrite the return address. Thus these false nega-
tives will not be able to compromise the system. The
Vigilante signature is similarly accurate.

5.1.2. The RPC Vulnerability

The RPC vulnerability [13] is a stack buffer over-
run vulnerability in the RemoteActivation and the ISys-
temActivator interface in Microsoft’s DCOM RPC ser-
vice. We experimented only with the RemoteActivation
interface.

We obtained the RPC GAPA Spec, including the for-
mat for the RemoteActivation interface. We used the
Metasploit framework [18] to generate an attack in-
stance.

ShieldGen determined that this is a stack buffer over-
run, and constructed a buffer overrun vulnerability con-
dition based on the Vigilante output: The minimal size
of the buffer field for a successful attack must be 40
bytes. We probed that the size and session ID constraints
do matter in the RPC implementation. Our probes sat-
isfy these constraints. ShieldGen issued 107 parallel
probes to find if other fields than the buffer field are
don’t-care fields. The vulnerability condition excluding
the buffer overrun is the conjunction of the following
conditions: rpc vers == 0x5, rpc minor ==
0x01, packet drep == 0x10, version major
== 0x5, extension ptr == 0, offset == 0.
Due to lack of space, we show the signature at [1]; the
signature has about 300 lines.

Our signature has no false positives, but has false neg-
atives due to the conditions extension ptr == 0
and offset == 0. These false negatives arose be-
cause our GAPA Spec was not complete. While sam-
pling values for extension ptr, our probes did not
include an extension record in the message. In the case
of offset, we did not capture the offset constraint.
The other conditions are benign based on our under-
standing of the RPC protocol.

For comparison, the filter produced by the Vigilante
filter generator contains conditions on 22 additional
fields that ShieldGen has classified as don’t-cares.

5.1.3. The WMF Vulnerability

A Windows Metafile (WMF) file contains a sequence
of records that map to Graphic Display Interface (GDI)
functions to create images. For example, a Rectangle
record in a WMF file tells the graphics rendering library
to draw a rectangle in the image. The WMF vulnera-
bility [14] lies in a SETABORTPROC Escape record.
An attacker can create a malicious WMF file by adding



a SETABORTPROC Escape record with a byte array
as a field in the record. The content of the byte array
is treated as executable code (for the abort procedure).
When the file is opened, the code in the byte array will
be executed.

We developed a GAPA Spec for the WMF file format.
WMF records are iterative elements in the Spec. We
wrote a standalone program that creates malicious WMF
files by adding a SETABORTPROC Escape record (with
a piece of code) in the middle of a randomly generated
sequence of regular draw records.

ShieldGen first determined that this is not a buffer
overrun attack because the offending byte is the first byte
of a byte array that stores the piece of code. ShieldGen
then issued a probe after removing all iterative elements
and found that it failed. Next, ShieldGen issued log(M)
(M is the number of regular draw records in the attack
file) sequential probes to add back iterative elements. It
found that there must be one regular draw record follow-
ing the Escape record; otherwise, the application does
not execute the code. It then issued 72 parallel probes to
find if any field left in the minimal attack file is a don’t-
care. In addition to the requirement of a regular draw
record following the Escape record, the vulnerability
predicate contains a conjunction of mf type == 0x1,
version number == 0x0300, escape num ==
0x9, and the file must be ended with an EOF record.
Due to lack of space, we show the signature at [31]; the
signature has about 130 lines.

A close inspection of the vulnerability at the source
code level reveals that these conditions are too strong.
There is one other value for both the mf type and
version number field for which an attack would
succeed. ShieldGen did not find these values because
it only samples field values, rather than exhaustively
searching them.

The filter produced by the original Vigilante filter
generator contains conditions for each record in the
WMF file — including benign draw records. The filter
is, thus, attack specific. In contrast, ShieldGen correctly
removed all the unnecessary iterative data fields.

5.2. Vulnerability Coverage

Methodology: We have performed a pencil-and-paper
vulnerability study in order to evaluate ShieldGen on a
larger sample of real-world vulnerabilities. More pre-
cisely, we are trying to determine whether the follow-
ing claims can be made for a significant number of real-
world vulnerabilities: (1) The overall approach of auto-
matic data patch generation is applicable. (2) Iteration

removal is relevant and ShieldGen can successfully re-
move iteration from the input. (3) The filter condition
produced by ShieldGen is accurate. Furthermore, we
will compare the filter quality of ShieldGen with that of
execution trace methods.

To cover a larger sample of vulnerabilities, we had
to limit the amount of effort needed per vulnerability.
Thus, we did not run ShieldGen, which would have re-
quired building exploits and GAPA Specs for each vul-
nerability. Even so, the analysis is quite work intensive
and requires understanding input formats and low-level
application behavior for a very diverse set of applica-
tions.

It was not always clear how to count vulnerabilities.
In a number of cases, the fault lies in lower level code
such as dynamically linked libraries (DLLs) that can be
used by any number of applications. We counted such
cases as a single vulnerability and evaluated it against
the application that seemed most likely to be affected.

Vulnerability classification: As a first step, we exam-
ined 377 vulnerabilities for which Microsoft has issued
security bulletins between 2003 and 2006. We found
157 vulnerabilities that can be exploited by either net-
work or file input. These vulnerabilities can in princi-
ple be shielded with data patches. The remaining vul-
nerabilities fall into the following categories: (1) denial
of service vulnerabilities and crashes (55 vulnerabili-
ties); (2) access control problems (25 vulnerabilities);
(3) scripting problems (17 vulnerabilities); (4) miscella-
neous problems (34 vulnerabilities). We were not able
to classify 89 vulnerabilities because we did not have
enough information about them.

Filter quality of ShieldGen: Next, we chose 25 vul-
nerabilities from the 157 vulnerabilities that can be
shielded by data patches. Our choice was primarily
based on whether we could analyze a vulnerability with
reasonable effort — which depended on the amount of
information available and on our knowledge of the ap-
plications and input formats involved. We performed a
detailed pencil-and-paper analysis of these 25 vulnera-
bilities and tried to determine if ShieldGen could gen-
erate precise signatures for them. Table 1 displays the
results of our analysis. We begin by considering iter-
ation removal. Seventeen of the 25 vulnerabilities are
associated with complex input formats that admit itera-
tion. Examples include different multimedia file formats
(e.g., WMF, WMV), HTML web pages, word processor
and spread sheet files. ShieldGen can remove all unnec-
essary iterative elements in exploits for all 17 vulnera-



ShieldGen Execution Trace Methods
Precise Filter 19 6
Imprecise Filter 6 19
Total 25 25

Table 1. Our assessment of ShieldGen’s
coverage.

bilities. Most of the remaining eight vulnerabilities for
which iteration removal appears irrelevant involve RPC
calls.

After iteration has been removed, ShieldGen has to
compute filter conditions for the remaining fields. Next,
we consider the quality of those conditions. We consider
ShieldGen sufficiently precise for a vulnerability if the
union of a small number of ShieldGen data patches cov-
ers the vulnerability completely without suffering from
false positives. Ideally, a single data patch will be able
to cover the vulnerability. However, several vulnerabili-
ties in our sample were exploitable from a small number
of independent interfaces (between 2 and 10) — requir-
ing the same number of data patches. For example, the
RPC (Blaster) vulnerability can be exploited by means
of two different RPC calls. We believe that, in a prac-
tical setting, ShieldGen data patches will be considered
precise if they cover the vulnerability after being given
an attack instance for each of the two RPC calls. Based
on this criterion, ShieldGen produces precise filters for
19 of the 25 vulnerabilities.

Failure analysis: The six vulnerabilities for which
ShieldGen does not produce precise filters can be cat-
egorized as follows:

• Complex conditions: For several vulnerabilities,
the precise condition involves functions of several
input fields. For example, in one case the vulnera-
bility is triggered if and only if the combined length
of two separate strings in the input exceeds a cer-
tain limit. In another case, the vulnerability is trig-
gered if and only if the value of one integer field in
the input is larger than the value of another integer
field.

• Unchecked array indices: In two cases, the appli-
cation uses a field from the input as an index into
an array without checking whether the index falls
within the bounds of the array. Without an exter-
nally provided specification, it is notoriously hard
to infer what the array bounds are.

• In one case, the application uses a collection of old
buffers whose size does not match the requirements
of the data it is currently processing. This gives rise
to a large number of variants of buffer overflows
— depending on the data for which the buffers had
been originally allocated. Conditions of this type
are hard to even formulate and very hard to infer
automatically.

Comparison with execution trace methods: Next,
we estimate how existing filter generation algorithms
that are based on execution traces [3, 4, 6, 19] would be-
have on the vulnerabilities in our sample. We assume
that these algorithms can detect simple loops. Such a
mechanism is described in [3] and could easily be added
to other schemes. Without such a mechanism, filters are
specific to the lengths of the strings in the attack instance
from which they were generated. Such filters would be
fragile.

For the 17 vulnerabilities for which iteration removal
is relevant, the execution path of the application can be
strongly manipulated by the attacker. As outlined ear-
lier, the attacker can generate exploits by adding arbi-
trary sequences of iterative elements. Each sequence
of iterative elements will produce a corresponding se-
quence of conditions in an execution trace filter. This
makes execution trace filters for these 17 vulnerabilities
very fragile and exploit specific.

We estimate that execution trace methods could gen-
erate precise filters for about six of the remaining eight
vulnerabilities. The other two vulnerabilities involve
complex conditions that are associated with multiple ex-
ecutions paths.

We did not try to determine what filters the schemes
in [11, 30, 32] would produce for each of the 25 vulner-
abilities. Based on the general comparison in Section 2,
we believe that, overall, those filters are less precise than
ShieldGen filters.

6. Discussion and Future Work

Quality of the data format specification: For our
scheme, the quality of the data format specification mat-
ters. For example, an unspecified constraint can result
in wasted probes and yield unneeded vulnerability con-
ditions that cause false negatives. As another example, if
a specification carelessly lumps multiple fields together
into a byte array, we would not have the right seman-
tic information about the data — ShieldGen may not
be able to determine whether a buffer overrun occurred



(Section 4.3). While obtaining a high quality data for-
mat specification is not easy, such a specification is of-
ten desirable for many different purposes and could be
a one-time effort. It is also easy to imagine that such a
high quality specification can be obtained from the con-
text of protocol or file format compliance testing.

Complex filter conditions: In our vulnerability cov-
erage study, the most frequent reason why ShieldGen
failed to produce a precise filter was the complex nature
of one or more of the filter conditions. ShieldGen uses
the detector as a black box, yes/no oracle. There are fun-
damental limits on the complexity of the conditions that
can be inferred in this way. In practice, deriving even
simple conditions involving more than one field (e.g.,
field-A + field-B > 256) would require more
oracle queries than is feasible.

In contrast, execution trace methods use knowledge
about the vulnerable program and the execution trace
that leads to the vulnerability in computing their filter
conditions. Indeed, these methods can infer arbitrarily
complex filter conditions — as long as they can be com-
puted along a single execution path. This suggests the
possibility of improving ShieldGen data patches by de-
riving filter conditions from an execution trace filter gen-
erator such as [3, 4, 6, 19].

In principle, this is straightforward. Vigilante filters
are symbolic predicates on the values at certain offsets
in the input. ShieldGen knows how to map such offsets
to the fields defined by the Spec — thus obtaining fil-
ter conditions for these fields. However, it is not clear
whether these conditions are an improvement over the
conditions that ShieldGen can generate on its own. The
former encode a single execution path, whereas the lat-
ter may correspond to arbitrarily many execution paths
that trigger the vulnerability. It is possible to identify
such cases by refining the search logic in ShieldGen—
but we leave the details to future work.

Probing time: In our current implementation, testing
a probe involves starting the application, attaching the
detector, sending the probe as input to the application,
waiting for the result and shutting down the application.
The total time per probe is about ten seconds. We esti-
mate that this time could be reduced to about two sec-
onds per probe with the help of flash cloning of virtual
machines [27]. The idea is to create a reference VM
in which the application and the detector have already
been started. The probes would be tested in clones of
the reference VM. After the test, the cloned VM would
be discarded. The overhead for cloning and discarding

a VM appears to be less than one second [27] — signif-
icantly less than the startup and shutdown times of our
target applications and the detector.

Attacks not delivered by the last message: Currently
we assume the vulnerability can only occur in the mes-
sage handling code of the last message and any message
sequence that leads to the same message handling will
also trigger the vulnerability. In practice, there exist ex-
ceptional cases. For example, an attack on an FTP server
may first create a directory with a long name and then
cause a buffer overrun in a subsequent directory listing
operation. ShieldGen can handle this kind of attack be-
cause Vigilante can return the byte offset of the offend-
ing byte in the attack data even when it is not in the last
message. In this case, we just need to generate probes
on messages starting from the one that contains the of-
fending byte.

7. Concluding Remarks

In this paper, we have presented ShieldGen, a sys-
tem for automatically generating data patches for an un-
known vulnerability, given a zero-day attack instance.
The key contribution of our paper is to leverage data for-
mat information to construct new attack instances, the
probes, and use a zero-day attack detector as an oracle
to guide our search for the vulnerability signature. To
make such a system practical, we used a number of tech-
niques to reduce the number of probes needed including
eliminating iterative elements, obeying data format con-
straints, and leveraging protocol context. We have im-
plemented a working prototype and experimented with
three known vulnerabilities and their respective attack
instances. We were able to generate high quality vul-
nerability signatures efficiently. Our signatures do not
contain many don’t-care data fields that are present in
signatures generated by existing execution trace meth-
ods. Therefore, our scheme could yield signatures with
significantly fewer false negatives. The false negatives
come from imperfect data format specifications and the
sampling technique used in our probe generation. We
also conducted a study of 377 vulnerabilities that were
published between 2003 and 2006. We estimate Shield-
Gen to have significant coverage of data-patchable vul-
nerabilities with superior accuracy when compared with
execution trace-based signatures.
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