
Failure Detectors and Extended Paxos for k-Set Agreement

Wei Chen
Microsoft Research Asia

weic@microsoft.com

Jialin Zhang∗

Tsinghua University
zhanggl02@mails.tsinghua.edu.cn

Yu Chen
Microsoft Research Asia
ychen@microsoft.com

Xuezheng Liu
Microsoft Research Asia
xueliu@microsoft.com

Abstract

Failure detector class Ωk has been defined in [18] as an
extension to failure detector Ω, and an algorithm has been
given in [16] to solve k-set agreement using Ωk in asyn-
chronous message-passing systems. In this paper, we extend
these previous work in two directions. First, we define two
new classes of failure detectors Ω′

k and Ω′′
k , which are new

ways of extending Ω, and show that they are equivalent to
Ωk. Class Ω′

k is more flexible than Ωk in that it does not
require the outputs to stabilize eventually, while class Ω′′

k

does not refer to other processes in its outputs. Second, we
present a new algorithm that solves k-set agreement using
Ω′′

k when a majority of processes do not crash. The algo-
rithm is a faithful extension of the Paxos algorithm [12],
and thus it inherits the efficiency, flexibility, and robustness
of the Paxos algorithm. In particular, it has better message
complexity than the algorithm in [16]. Both the new failure
detectors and the new algorithm enrich our understanding
of the k-set agreement problem.

1 Introduction

Failure detectors are introduced in [4] to circumvent the
impossibility result of solving asynchronous consensus [9].
Their abstractions encapsulate the synchrony conditions of
the systems needed to solve asynchronous consensus and
other problems in distributed computing. In [4] a rotating-
coordinator algorithm is shown to solve consensus in asyn-
chronous systems with a failure detector in class �S when
a majority of processes are correct (i.e., they do not crash).
In [3], failure detector class Ω, which is equivalent to �S
[8], is shown to be the weakest failure detector class solving

∗This work was supported in part by the National Natural Science
Foundation of China Grant 60553001, and the National Basic Research
Program of China Grant 2007CB807900,2007CB807901.

consensus. Class Ω is often referred to as leader electors. It
requires that each process outputs one process, and eventu-
ally all processes output the same correct process.

In [12], Lamport designed the Paxos algorithm that also
solves consensus in systems with a majority of correct pro-
cesses. Although implicit, the Paxos algorithm essentially
uses leader electors Ω. The core of the Paxos algorithm is
similar to the rotating-coordinator algorithm in [4], but the
Paxos algorithm has a number of attractive features in its
efficiency, flexibility, and robustness. Due to these features,
the Paxos algorithm has been implemented as a core service
in a number of distributed systems (e.g. [14, 2]).

The problem of k-set agreement is introduced in [5] as
a generalization of the consensus problem. In k-set agree-
ment, each process from a set of n > k processes proposes
a value, and makes an irrevocable decision on one value. It
needs to satisfy the following three properties: (1) Validity:
If a process decides v, then v has been proposed by some
process. (2) Uniform k-Agreement: There are at most k dif-
ferent decision values. (3) Termination: Eventually some
correct process decides.1

It has been shown that k-set agreement cannot be solved
if k processes may crash in the system [1, 11, 19], and a
number of studies have introduced various failure detectors
to circumvent this impossibility result [20, 17, 10, 15, 16].
In [16], Mostefaoui et.al. summarizes the relationship
among these failure detectors and show that class Ωk is the
weakest among them. A failure detector in Ωk outputs a
set of at most k processes and eventually the outputs on all
correct processes converge to the same set of processes that
contains at least one correct process. It is an extension of Ω,
and is originally introduced in [18] for studying wait-free
hierarchy in shared memory systems. In [16] an algorithm

1In asynchronous systems with reliable channels, a correct process that
decides can send out its decision value to all processes so that all correct
processes eventually decide. Therefore, our Termination property implies
a different version that requires all correct processes eventually decide.

is also presented to solve k-set agreement using Ωk in sys-
tems with a majority of correct processes.

In this paper, we extend both the study on Ωk and the
study on the algorithm for k-set agreement. We define
two new classes of failure detectors Ω′

k and Ω′′
k as differ-

ent ways to extend Ω, and show that they are equivalent to
Ωk by transformations between them in asynchronous sys-
tems. Each new class has its own feature. Failure detectors
in Ω′

k output a single process, which is required to be a cor-
rect process eventually (same as Ω), while the total number
of processes appearing in the outputs infinitely often is at
most k. Ω′

k is more flexible than Ωk in that it does not
require that the outputs of the failure detector on all pro-
cesses eventually stabilize. Failure detectors in Ω′′

k output
a Boolean value indicating whether the process itself is a
leader, and eventually the outputs stabilize and the number
of leaders is at least one and at most k. Ω′′

k differs from Ωk

and Ω′
k in that its outputs do not refer to other processes in

the system. This feature is particularly convenient when we
introduce partitioned failure detectors in [7], since we do
not need to concern about whether the failure detector out-
puts refer to processes in the same partitioned component
or not. Therefore, Ω′′

k serves as the basis for our study of
partitioned failure detectors in [7].

To show the equivalence of these failure detector classes
in the amount of information they provide, we show that
they can be transformed into one another. Moreover, we
demand that the transformation algorithms be parameter-
free, which means they do not contain any parameters such
as the value of k. In other words, the information about the
parameter k is contained within the failure detector outputs,
not provided by the transformation algorithms. Hence, the
transformations are generic ones working for any parameter
k. This also leads to an additional output lbound in Ω′

k and
Ω′′

k to replace the fixed parameter k. The lbound outputs
are numbers of at most k, and they eventually stabilize to
a single value, which is the upper bound on the number of
leaders eventually appearing in the system.

Next, we show how to extend the Paxos algorithm using
Ω to a new algorithm using Ω′′

k to solves k-set agreement,
in systems with a majority of correct processes. The key
idea of the extension is that, while in the Paxos algorithm
each acceptor can only accept one round and thus commit
to support only one proposer at a time, our algorithm allows
each acceptor to accept up to k rounds and thus commit to
support up to k proposers simultaneously. The realization
of this idea is not entirely straightforward, and it leads to
our full algorithm that handles all possible scenarios.

Our algorithm has several features. First, the algorithm is
parameter-free, the set agreement number k that it solves is
purely determined by the outputs of failure detectors in Ω′′

k .
This makes the algorithm generic for solving set agreement
with any number k, and makes it as our basis to study the

algorithm for k-set agreement with partitioned failure de-
tectors in [7]. The algorithm in [16] is also parameter-free,
so we match its generality in this sense.

Second, and more importantly, our algorithm is a faith-
ful extension to the original Paxos algorithm, and so it in-
herits the efficiency, flexibility and robustness of the Paxos
algorithm. For efficiency, in normal runs where all n pro-
cesses are correct and the � leaders elected by Ω′′

k are stable
from the beginning, our algorithm only cost O(�n) mes-
sages, better than the O(n2) messages needed by the algo-
rithm in [16]. Moreover, same as the Paxos algorithm, our
algorithm allows the efficient batching of many instances
of k-set agreement together, so the amortized time com-
plexity of completing one instance of k-set agreement is
one round-trip time, which matches that of the algorithm
in [16]. For flexibility, our algorithm allows assigning dif-
ferent processes to different roles. In particular, only the
proposers need access to failure detectors while acceptors
could be purely reactive processes. For robustness, our al-
gorithm can be made to tolerate transient failures by keep-
ing several key state variables in stable storage as in Paxos.
Therefore, we successfully extend the Paxos algorithm and
inherits its features to the context of k-set agreement.

Overall, our contributions are both on the study of new
failure detectors for k-set agreement, and on the study of
extending the Paxos algorithm to solve k-set agreement. We
believe that our study enriches the understanding of the k-
set agreement and its associated failure detectors.

The rest of the paper is organized as follows. Section 2
describes our system model. Section 3 defines the new
failure detectors and shows their equivalence. Section 4
presents the extended Paxos algorithm and discusses its fea-
tures. Section 5 concludes the paper. The full technical
report [6] contains further details including the correctness
proof and the improvement to the algorithm.

2 System Model

We consider asynchronous message passing distributed
systems augmented with failure detectors. Our formal
model is the same as the model in [3], and we explain the
main points in this section.

We consider a system with n (n > k) processes P =
{p1, p2, . . . , pn}. Let T be the set of time values, which are
non-negative integers. Processes do not have access to the
global time. A failure pattern F is a function from T to
2P , such that F (t) is the set of processes that have failed by
time t. A failed process does not recover. Let correct(F)
denote the set of correct processes, those that do not crash
in F . A failure detector history H is a function from P ×T
to an output range R, such that H(p, t) is the output of the
failure detector module of process p ∈ P at time t ∈ T . A
failure detector D is a function from each failure pattern to

2

a set of failure detector histories, representing the possible
failure detector outputs under failure pattern F .

Processes communicate with each other by sending and
receiving messages over communication channels, which
are available between every pair of processes. Channels are
reliable in that it does not create or duplicate messages, and
any message sent to any correct process is eventually re-
ceived.

A deterministic algorithm A using a failure detector D
executes by taking steps. In each step, a process p first re-
ceives a message (could be a null message), queries its fail-
ure detector module, then changes its local state and sends
out a finite number of messages to other processes. Each
step is completed at one time point t, but the process may
crash in the middle of taking its step. All steps have to be
legitimate, which means under failure pattern F and a fail-
ure detector history H ∈ D(F), if p takes a step at time t
and receives a message m from q, then p �∈ F (t), p’s failure
detector query output is H(p, t), and there must be a step
before t such that q sends m to p in that step. A run of al-
gorithm A with failure detector D is an infinite sequence of
such steps such that (a) every correct process takes an infi-
nite number of steps, and (b) every message sent to a correct
process is eventually received.

We consider the asynchronous system model, which
means there is no bound on the delay of messages and the
delay between steps that a process takes.

We say that a failure detector class C1 is weaker than
a failure detector class C2, if there is a transformation al-
gorithm T such that using any failure detector in C2, algo-
rithm T implements a failure detector in C1. In this case,
we denote it as C1 � C2 and also refer to it as C2 can be
transformed into C1. We say that C1 and C2 are equivalent if
C1 � C2 and C2 � C1.

3 Ωk-like failure detectors

In this section, we provide the formal specifications of
the two new classes of failure detectors Ω′

k and Ω′′
k , and

then show that they are equivalent to Ωk. We provide the
formal specification of Ωk first.

Failure detectors in Ωk outputs a set Leaders, which is
a set of processes to be considered as leaders. A failure
detector D is in the class Ωk, if for any failure pattern F
and any failure detector history H ∈ D(F), we have:

(Ω1) For any output, its size is at most k. Formally, ∀t ∈
T , ∀p �∈ F (t), |H(p, t)| ≤ k.

(Ω2) Eventually, all failure detector modules output the
same set of processes. Formally, ∃t0 ∈ T , ∀t1, t2 ≥
t0, ∀p1 �∈ F (t1), ∀p2 �∈ F (t2), H(p1, t1) =
H(p2, t2).

(Ω3) Eventually, at least one process in any output is cor-
rect. Formally, ∃t0 ∈ T , ∀t ≥ t0, ∀p �∈ F (t), ∃q ∈
correct(F), q ∈ H(p, t).

3.1 Specification of Ω′
k

As described in the introduction, for Ω′
k, we aim at fail-

ure detectors in which each process only selects one pro-
cess as a leader, not a set of processes as in Ωk. Moreover,
we would like to have more flexible failure detectors whose
outputs are not required to eventually stabilize as in Ωk.

More precisely, the output of Ω′
k is (leader, lbound),

where leader is a process that p believes to be the leader
at the moment, and lbound is a non-negative number that
p believes to be the upper bound of the number of possi-
ble leaders in the system. We denote H(p, t).leader and
H(p, t).lbound the leader part and the lbound part of out-
puts respectively for a failure detector history H .

A failure detector D is in the class Ω′
k if for any failure

pattern F and any failure detector history H ∈ D(F), we
have:

(Ω′1) The lbound outputs never exceed k. Formally, ∀t ∈
T , ∀p �∈ F (t), H(p, t).lbound ≤ k.

(Ω′2) Eventually, the lbound outputs of all processes do not
change and are the same. Formally, ∃t0 ∈ T , ∀t1, t2 ≥
t0, ∀p1 �∈ F (t1), ∀p2 �∈ F (t2), H(p1, t1).lbound =
H(p2, t2).lbound.

(Ω′3) Eventually, the leader output on every process is al-
ways a correct process. Formally, ∃t0 ∈ T , ∀t ≥
t0, ∀p �∈ F (t), H(p, t).leader ∈ correct(F).

(Ω′4) Eventually, the number of leaders is bounded by
lbound. Formally, ∃t0 ∈ T , ∀t ≥ t0, ∀p �∈
F (t), |{H(q, t′).leader | t′ > t0, q �∈ F (t′)}| ≤
H(p, t).lbound.

Several remarks are in order for the above definition.
First, one may see that properties (Ω′1) and (Ω′2) can be
trivially satisfied by hard-coding lbound to k. This, how-
ever, means that one has to pre-determine the parameter k.
This is not the case for Ωk, because according to (Ω1), the
parameter k could be any value that is at least the maximum
size of the Leaders outputs in a run. The implication is that,
if we hard-code lbound to k, any transformation from Ωk

to Ω′
k has to know the value of k in advance and it cannot

derive k from the outputs of Ωk. In this case, the transfor-
mation is not parameter-free, and Ω′

k is not as general as
Ωk.

Second, one may see that even if we keep lbound outputs
and property (Ω′1), property (Ω′2) can be satisfied by pro-
cesses exchanging their lbound values and taking the max-
imum value they see as their own lbound outputs. The rea-
son we keep this property is again to match the generality of
Ωk, in which the size of the Leaders outputs may decrease.

3

Thus, we prefer that lbound values, which essentially match
to the sizes of Leaders outputs in Ωk, to be able to decrease.

Third, properties (Ω′3) and (Ω′4) do not require that
eventually the leader outputs stabilize. Processes may keep
changing their leader outputs, as long as they point to at
most � correct processes, where � is the eventual lbound
value in the run. This is different from Ωk, which requires
that the outputs of a failure detector eventually stabilize.

3.2 Specification of Ω′′
k

We now introduce the third class of failure detectors Ω′′
k .

Failure detectors in Ω′′
k outputs (isLeader, lbound), where

isLeader is a Boolean variable indicating whether this pro-
cess is a leader or not, and lbound is a non-negative integer
with the same meaning as in Ω′

k. We say that a process p is
an eventual leader (in a failure detector history) in Ω′′

k if p is
correct and there is a time after which p’s isLeader outputs
are always True.

A failure detector D is in the class Ω′′
k if for any failure

pattern F and any failure detector history H ∈ D(F), we
have:

(Ω′′1) The lbound outputs never exceed k. Formally, ∀t ∈
T , ∀p �∈ F (t), H(p, t).lbound ≤ k.

(Ω′′2) Eventually, the lbound outputs of all processes
do not change and are the same. Formally,
∃t0 ∈ T , ∀t1, t2 ≥ t0, ∀p1 �∈ F (t1), ∀p2 �∈
F (t2), H(p1, t1).lbound = H(p2, t2).lbound.

(Ω′′3) Eventually the isLeader outputs on any cor-
rect process do not change. Formally, ∃t ∈
T , ∀p ∈ correct(F), ∀t′ > t, H(p, t).isLeader =
H(p, t′).isLeader.

(Ω′′4) There is at least one eventual leader. Formally,
|{p ∈ correct(F) | ∃t, ∀t′ > t, H(p, t′).isLeader =
True}| ≥ 1.

(Ω′′5) The number of eventual leaders is eventually
bounded by the lbound outputs. Formally, ∃t0 ∈
T , ∀t1 ≥ t0, |{p ∈ correct(F) | ∃t, ∀t′ >
t, H(p, t′).isLeader = True}| ≤ H(p, t1).lbound.

In the specification, the properties about lbound outputs
are the same. For the isLeader outputs, (Ω′′3) requires that
the isLeader output eventually stabilize, while (Ω′′4) and
(Ω′′5) require the number of eventual leaders to be at least
one and at most the eventual value of lbound.

The main feature of Ω′′
k is that its outputs only include a

Boolean value that refers to the leader status of each process
itself, and it does not refer to other processes as in Ωk and
Ω′

k. This is enough for the original Paxos algorithm and
the extended Paxos algorithm in Section 4, since a proposer
process only needs to know if itself is a leader to initiate a
new proposer round.

3.3 Equivalence of Ωk, Ω′
k, and Ω′′

k

To show the equivalence, we show three parameter-free
transformation algorithms: the first one is from Ωk to Ω′′

k ,
the second one is from Ω′′

k to Ω′
k, and the last one is from

Ω′
k to Ωk.
The transformation from Ωk to Ω′′

k is almost trivial: each
process p sets its lbound output of Ω′′

k to be the size of the
Leaders outputs of Ωk, and sets its isLeader output to true
if any only if p itself appears in the Leaders output of Ωk.
This transformation does not involve any messages and is
parameter-free. It is straightforward to verify its correct-
ness.

Lemma 1 Failure detector class Ωk can be transformed
into Ω′′

k , for any k ≥ 1.

Transforming failure detector class Ω′′
k to Ω′

k is also
straightforward. The lbound of Ω′′

k is directly transferred to
lbound of Ω′

k without change. Each process p periodically
checks its isLeader value in Ω′′

k , and if it is true, p sends a
heartbeat message to all processes. Whenever a process q
receives a heartbeat message from p, q sets its leader output
of Ω′

k to p. Obviously, this transformation is parameter-
free, and it is very simple to verify that the transformation
is correct. Thus we have:

Lemma 2 Failure detector class Ω′′
k can be transformed

into Ω′
k, for any k ≥ 1.

We now focus on the transformation from Ω′
k to Ωk,

which are more complicated than the previous two. The
complication comes from the requirement of stabilizing the
Leaders outputs of Ωk and make sure one of processes in
Leaders is correct. Figure 1 shows this transformation.

The basic idea is that each process pi maintains an array
c[], in which c[pj] counts the number of times for which pi

sees pj as a leader (line 6). It periodically sends its c[] to
all processes (line 7), and merges c[] with the ones received
from other processes (line 11). Then pi sorts all processes
into an array A[1..n] based on the counter values (c[A[1]]
has the highest counter value), and uses process ID to break
the tie (line 8). The Leaders output of Ωk is the first lbound
elements of A[] (line 9). This transformation bears some
resemblance to the transformation from �W to Ω in [8].

Lemma 3 The algorithm in Figure 1 transforms any failure
detector in Ω′

k into a failure detector in Ωk.

Proof. We fix an arbitrary failure pattern F , an arbitrary
failure detector history H of Ω′

k under F , and an arbitrary
run of the algorithm in Figure 1 with the failure pattern F
and the failure detector history H .

First, according to line 9, |Leaders| is bounded by lbound
value. By property (Ω′1), we thus see that |Leaders| is at
most k at all times. Thus (Ω1) holds.

4

On node pi:

1 Global variables:
2 (leader, lbound): output of Ω′

k , read-only
3 Leaders: output of Ωk, initially {pi}
4 c[p1..pn]: counters for all processes, initially 0

5 Repeat periodically:
6 p ← leader; c[p] ← c[p] + 1
7 for each pj ∈ P do send c[p1..pn] to pj

8 A[1..n] ← permutation of (p1, . . . , pn), such that
for all 1 ≤ x < y ≤ n, (c[A[x]], A[x]) > (c[A[y]], A[y])

9 Leaders ← A[1..lbound]

10 Upon receipt of cj [p1..pn] from a node pj :
11 for each pi ∈ P do c[pi] ← max{c[pi], cj [pi]}

Figure 1. Transformation from Ω′
k to Ωk.

By property (Ω′2), lbound output of all processes are
stable, let this value be lb. Let L be the set of processes
that appear infinitely often in the leader output of line 6 in
the fixed run. Let � = |L|, then by property (Ω′4), 1 ≤
� ≤ lb ≤ k. For process p ∈ L, c[p] increases infinitely
often in the algorithm. For process p /∈ L, c[p] eventually
stops increasing. So eventually L ⊆ Leaders for all correct
processes. By property (Ω′3), all processes in L are correct
processes. Thus (Ω3) holds.

For process p /∈ L, by line 11, c[p] of all correct pro-
cesses are eventually the same, so the other lb− � processes
in Leaders of all correct processes are the same. Thus (Ω2)
holds. �

From the algorithm and its proof, we see that a signifi-
cant amount of information exchange and manipulation is
needed to construct Ωk out of Ω′

k. This indicates that the
requirement of Ωk is rigid and less flexible. Thus, when we
study how to implement failure detectors in Ωk or how to
show another class of failure detectors can be transformed
into Ωk, it could be more complicated and require more
work. However, with Ω′

k as a more flexible alternative, the
above tasks could be simplified.

Moreover, notice that the transformation algorithm is
parameter-free, so it is generic for any parameter k, which
means Ω′

k contains all the information and the algorithm
does not provide any more information to construct Ωk.

3.4 Summary of Ωk, Ω′
k, and Ω′′

k

With Lemmata 1, 2, and 3, we can now state the follow-
ing theorem.

Theorem 1 The failure detector classes Ωk, Ω′
k, and Ω′′

k

are equivalent for any k ≥ 1.

Thus, we provide two new classes of failure detectors
that are equivalent to Ωk, and they enrich our understand-

ing of the different aspects that Ωk may bring. Class Ω′
k

shows that Ωk-like leader electors can be made to be single
leader output as the original Ω, and can be flexible with-
out eventual stabilization requirements. The complexity of
the transformation from Ω′

k to Ωk shows in a precise way
that the cost one may save if one does not need the eventual
stabilization requirements and only needs the more flexible
Ω′

k. Class Ω′′
k shows that one can also use Boolean outputs

to avoid referring to other processes in the system.
Our study aims at parameter-free transformations, so it

reflects the true equivalence among the classes of failure
detectors. For example, the lbound outputs introduced in
Ω′

k and Ω′′
k are to match the flexible information that Ωk

provides and to allow parameter-free transformations. We
would lose this flexibility if we were to replace lbound with
a fixed value k.

4 Extended Paxos algorithm

In this section, we present an algorithm that solves k-
set agreement problem using Ω′′

k in systems with a majority
of correct processes. The algorithm is an extension to the
Paxos algorithm [12] for solving consensus.

4.1 Algorithm description

Figures 2 and 3 present the extended Paxos algorithm
for k-set agreement using failure detectors in Ω′′

k in a sys-
tem where a majority of processes are correct. We use sim-
ilar terminologies as in the Paxos algorithm summarized
in [13]. Each process behaves both as a proposer and an
acceptor (see Section 4.2 for the extension of this point).
Proposers are active participants driving the progress in a
round-by-round fashion, while acceptors are passive par-
ticipants responding to proposers’ requests. A proposer p
periodically checks its failure detector output to see if it is
currently a leader, and if so and it is not already in a round, it
starts a new round with round number p round (lines 6–11).
Each round of proposer p has two phases: the preparation
phase and the acceptance phase. In the preparation phase
(lines 12–19), p sends a PREPARE message to all acceptors,
waits for responses from the acceptors, and either quits this
round or selects a new est value as the candidate for its deci-
sion. In the acceptance phase, (lines 20–24), p sends its est
value in an ACCEPT message to all acceptors, waits for re-
sponses from the acceptors, and either decides on est when
it receives a majority of ACK-ACC messages, or quits this
round otherwise. This basic structure is the same as the
Paxos algorithm. We now focus on the new extensions to
the algorithm.

In the Paxos algorithm, each acceptor can only accept
one round at any time, and thus support only one proposer
at any time. This works well with Ω failure detectors that

5

On proposer p with unique id i ∈ {1, . . . , n}:

Proposer variables:
1 proposal : the initial proposal value, read-only
2 (isLeader, lbound): Ω′′

k output, read-only
3 p round: current round number, initially process id i
4 p Rounds: top n rounds that p sees, initially {i}
5 taskid: unique id for each task started, initially 0

Run periodically if not decided yet
6 if isLeader = True and no task 1 running then
7 taskid ← taskid + 1;
8 if p round �∈ top(p Rounds, lbound) then
9 p round ← p round + t · n

such that p round + t · n > max p Rounds
10 p Rounds ← p Rounds ∪n {p round}
11 start task 1

Task 1: one round of p

12 send (PREPARE, p round, p Rounds, lbound, taskid) to
all acceptors

13 wait until [(1) received (NACK-PREP, R, taskid) from an
acceptor; or (2) received (ACK-PREP, R, TS, v, taskid)
from more than n/2 acceptors]

14 M1 ← {(ACK-PREP, R, TS, v, taskid) received
from acceptors}

15 M2 ← {(NACK-PREP, R, taskid) received from acceptors}
16 p Rounds ← p Rounds ∪n (

S
m∈M1∪M2

m.R)

17 if (1) M2 �= ∅ or
(2) some received R’s in M1 are different then stop this task

18 if ∀m ∈ M1, m.v = ⊥ then est ← proposal
19 else est ← m.v with m ∈ M1 and the highest m.TS

(based on 	n order)
20 send (ACCEPT, est , p Rounds, taskid) to all acceptors
21 wait until [(1) received (NACK-ACC, R, taskid) from an

acceptor; or (2) received (ACK-ACC, taskid) from
more than n/2 acceptors]

22 if (1) then
23 p Rounds ← p Rounds ∪n R; stop this task
24 decide(est)

Figure 2. Extended Paxos algorithm for k-set
agreement using Ω′′

k. Part I: proposer thread.

elect a single leader eventually to achieve consensus. For
k-set agreement with Ω′′

k failure detectors, the key exten-
sion is that each acceptor can accept multiple rounds at the
same time, and thus it may support multiple proposers who
believe they are leaders according to Ω′′

k . The acceptors
need to control the number of rounds it can accept simul-
taneously. This leads to the introduction of state variables
p Rounds, a Rounds and a TS, which we explain below.

Given a set of rounds R and a positive integer m, We
define top(R, m), ∪m, and �m, such that top(R, m) is a
function returning the m highest round numbers in R, ∪m

On acceptor q:

Acceptor variables:
25 a Rounds: top n rounds that q sees, initially ∅
26 a est: estimate of the final value, initially ⊥
27 a TS: top n rounds that q sees when q accepts a value,

initially ∅
28 Upon receipt of (PREPARE, r, R, lb, taskid) from p
29 a Rounds ← a Rounds ∪n R
30 if r �∈ top(a Rounds, lb) then
31 send (NACK-PREP, a Rounds, taskid) to p
32 else send (ACK-PREP, a Rounds, a TS, a est, taskid) to p

33 Upon receipt of (ACCEPT, v, R, taskid) from p
34 a Rounds ← a Rounds ∪n R
35 if R �= a Rounds then
36 send (NACK-ACC, a Rounds, taskid) to p
37 else
38 (a est, a TS) ← (v, R)
39 send (ACK-ACC, taskid) to p

Figure 3. Extended Paxos algorithm for k-set
agreement using Ω′′

k. Part II: acceptor thread.

is an operator such that R1 ∪m R2 = top(R1 ∪R2, m), and
�m is a partial order such that R1 �m R2 if and only if
R1 ∪m R2 = R2.

Variables p Rounds and a Rounds keep two sets of at
most n rounds that proposer p and acceptor q may work
with, respectively. Proposers and acceptors exchange their
p Rounds and a Rounds values and merge the value re-
ceived into their own value using operator ∪n (lines 16, 23,
29, 34). The result is that p Rounds values on proposer p
keeps increasing (based on order �n), so do the a Rounds
values on acceptor q. Essentially, p Rounds and a Rounds
record the top n rounds that p and q see so far, respectively.

Based on the value of a Rounds, acceptor q only accepts
a PREPARE message from a proposer p if p’s current round
number p round is in the top lb rounds that q sees, where
lb is the lbound output when p sends the message (line 30).
If q accepts the round, q sends an ACK-PREP message with
its current a est value and a kind of timestamp a TS (to be
explained shortly) to p; otherwise q sends a NACK-PREP

message to p.
If p receives a NACK-PREP message in its preparation

phase, it stops waiting for other messages (line 13), updates
its p Rounds value (line 16), and quits the round (line 17).
When the next time p starts a task for a new round, it checks
to make sure its p round is in top(p Rounds, lbound), and if
not so, it selects a new p round that is higher than any round
numbers in p Rounds and merge it into p Rounds (lines 6–
11). This is to guarantee that p’s round will eventually be
accepted by acceptors.

6

Another case where p may quit its preparation phase
is that among the ACK-PREP messages it has received,
the a Rounds values from the acceptors are not the same.
(line 17, condition (2)). This is to ensure that the major-
ity of acceptors are all accepting the same set of rounds for
the safety of k-set agreement. For liveness, eventually all
p Rounds and a Rounds will converge so proposers will not
always quit their preparation phases due to this condition.

If p receives ACK-PREP messages from a majority of ac-
ceptors with the same a Rounds values, p can complete its
preparation phase by selecting a new candidate value est for
its decision. If p does not see any value from the acceptors,
it uses its own proposal value (line 18). If p sees some val-
ues from the acceptors, it selects the value with the highest
timestamp TS among the messages it received, based on the
partial order �n (line 19). To ensure that this selection can
be done, we need to show that all TS values form a total
order based on �n. This is due to the majority intersection
property and the condition (2) in line 17.

After p selects a new est value, it enters the acceptance
phase by sending an ACCEPT message with the est value
to all acceptors (line 20). The purpose is to let at least a
majority of acceptors to record this value and support it.
When acceptor q receives this message, it first updates its
a Rounds (line 34), and then check if the received p Rounds
is the same as the updated a Rounds value, and if it is
not the same, it rejects the acceptance phase by sending
a NACK-ACC message with its a Rounds value back to p
(line 36). This is to guarantee that if proposer p success-
fully decides in its acceptance phase, its p Rounds value
must remain the same during the phase, which is impor-
tant to our proof of the Uniform k-Agreement property. If
q passes the check in line 35, it accepts the new est value
by record it locally to its a est variable, and also records
the a Rounds value (same as the p Rounds value of p) into
its timestamp variable a TS (line 38). Thus, another inter-
pretation of p Rounds and a Rounds is that they are a kind
of progressing times in the system. Variable a TS records
the time in this sense when acceptor q accepts the est value
from a proposer, and these timestamp values are used for
proposers on their preparation phases to select a value with
the highest timestamp, as we already explained. With this
time interpretation, our algorithm is closer to the original
Paxos algorithm, whose timestamp is just a single round
number.

After q accepts the value from p and records it locally, it
sends an ACK-ACC message to p (line 39). When p collects
a majority of ACK-ACC messages, it knows that its est value
has been “locked” into the system, and it can decide on this
value (line 24).

The following theorem summarizes the correctness of
the algorithm.

Theorem 2 The algorithm in Figures 2 and 3 solves k-set
agreement problem with any failure detector in Ω′′

k .

4.2 Features of the algorithm

The algorithm has a number of features that we now ex-
plain. First, the algorithm is parameter-free, that is, it does
not have any information related to the parameter k. The
fact that it solves k-set agreement is purely because it uses a
failure detector in Ω′′

k . If the algorithm is allowed to use pa-
rameter k, then it could be simplified such that (a) it does not
need the lbound outputs of Ω′′

k; (b) the variables p Rounds,
a Rounds, and a TS only keep the top k rounds; (c) the op-
erator ∪n is replaced with ∪k; (d) �n is replaced with �k;
and (e) top() is not needed in lines 8 and 30. However,
parameter-free algorithms are more flexible. If in one run
of the algorithm the failure detector in Ω′′

k actually behaves
like a failure detector in Ω′′

k′ with k′ < k, our algorithm
will let processes reach a better k′-set agreement instead of
k-set agreement. This cannot be achieved if we hard-code
k into the algorithm. Moreover, in [7] we extend this al-
gorithm to work with partitioned failure detectors, and in
that context the algorithm running in one partitioned com-
ponent does not know the value of k for the set agreement
it is solving. Therefore, a parameter-free algorithm is more
generic, and it works with any failure detector in the entire
family of {Ω′′

z}1≤z<n to solve set agreement problems. The
algorithm of [16] is also parameter-free, so our algorithm
matches the flexibility of the algorithm in [16].

Second, and more importantly, the algorithm is a faith-
ful extension of the original Paxos algorithm and inherits
its efficiency, flexibility and robustness. Same as the Paxos
algorithm, our algorithm has communication only between
the leader proposers and the acceptors. In the normal cases
when processes do not crash and the failure detector elect
� ≤ k leaders correctly according to the specification of Ω′′

k ,
each leader proposer spends 4n messages with the acceptors
to reach a decision, so totally it takes 4�n messages to termi-
nate the algorithm. The algorithm in [16] on the other hand
requires communication between any pair of processes, so
under the same normal cases, it takes 2n2 messages. There-
fore, when � < n/2, our algorithm has better message com-
plexity, and if � << n, the difference is O(n) verses O(n2).
Due to the exchange of p Rounds and a Rounds, our mes-
sage size is O(n). This is further reduced to O(k) in [6].
Therefore, our message size matches the algorithm in [16].

Also same as in the Paxos algorithm, when proposers
need to execute multiple instances of k-set agreement, each
leader proposer can batch multiple preparation phases and
execute it once, even before it knows its own proposal for
all instances. This is because the proposer does not need
to know its own proposal until the beginning of its accep-
tance phase. As a result, for multiple instances of k-set

7

agreement, our algorithm can further reduce time complex-
ity to one round trip time in normal cases, which matches
the Paxos algorithm and the algorithm in [16].

As for flexibility, our algorithm is easily adapted so that
proposers and acceptors could be separate processes. Let n
be the number of acceptors and m be the number of pro-
posers. All we need to do is to make sure that failure de-
tectors in Ω′′

k are among the m proposers, and in line 9 n
is replaced with m (or use other ways to generate unique
and increasing round numbers among the proposers). Note
that the acceptors in our algorithm do not query failure de-
tectors. So we can have a fixed number of n acceptors pas-
sively responding to proposer messages and do not need to
access failure detectors, while we have a flexible number
of proposers with access to failure detectors to initiate k-set
agreement. Therefore, our algorithm matches the flexibility
of the Paxos algorithm.

Finally, as in Paxos, our algorithm can also be made ro-
bust to transient failures of proposers and acceptors. As
long as the proposers and the acceptors keep their key state
variables proposal , p round, p Rounds, taskid, a Rounds,
a est, a TS in stable storage that survives transient failures,
and proposers restart new rounds after the transient failures,
our algorithm is still correct in spite of the loss of other state
information such as messages received.

5 Conclusion

In this paper, we study new failure detectors that are
equivalent to Ωk and study the extension of the Paxos al-
gorithm to k-set agreement. The new failure detectors help
us to understand various aspects that are related to Ωk, while
the extended Paxos algorithm provides us an efficient way
to solve k-set agreement. It would be interesting to further
this research to study how those Ωk-like failure detectors
can be implemented with weak synchrony requirements,
and how to apply the efficient k-set agreement algorithms
to solve distributed system problems that may have weaker
consistency requirements than consensus and may be mod-
eled in the k-set agreement context.

References

[1] E. Borowsky and E. Gafni. Generalized FLP impossibil-
ity result for t-resilient asynchronous computations. In Pro-
ceedings of the 25th ACM Symposium on Theory of Comput-
ing, pages 91–100. ACM Press, May 1993.

[2] M. Burrows. The Chubby lock service for loosely-coupled
distributed systems. In Proceedings of the 7th Symposium on
Operating System Design and Implementation, Nov. 2006.

[3] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest
failure detector for solving consensus. Journal of the ACM,
43(4):685–722, July 1996.

[4] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2):225–
267, Mar. 1996.

[5] S. Chaudhuri. More choices allow more faults: Set consen-
sus problems in totally asynchronous systems. Information
and Computation, 105(1):132–158, July 1993.

[6] W. Chen, J. Zhang, Y. Chen, and X. Liu. Failure detectors
and extended Paxos for k-set agreement. Technical Report
MSR-TR-2007-48, Microsoft Research, May 2007.

[7] W. Chen, J. Zhang, Y. Chen, and X. Liu. Weakening fail-
ure detectors for k-set agreement via the partition approach.
In Proceedings of the 21st International Symposium on Dis-
tributed Computing, Sept. 2007.

[8] F. C. Chu. Reducing Omega to Diamond W. Inf. Process.
Lett., 67(6):289–293, 1998.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of
the ACM, 32(2):374–382, Apr. 1985.

[10] M. Herlihy and L. D. Penso. Tight bounds for k-set agree-
ment with limited scope accuracy failure detectors. Dis-
tributed Computing, 18(2):157–166, 2005.

[11] M. Herlihy and N. Shavit. The topological structure of asyn-
chronous computability. Journal of the ACM, 46(6):858–
923, 1999.

[12] L. Lamport. The part-time parliament. ACM Transactions
on Computer Systems, 16(2):133–169, 1998.

[13] L. Lamport. Paxos made simple. ACM SIGACT News,
32(4):51–58, 2001.

[14] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath,
and L. Zhou. Boxwood: Abstractions as the foundation for
storage infrastructure. In Proceedings of the 6th Symposium
on Operating System Design and Implementation, San Fran-
cisco, CA, USA, Dec. 2004.

[15] A. Mostefaoui, S. Rajsbaum, and M. Raynal. The combined
power of conditions and failure detectors to solve asyn-
chronous set agreement. In Proceedings of the 24th ACM
Symposium on Principles of Distributed Computing, pages
179–188, July 2005.

[16] A. Mostefaoui, S. Rajsbaum, M. Raynal, and C. Travers. Ir-
reducibility and additivity of set agreement-oriented failure
detector classes. In Proceedings of the 25th ACM Sympo-
sium on Principles of Distributed Computing, pages 153–
162, July 2006. Full version in technical report 1758, IRISA,
2005.

[17] A. Mostefaoui and M. Raynal. k-set agreement with limited
accuracy failure detectors. In Proceedings of the 19th ACM
Symposium on Principles of Distributed Computing, pages
143–152, July 2000.

[18] G. Neiger. Failure detectors and the wait-free hierarchy. In
Proceedings of the 14th ACM Symposium on Principles of
Distributed Computing, pages 100–109, Aug. 1995.

[19] M. Saks and F. Zaharoglou. Wait-free k-set agreement is im-
possible: The topology of public knowledge. SIAM Journal
on Computing, 29(5):1449–1483, 2000.

[20] J. Yang, G. Neiger, and E. Gafni. Structured derivations of
consensus algorithms for failure detectors. In Proceedings
of the 17th ACM Symposium on Principles of Distributed
Computing, pages 297–306, June 1998.

8

