Information Needs in Collocated Software Development Teams

Amy]. Ko
Human-Computer Interaction Institute
Carnegie Mellon University
5000 Forbes Ave, Pittsburgh PA 15213
ajko@cs.cmu.edu

Abstract

Previous research has documented the fragmented na-
ture of software development work. To explain this in
more detail, we analyzed software developers’day-to-day
information needs. We observed seventeen developers at
alarge software company and transcribed their activities
in 9o-minute sessions. We analyzed these logs for the
information that developers sought, the sources that they
used, and the situations that prevented information from
being acquired. We identified twenty-one information
types and cataloged the outcome and source when each
type of information was sought. The most frequently
sought information included awareness about artifacts
and coworkers. The most often deferred searches in-
cluded knowledge about design and program behavior,
such as why code was written a particular way, what a
program was supposed to do, and the cause of a program
state. Developers often had to defer tasks because the
only source of knowledge was unavailable coworkers.

1. Introduction

Software development is an expensive and time-intensive
endeavor. Projects ship late and buggy, despite develop-
ers’ best efforts, and what seem like simple projects be-
come difficult and intractable [2]. Given the complex
work involved, this should not be surprising. Designing
software with a consistent vision requires the consensus
of many people, developers exert great efforts at under-
standing a system’s dependencies and behaviors [11],and
bugs can arise from large chasms between the cause and
the symptom, often making tools inapplicable [6].

One approach to understanding why these activities
are so difficult is to understand them from an informa-
tion perspective. Some studies have investigated informa-
tion sources, such as people [13], code repositories [5],
and bug reports [16]. Others have studied means of ac-
quiring information, such as email, instant messages
(1m), and informal conversations [16]. Studies have even
characterized developers’ strategies [9], for example, how
they decide whom to ask for help.

Robert DeLine and Gina Venolia
Microsoft Research
One Microsoft Way
Redmond, WA 98052
{rdeline, ginav}@microsoft.com

While these studies provide several concrete insights
about aspects of software development work, we still
know little about what information developers look for
and why they look for it. For example, what information
do developers use to triage bugs? What knowledge do
developers seek from their coworkers? What are develop-
ers looking for when they search source code or use a
debugger? By identifying the types of information that
developers seek, we might better understand what tools,
processes and practices could help them more easily find
such information.

To understand these information needs in more de-
tail, we performed a two-month field study of software
developers at Microsoft. We took a broad look, observing
17 groups across the corporation, focusing on three
specific questions:

- What information do software developers’ seek?

- Where do developers seek this information?

- What prevents them from finding information?
In our observations, we found several information needs.
The most difficult to satisfy were design questions: for
example, developers needed to know the intent behind
existing code and code yet to be written. Other informa-
tion seeking was deferred because the coworkers who had
the knowledge were unavailable. Some information was
nearly impossible to find, like bug reproduction steps
and the root causes of failures.

In this paper, we discuss prior field studies of software
development, and then describe our study’s methodol-
ogy. We then discuss the information needs that weiden-
tified in both qualitative and quantitative terms. We then
discuss our findings’ implications on software design and
engineering.

2. Related Work

Several previous studies have documented the social na-
ture of development work. Perry, Staudenmayer and
Votta reported that over half of developers’ time was
spent interacting with coworkers [15]. Much of this
communication is to maintain awareness. De Souza,
Redmiles, Penix and Sierhuis found that developers send
emails before check-ins to allow their peers to prepare for

COMPUTER
SOCIETY

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007 IEEE

Authorized licensed use limited to: MICROSOFT. Downloaded on December 1, 2008 at 16:24 from IEEE Xplore. Restrictions apply.

changes [5]. Collocation is a central factor in determining
the quality of awareness information. Seaman and Basili
found that local mobility facilitates awareness in ways
that are unavailable in distributed situations [18]. Simi-
larly, coordination problems can be exaggerated across
sites because of the lack of spontaneous communication
channels [8].

Developers also communicate to obtain knowl-
edge [9]. LaToza, Venolia and DeLine describe the role of
the “team historian,” who possesses knowledge about the
origins of a project and its architecture [13]. To deter-
mine who to ask, developers often gauge expertise by
inspecting check-in logs [5], but such information is not
always accurate [12].

One consequence of developers’ frequent communi-
cation is the fragmentation of time. Gonzalez, Mark and
Harris found that developers average about 3 minutes on
a task and about 12 minutes in an area of work before
switching [7]. These switches occur due to changing task
priorities and getting blocked [15]. Perlow related how
one software group's frequent interruptions created a
sense of a "time famine”—having too much to do and not
enough time [14].

Dependencies are also a central factor in software de-
velopment. Developers use bug reports, content man-
agement systems, and version control systems to manage
dependencies and notify coworkers of new dependen-
cies [5]. Teams will clone software to avoid
dependencies, even though they later have to duplicate
fixes to the cloned code [13]. Developers also rush their
activities to minimize dependencies between their code
and recently committed changes in the repository [5].

These previous studies provide a general sense of the
importance of communication among developers to
maintain awareness, share knowledge, and manage de-
pendencies. Using similar methods, both this studyand a
recent study by Sillito, Murphy and De Volder [1] dissect
this communication from an information needs perspec-
tive by cataloging the questions that arise during devel-
opment tasks. Sillito, Murphy and De Volder present 44
questions about code that developers asked during pro-
gramming tasks. In this study, we present 21 questions

9:41am So this copies the files onto the server, then allocates a
machine to do the setup. In the meantime, I'm going to

get this local fix [of this other bug] over [checked in].

9:41 am [opens diff tool to see changes he’s made to code]

9:43 am Oh damn, | have some mixed changes. Some are part of
this DCR [design change request] I'm working on and

some are part of a bug fix, so | have to mix it out.

Figure 1. An excerpt from J's observation log.

that developers asked during their daily work (designing,
coding, debugging, bug triage). Our 21 questions cover a
broader scope of work and are therefore more abstract
than their 44 questions. Unifying these results is future
work.

3. Method

Our method was to record notes while observing devel-
opers’ normal work. To recruit developers, we surveyed
250 developers from the corporate address book. Of
these, 55 responded and 49 volunteered for observation.

Each observation session was about 9o minutes and
involved a single observer taking handwritten notes. To
encourage the participant to narrate his work, we asked
the participant to think of us as a newcomer to the team,
doing a “job shadow.” We focused on recording goal-
oriented events like “finding the method that computed
the wrong value” rather than low-level events like key-
strokes or menu selections. Since we shared the partici-
pants programming background, we understood much of
the work and where and how information was obtained,
without inquiry. In some cases, we prompted with ques-
tions like “what are you looking for?” to learn their in-
formation needs, but most developers thought aloud
without prompting. We timestamped the recorded events
and conversations each minute. After 9o minutes, we
looked for a good stopping point and wrapped up. Im-
mediately after each observation, we transcribed the
handwritten notes, as in the excerpt shown in Figure 1.

During the allotted time for the study we were able to
observe 17 developers, which was enough to see common
patterns in their information needs. (Section 6.2 touches
on the potential value of observing more developers.)
Figure 2 describes these developers’ experience levels,
types of work, and phases of development and introduces
the initials we use to refer to them in this paper. In Mi-
crosoft's terminology, dev leads manage software devel-
opment engineers (SDEs or devs) while also performinga
development role.

4. Task Structure

Our observations spanned 25 hours of work. We parti-
tioned the logged activities into work categories common
across the participants: writing code; submitting code
(check-ins); triaging bugs; reproducing failures; under-
standing program behavior; reasoning about design;
maintaining awareness; and non-work activities (e.g.
personal phone calls). We also identified causes of task
switching: face-to-face dialogue; phone calls; instant mes-
sages (1M); email alerts; meetings; task avoidance; getting
blocked; and task completion. We annotated the logs

IEE l-'

COMPUTER
SOCIETY

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007 IEEE

Authorized licensed use limited to: MICROSOFT. Downloaded on December 1, 2008 at 16:24 from IEEE Xplore. Restrictions apply.

) . resume one ocke interruption c code s submit b bug triage rreproduce uunderstand d design a awareness —non-work
Pseudo-initial Product Work d T done] blocked 3 interrupti
title, years on team customers months in phase source

0min 10 min 20 min 30 min 40 min 50 min 60 min 70 min 80 min 90 min
A Communication tool Investigated two bugs 3 b Tu3—{ulo}{plr Tu Xl \g:'ja pr PR prog
SDE, 2 end users and devs 12 in bug fixing Vistor visior ‘self self —
B Development tool Fixed generated code B | o O N |
SDE, 1 developers 6 in development phonie im phone im —
C File metadata Interpreted spec :E':ld] E‘:B:i 1 R
SDE, 3 developers 6 in bug fixing e EYCH S B W _'_’

Vigitor
D Mobile device tool Wrote internal tool — R—c '“QQM‘
SDE, 4 end users 8 in development im im im jm
E Service packs Reproduced failures
SDE, 2 developers 2 in bug fixing Selfself
F Build automation Diagnosed build failure e [d 3a Im u | E S b I3 B o3
SDE, <1 developers 6 in development self < CLke “selt self n u T
G Mobile device tool Prepared build config 3 I I= Tu [dd 3—Td Tu T e =
SDE, 1 end users 6 in development phone visitor phone visitor
H Discussion boards ~ Read unfamiliar code 3 o O g e o | v 3 I m —f TIs
SDE, 1 end users 1 in bug fixing Visitor — —
J Communication tool Triaged 7 bug reports 5 Do o s T o i kg {s Ib 3als } s
SDE, 4 end users and devs 6 in bug fixing enl\an = J bug lune
K Education tool Wrote feature code T s Rde | B2 G c ke dofels Ie Y {ddc lald
Lead, 5 end users 5 in development - 2 v ¥ Fl e
L Development tool Triaged w/ coworker 5 | mrmrs) 1o b 1 5 =
SDE, 10 end users and devs 2 in bug fixing e e} — B g
M Input device Ul Investigated two bugs 7 r T lg o T Y frle Ir [u
SDE, 3 end users 2 in bug fixing Visitor
N Data processing tool Pre_pared checkin 3 | A0 | s o [r 1B el
SDE, 4 end users 5 in development = = —
R Communication tool Triaged and fixed bugs 5 QZ!D [6 Jalo
SDE, 3 end users 1 in bug fixing Visitor mall Bhone phone
phone
T Office application Investigated two bugs 5 Ir m fr T T b v F—u | M pl E
SDE, 1 end users 5 in bug fixing —
U Office application ~ Waited for build & test 5 Taf-{q[| R = Cﬁj 1 Tu la
SDE, 3 end users 12 in bug fixing wa self U - . bug
email bug visitor

'} Content protection Debated fix with team 53— C o o I:E
Lead, <1 end users and devs 5in bug fixing omail smail visitor

0min 10 min 20 min 30 min 40 min 50 min 60 min 70 min 80 min 90 min

Figure 2. The backgrounds and task structures of the 17 observed developers. The right edge of each task block indicates the
reason for the task switch (thin line for done, thick line for blocked, jagged line for interrupted). When a task gets broken up by
interruptions or blocking, we draw its fragments at the same vertical level to show resumption.

with these switches, based on remarks like “I want to get
back to my repro...” All of these causes of task switches
are forms of interruption, except getting blocked and task
completion. When the participant voluntarily switched
activities, we label the switch as blocked if the participant
could no longer make progress on the current activity
(typically due to an information need) and task avoid-
anceif she could make progress but chose to switch any-
way.

Figure 2 visualizes these task switches, which occurred
an average of every 5 minutes (+ 1.7), mirroring the rate
reported in Gonzales, Mark and Harris [7]. Time frag-
mentation varied considerably per participant. For ex-
ample, M reproduced failures without interruption,
whereas R was frequently blocked. Many interruptions
were due to face-to-face, 1M, or phone conversations,
which occurred from o to 6 times per session (median of
1), each lasting for much of the session. Developers were
also interrupted by notifications, such as email and alerts

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007 IEEE

about changes to the bug database. Developers experi-
enced from o to 9 notifications per session (median of 1).

Blocking, shown in Figure 2 as dark vertical bars, oc-
curred when information was unavailable. Some blocks
were about waiting for the results of compilations and
tests suites. Developers also waited for email replies and
for other teams to submit changes or x bugs. Other
blocks were due to missing knowledge, like when a de-
veloper stops coding to learn about an ap1. Developers
were blocked a median of 4 times per session and be-
tween o and 11 times overall.

5. Information Needs

During our observations, there were 334 instances of in-
formation seeking, which we abstracted from the particu-
lars of the work context into 21 general information
needs. Here we present these information needs clustered
by the work category in which they arose. Throughout,

COMPUTER
SOCIETY

Authorized licensed use limited to: MICROSOFT. Downloaded on December 1, 2008 at 16:24 from IEEE Xplore. Restrictions apply.

we list within braces the initials of the developers for
whom we observed an information need or other trend.

5.1 Writing Code

Developers had several questions situated in the code
they were writing:

(c1) What data structures or functions can be used to
implement this behavior?

(c2) How do I use this data structure of function?

(¢3) How can I coordinate this code with this other
data structure or function?

Although the first of these questions was uncommon,
when it occurred, developers searched Ar1 documenta-
tion {k} and inspected other code for examples {m}.
These searches can be thought of as a search through the
space of existing reusable code; for example, k looked for
an appropriate serialization Ap1 by searching a large da-
tabase of public documentation.

Once a developer had a candidate in mind, they
sought its syntactic usage rules (c2). For example, which
method is appropriate to call? What data structures does
this require? What constructors does this class have?
Developers used documentation when it was available
{pFHJKN}, but sometimes needed to use code that was
only fully understood by its author {ArL}. Others found
example code from which to infer rules {GH}.

Because developers had to coordinate ap1s with their
own code, they also sought behavioral usage rules (c3),
implicit in the ap1 design. For example, is it legal to call
this method after calling this other method? What state
do I have to be in before this call? Such information was
rarely explicit. Developers used their colleagues {a},
documentation {k}, and example code {HN} to infer these
rules.

5.2 Submitting a Change

Developers had three primary questions when exposing
their code to their teammates:

(s1) Did I make any mistakes in my new code?
(s2) Did I follow my team’s conventions?
(s3) Which changes are part of this submission?

Besides building their code to assess its syntactic correct-
ness, developers answered questions of correctness (s1)
by considering the scenarios and range of input that they
intended to cover. They used debuggers {DkRr}, diff tools
{r} and unit tests {BN}, but primarily relied on their own
reasoning {ADHJ}. Another common filter for mistakes
was code reviews. Before a review, developers first looked
for mistakes:

K: I'think I'm ready to check in, so I'm just making sure | didn't do any-

thing stupid. Like, | forgot to write those tests! Yeah, stupid like that.
One developer wrote assertions {N}, but these interfered
with other developers’ work {aTU}:

A: I never want to see [that product’s] asserts but they always pop up.

They have nothing to do with my work!

Three developers used static analysis tools to check for
fault-prone design patterns {jku}, but expressed disdain
for such tools’ false positives or could not understand the
tools’ recommendations.

Developers also considered their team’s conventions
(s2). Some teams required tags or other documentation
to be embedded in method headers, which developers
were careful to remember, often with the help of tools
{BELN}. Sometimes two submissions intersected (like in
the transcript in Figure 1) or developers had to merge
their code with another’s and developers had to deter-
mine which differences were part of the current submis-
sion (s3) {IN}.

5.3 Triaging Bugs

Most developers were swamped with bug reports from
tests, customers, and internal employees. Triage occurred
in isolation as a developer partitioned their time
{AEJMNTUV}, but also in triage meetings {LR}. For each
report, the goal was to determine:

(b1) Is this a legitimate problem?
(b2) How difficult will this problem be to fix?
(b3) Isthe problem worth fixing?

Assessing legitimacy (b1) involved deciding whether a
failure was due to a problem with the code or an unreal-
istic configuration of a test {BL}:
B: It might but not really be a failure. It might just be a setup problem.
This particular component doesn't depend on anything. Probably
locked a file, so it's returning an exit code. Not a real failure.
Legitimacy also depended on whether a report was a du-
plicate. People reported similar failure symptoms {L}, but
also different failure symptoms that developers believed
had a common cause {LT}:
A: These subjects are just busted! | have a feeling I'm seeing the same
bug. I'm going to do a quick search to see if there are busted subjects
[in the bug database]—this one kinda sounds like it, blah blah, cate-
gory name is corrupted? Ooh, screenshots are the same!
Bug triage is a cost/benefit analysis. To assess a the cost
of repair (b2), developers considered whether a redesign
would be necessary {cjTv}, whether other teams might be
affected {v}, and whether a fix could be written and
tested by a deadline {v}. Teams also close bugs “by de-
sign,” treating them as work items for later releases:

V's teammate: | think the best thing is a new overlay to indicate some-
thing's going on.

IEE l-'

COMPUTER
SOCIETY

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007 IEEE

Authorized licensed use limited to: MICROSOFT. Downloaded on December 1, 2008 at 16:24 from IEEE Xplore. Restrictions apply.

V:We can't do that by the release. Looks like a work item.

Another factor affecting the repair cost was a reports’
clarity {jLr}. Does it have detailed reproduction steps? Is
the failure clearly described? Does it have hints about
possible causes or an error message? Reports with inade-
quate clarity were rejected {Rr}.

On the benefit side of the analysis (b3), developers
considered the number of users affected {cjLv} and the
user experience {LRv}. For example, v discussed a fix:

V's teammate: If we want to push it back, we can, but | think an overlay
is easiest.

V: Butit's a totally broken experience for the user.

If there was a known workaround, developers might fo-
cus on more severe bugs {Lv}.

5.4 Reproducing a Failure

To reproduce a failure, developers asked:

(r1) What does the failure look like?
(r2) In what situations does this failure occur?

The primary source for both of these types of informa-
tion was bug reports. Reports would often include screen
shots {mMT}, but more often developers relied on the de-
scriptions of the failure to help them imagine its appear-
ance {AELNRTU}.

Developers relied heavily on bug report’s reproduc-
tion steps to understand the situations in which a failure
occurred (r2). Given the complex configurations that
were necessary to reproduce some problems, even de-
tailed steps omitted crucial state {ErT}. In other cases, the
state was known, but difficult to reproduce {aT}:

A: Originally, the repro steps said | need a blog count [as a test case]
but | couldn't set one up, so | went back and forth.
To overcome this, some developers set up a remote desk-
top connection with the report’s author, so that the full
configuration was available for debugging {EL}. Develop-
ers would also guess what state was wrong and begin
modifying their environment and test cases until repro-
ducing the failure:
A: I'm looking at [the report] to see if | have this configured the same
way, but I'm not getting the problem. Maybe we've changed it in the
past half year this has been open.
In one situation a failure could not be reproduced and
the bug had to be deferred {a}. The developer docu-
mented his attempts in the report for the sake of other
testers and developers.

5.5 Understanding Execution Behavior
Developers had to understand unfamiliar code in several

circumstances: using vendor code {GM}; joining a new
team {v}; obtaining ownership of code {H}; during work-

load balancing {T}; or when debugging, with unfamiliar
code on the call stack {ENT}. Each time, they addressed
three basic questions:

(u1) What code could have caused this behavior?
(u2) What's statically related to this code?
(u3) What code caused this program state?

Developers began these tasks with a why question and a
hypothesis about the cause of the failure:
A: Why did | get gibberish? Storing field, given PPack, what is an

MPField? | have no idea what this data structure contains. SPSField? |
suspect SPS is just busted.

Developers acquired their hypotheses (u1) by using their
intuition {ALM}, asking coworkers for opinions {AFM},
looking execution logs {F}, scouring bug reports for hints
{ER}, and using the debugger {GTu}. Although developers
used many sources to obtain hypotheses, only a few gath-
ered and considered more than one at a time {Fm}. The
accuracy of developers’ hypotheses was only obvious in
hindsight.

To test and refine hypotheses, developers asked a
broad array of questions with a variety of tools. Many of
these questions were about the structure of the code (u2),
like what is the definition of this? and what calls this
method? Such questions were easy to answer with tools.
Other, more broadly scoped questions, like what code
does a similar operation?, has no tool support, but devel-
opers were good at answering them with search tools.

Developers answered questions about causality (u3)
such as where did this value come from? {aTu} and how
did the program arrive at this method? {am}, by a series
of lower level questions, such as what thread is the pro-
gram in right now? {At}, what is the value of this variable
or data structure now? {AEMTU}. (Sillito, Murphy and De
Volder report similar indirect questioning [1].) This was
done primarily with breakpoint debuggers, which re-
quired developers to translate their questions into an
awkward series of actions:

A: Here we're formatting WSTValue....l can't do highlighting, solgo to

Source Insight. Find where |amin devns—this is the guy that screwed

up. Shift F8, highlight all occurrences, where it gets its value from.

Here's where we set it. So | want a breakpoint here.

As developers refined their hypotheses, they changed
their concern from the behavior of the existing system, to
the hypothetical behavior after some change:

T:There's nofile there, so something forgot itand | have a suspicion of
what it is. Might mean that the free code has to get moved later.
Intuition was essential in answering all of these ques-
tions. The cost of testing hypotheses and the risk of a
false hypothesis often prevented developers from finding
aroot cause. Instead, developers frequently assessed the
value in continuing their investigation, stopping when

they were satisfied {aTU}.

IEE l-'

COMPUTER
SOCIETY

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007 IEEE

Authorized licensed use limited to: MICROSOFT. Downloaded on December 1, 2008 at 16:24 from IEEE Xplore. Restrictions apply.

5.6 Reasoning about Design

Developers sought four kinds of design knowledge:

(d1) What is the purpose of this code?

(d2) What is the program supposed to do?

(d3) Why was this code implemented this way?
(d4) What are the implications of this change?

The purpose of code (d1) was often unclear when devel-
opers found an API to use: Is it a public artifact or in-
tended only for a particular component? Is it regularly
maintained or no longer used? Some developers inferred
purpose by finding example API uses {GHK}; sometimes
they directly asked the code’s author {T}.

Developers needed to know what the program was
supposed to do (d2), for example, to evaluate the correct-
ness of a variable’s value {ABCDFMR}:

D, yelling across the hall: Is 'B' not a legal license key letter?

Sometimes this assessment was obvious. For example, a
crash in a basic use case must be unintended. In other
cases, what a program was supposed to do was an ex-
plicit, documented decision:

M: | just want to double check and make sure the convert key only

shows up in languages that it's supposed to, based on the spec.
It was rarely sufficient to understand the cause of a pro-
gram behavior. Developers also needed to know the his-
torical reason for its current implementation (d3)
{AEHRTV}. For example, when assessing whether a vari-
able’s value was “wrong,” developers had to consider
whether the value was anticipated by the designer and
explicitly ignored or whether it was overlooked. They
would do this by investigating the code’s change history
{aT} or by looking for bug reports that contained hints
about its current design {ET}. Developers would seek this
design rationale from the author of the code through
face-to-face conversation or some other means {Tv}, but
in one case the author was unavailable {T}. Even when
developers found a person to ask, identifying the infor-
mation that they sought was hard to express, as develop-
ers struggled to translate detailed and complex runtime
scenarios into words and diagrams.

The consequences of decisions were also important
(d4). For example, when triaging, developers often dis-
cussed hypothetical scenarios {FHKLRV}:

V's teammate: Let’s go ahead and block and make it into a single op-
eration.

V: But the upgrade script needs to look for individualization.

Design knowledge of all types was scattered among de-
sign documents {m}, bug reports {AHV}, and personal
notebooks {AHMT}. Email threads sometimes contained
design rationale {CFj}, but were not shared globally. Code

comments sometimes contained design rationale {H}, but
developers hesitated to write them because of the cost of
submitting code changes. Developers rarely searched
these sources, because such sources were thought to be
inaccurate and out of date:
H: Given that I'll be the one fixing the bugs, | need to make sure | know
not what we are doing, but why we are doing it. We have these big
long design meetings, and everybody states their ideas, and we come

to a consensus, but what never gets written in the specis why we de-
cided on that. Keeping track of that is really hard.

These problems led all but two developers to defer deci-
sions because of missing design knowledge.

5.7 Maintaining Awareness

Developers worked to keep track of hardware, people and
information needed for their tasks:

(a1) How have resources I depend on changed?
(a2) What have my coworkers been doing?
(a3) What information was relevant to my task?

Some awareness information was “pushed” to developers
through 1M clients and alert tools {BDEFLMN}, and
through check-in emails {cFj}. Developers obtained other
types of awareness by actively seeking it. One group had
brief meetings throughout the day, to keep aware of
problems that teammates were working on and issues on
which they were blocked {m}; other groups had weekly
meetings to keep awareness about triage and design
choices. Developers would stop by coworkers’ offices to
update them on problems or to see what problems they
were facing {AFGHJKLMRT}:

F: 1talked to [Joe] a bit about the execution, and gather objects is on
track, but | still need to make the base class.

F’s boss: Yeah, [Joe] talked to me about it. We need to make sure files

are not delay assigned. He's in this big whoop-de-doo about it.
Developers tracked their time and others’, checking their
calendars, glancing at schedules and asking their manag-
ers about priorities {Bck}. Managers communicated to
their developers about upcoming changes in informal
meetings, email announcements, or planning meetings
{rL}. Because developers were often interrupted, they also
sought awareness about their own work (a3):

G: Sometimes | have like 20 windows, 5 or 6 build windows, each oneis

a state that I'm working on and | lose it! If | could just save it...l would
be really happy! I hate those midnight reboots.

IEE l-'

COMPUTER
SOCIETY

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007 IEEE

Authorized licensed use limited to: MICROSOFT. Downloaded on December 1, 2008 at 16:24 from IEEE Xplore. Restrictions apply.

information type search times

% agreed info is...

32
22

min mid max import. unavail. inacc.
s1 Did | make any mistakes in my new code? 0 1 6m5 1 71
a2 What have my coworkers been doing? 0 1 11 171 101
u3 What code caused this program state? 0 2 21 WO W 49 &
r2 In what situations does this failure occur? 0 2 49 mEgO W 321
d2 What is the program supposed to do? 0 1 21 =93 N 29 1
a1 How have resources | dependonchanged? 0 1 9 B 411 151
u1 What code could have caused this behavior? 0 2 17 m 731 20 1
¢2 How do | use this data structure or function? 0 1 14 m 711 20 &
d3 Why was this code implemented this way? 0 2 21 M6l m 37N
b3 Is this problem worth fixing? 0 2 6 m 441 101
d4 What are the implications of this change? 0 2 9OmEB5 W 44 m
d1 What is the purpose of this code? 11 5 W50 241
u2 What's statically related to this code? 0 1 7me6N 271
b1 Is this a legitimate problem? 0 1 2m4901 17 1
s2 Did | follow my team's conventions? 0 7 25 411 101
r1 What does the failure look like? 0 0 2mmg3um 241
s3 Which changes are part of this submission? 0 2 3 m 611 7 |
¢3 How I can coordinate this with this othercode? 1 1 4 m 751 28 &
b2 How difficult will this problem be to fix? 2 2 4m40 150
¢1 What can be used to implement this behavior? 2 2 2 m 61 1 27 1
a3 What information was relevant to my task? 11 1 m51 151

13

frequency and outcome of searches frequency of sources
acquired » deferred = gave up» beyond obs.- br = bug report, dbug = debugger
dbug 10 compile 26 intuition 6 unit test 4
coworker 20 email 13 tool 4 bug alert 4 im 2
dbug 16 br 3 intuition 3 log 3 tools 3 code 2 coworker 1
br 8 coworker 8 inference 5 tools 3 dbug 2 comment 1
spec 13 coworker 9 docs 5 email 1
tools 12 coworker 6 email 4 br 2 code 1
coworker 5 intuition 4 log 4 br 4 dbug 2 im 1 code 1 spec 1
docs 11 code 5 coworker 4 spec 1
code 4 intuition 4 history 3 coworker 2 dbug 2 tools 2 comment 1 br 1
coworker 12 email 2 br 1 intuition 1
coworker 13 log 1
intuition 5 code 2 dbug 2 tools 2 spec 1 docs 1
tools 8 intuition 2 email 1
br 5 coworker 1 log 1
docs 2 tools 2 memory 1
br 3 screenshot 2
tools 2 memory 2
docs 2 code 1 coworker 1
code 1 coworker 1 screenshot 1
memory 1 docs 1
memory 2

EEERRRRRRRRODO000000000000000Y

"RRRRR0000000000N

LLLLTLEEE

[TTTTTTEREERN

#000000° -

LTTTTTTEN

LLLLTLITTTTITT]

[TTTAN

[ITE]

wooo

[ITL

-

Figure 3. Types of information developers sought, with search times in minutes; perceptions of the information’s importance,
availability, and accuracy; frequencies and outcomes of searches; and sources, with the most common in boldface.

6. Quantifying Information Needs

The information needs we have discussed are summa-
rized in Figure 3. The time spent searching, search fre-
quencies, search outcomes, and source frequencies are
based on our observational data. The outcomes include
when developers acquiredinformation, deferredasearch
with the intent of resuming it, or gave up with no intent
of resuming it; a few searches continued beyond our ob-
servations. Also, in two cases, a need was initially de-
ferred, then satisfied afterward by a coworker’s email
response; we coded these as acquired.

The most frequently sought and acquired information
includes whether any mistakes (syntax or otherwise)
were made in code and what a developers’ coworkers
have been doing. The most often deferred information
was the cause of a particular program state and the situa-
tions in which a failure occurs. Developers rarely gave up
searching. There was no relationship between deferringa
search and whether the source involved people (bug re-
ports, face-to-face, 1M, email) (*(1)=.6, p > .05).

Based on medians, the information that took the
longest to acquire was whether conventions were fol-
lowed (s2); based on maximums, the longest to acquire
was knowledge about design (d2, d3) and behavior (u1,
u3). No one source of information took longer to acquire
than another (F(17, 321)=.53, p>.05), nor was there a dif-
ference in search times between sources involving people
and sources that did not (F(1, 339)=.07, p>.05). These
times are misleading, however, as many of the maxi-
mums were on deferred searches, so they were likely
longer than shown here. Further, developers gave up or

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007 IEEE

deferred searches because they depended on a person
known to be unavailable. They were also expert at assess-
ing the likelihood of the search succeeding and would
abandon a search if the information was not important
enough.

6.1 Rating Information Needs

The percentages in the middle of come from a survey of
42 different developers (of 550 contacted), asking them to
rate their agreement with statements about each of these
information types, based on a 7-point scale from strongly
disagree to strongly agree. The bars represent the percent
of developers who agreed or strongly agreed that the in-
formation was (from left to right) important to making
progress, unavailable or difficult to obtain, and had ques-
tionable accuracy.

The survey results reveal interesting trends. The ma-
jority of developers rated the most frequently sought in-
formation in our observations as more important, and
they also rated frequently deferred information as more
unavailable. One discrepancy is that developers rated
coworker awareness (a2) as relatively unimportant,
which conflicts with its frequency in our observations. It
may be that coworker awareness is so frequent sought
and successfully obtained that developers do not think
about it. We also observed developers successfully obtain
knowledge about the implications of a change (d4),
whereas developers rated it relatively difficult to acquire.
The survey also begins to reveal which information types
have more questionable accuracy, namely knowledge
about design (d2, d4), behavior (u1), and triage (b1, b2).

IEE l-'

COMPUTER

Authorized licensed use limited to: MICROSOFT. Downloaded on December 1, 2008 at 16:24 from IEEE Xplore. Restrictions apply.

SOCIETY

6.2 Most Common Information Needs

For each information need, Figure 4 lists those partici-
pants who had that need at least once during their obser-
vations. The most common need across participants was
coworker awareness. Most of the information needs oc-
curred among several developers from different teamsin
different business divisions, which suggests that these are
representative of development work in general. A few of
the information needs occurred for only a few partici-
pants, which suggests that this list is not complete. Ob-
serving more developers over longer periods of time
could reveal other less frequent needs. (Had we not ob-
served v, for instance, we would not have seen need a3.)

6.3 Unsatisfied Information Needs

Many of the frequent information needs are problematic,
in that searches for the information were often satisfied
(deferred or abandoned) and had long search times. The
most frequently unsatisfied information needs were the
following, with their percentage of unsatisfied queries
and maximum observed search times:

a2 What have my coworkers been doing? 15 ABCDEFHJKLMNRTU

u3 What code caused this program state? 11 ABDEFGM

NRTU

a1 How have resources I depend on changed? 10 ACEFGJKLRT

u1 What code could have caused this behavior?
c3 Howdo I use this data structure or function?
s1 Did I make any mistakes in my new code?

d2 What is the program supposed to do?

r2 In what situations does the failure occur?

b3 1Is this problem worth fixing?

u2 What's statically related to this code? AEHKNT
d3 Why was this code implemented this way? AEHRTV

9
9
9
7 ABCDFMR
7
7
6
6
d4 What are the implications for this change? 6 FHKLRV
5
4
4
4
3
2
2
1

ELMRTUYV
BCJLRTV

r1 What does the failure look like? AMNRT
c3 How can I coordinate this with the other code? 4 AHKN
s2 Did I follow my team's conventions? BELN
di What is the purpose of this code? HKT

b2 Is this a legitimate problem? BLR

s3 What changes are part of this submission? IN

b2 How difficult will this problem be to fix? LR

a3 What information was relevant to my task? \4

Figure 4. Information needs per participant.

probably explains why coworker awareness is the second
most frequent information need. (Developers checked on
coworker availability almost as many times as they
looked at output from the compiler or debugger.) This is
consistent with prior work on awareness in software de-

1 What code caused this program state? 61% 21min))

> Why was the code implemented this way? ~ 44% 21 min velopment, with regard to sources, strategies, and fre-
3 In what situations does this failure occur? ~ 41% 49 min quency of information seeking [5][9][15]. ,
4 What code could have caused this behavior? 36% 17 min Why s.h(.)l.lld .develope.rs tur.n $0 f)ften to COWOItkers‘
s How have the resources I depend on changed? 24% 9 min One possibility is the topics being discussed. Outside of
6 What is the program supposed to do? 15% 21 min awareness, the information needs where coworkers were
7 What have my coworkers been doing? 14% 11 min most often consulted were either about design, i.e.

This ranking may reflect that 11 of the 17 participants’
teams were in a bug fixing phase. In particular, the in-
formation needs ranked 1, 3 and 4 are largely about bug
reproduction and the ones ranked 2 and 6 are largely
about evaluating possible fixes for bugs. Nonetheless, the
fact that these information needs are so often unsatisfied
and take such a long time clearly hindered developer
productivity.

7. Discussion

Our motivation for this study was to identify and charac-
terize software developers’ information needs. While the
list we have identified may not be complete, it has several
implications.

7.1 Coworkers as Information Sources

Coworkers were the most frequent source of informa-
tion, accessed at least once for 13 of the 21 information
needs and in 83 of the 334 instances of information seek-
ing. Theimportance of coworkers as information sources

What are the implications of this change? (13 times)

What is the program supposed to do? (9)

Why was the code implemented this way? (2)
or about execution behavior, i.e.

Is this problem worth fixing? (12)

In what situations does this failure occur? (8)

What code could have caused this behavior? (5)
In several instances coworkers were unavailable for these
questions, and the developers’ tasks were blocked once
they sent their questions via email {ABCEFJR}.

Developers consulted coworkers about design because

in most cases, design knowledge was only in cowork-
ers’ minds. The lack of design documentation may be due
to inadequate notations, particularly for design intent
and rationale. Two of our observed developers did have
design documentation—a prototype for a user interface,
a syntax grammar for a parser—which answered some of
their questions {mG}. However, they still turned to co-
workers when they questioned the accuracy of the docu-
ments.

Questions about program behavior were difficult to
acquire because of the number of possible explanations.
Developers had to use primitive tools to search this ex-

AEFGLMRTU
ADFGHJKLN
ABDFHJKNR

IEE l-'

COMPUTER
SOCIETY

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007 IEEE

Authorized licensed use limited to: MICROSOFT. Downloaded on December 1, 2008 at 16:24 from IEEE Xplore. Restrictions apply.

planation space, and so searches were driven by intuition
or expert opinion. Developers also went to great lengths
to learn behavior information. As one example, tofix a
bug recently assigned to him, E had a tester nine times
zones away reproduce the bug (at 2am) since no one else
had the right machine configuration. Because behavior
information was hard to acquire, developers made triage
decisions quickly based on implementation concernsand
resource availability, rather than the organization’s over-
all goals {BcjLrT}. That is, developers would favor those
tasks with the fewest information needs.

7.2 Automating Information Sources

One approach to reducing this communication burdenis
to automate the acquisition of information. Given the
frequent desire for awareness information, it is no sur-
prise that researchers are already creating awareness dis-
plays for development teams, like FASTDash [1] and
Palantir [17].

For example, many of developers’ questions about
static relationships depended on metadata such as build
numbers and version histories, but developers manually
incorporated such data in their searches. Similarly, tools
for analyzing programs’ dynamic behavior only partially
helped with determining the cause of a program state; the
rest had to be determined by hand using a breakpoint
debugger and through guesswork. Task-specific applica-
tions of program slicing would be a way to automate
some of this searching [19]. Implementation questions
(a, c2, i3) also lacked adequate tools (it is worth noting
that these needs have also been discussed relative to end-
user programming [10]). Tools were often appropriated
for unanticipated uses, so it is within tool designers’ in-
terests to design tools that are amenable to appropriation.
This might entail using standards, so that information
may be passed between tools and transformed as needed.

Some information seeking cannot be automated be-
cause the information is currently unavailable. For ex-
ample, when developers could not reproduce a failure,
there was little they could do to find it. Tracing tools that
canrecord the failure context would be a major advance.
Failures could be debugged separately from their original
context and the trace could be analyzed by multiple peo-
ple. Design intent was also difficult to find. Information
about rationale and intent existed sometimes in un-
searchable places like whiteboards and personal note-
books or in unexpected places like bug reports. Some
awareness information is difficult to acquire, for exam-
ple, developers often wondered who is reading their code.
Tools could make this available.

Aside from tools, one could address these information
needs through process change, for example Agile meth-

ods. The frequent need to consult coworkers for informa-
tion is an important motivation for Scrum meetings and
radical collocation. Chong and Siino recently compared
interruptions among radically collocated pair program-
mers versus cubicle-base solo programmers and found
that the Agile team’s interruptions were shorter, more
on-topic, and less disruptive [4]. Our data about the im-
portance of design knowledge provide evidence about the
value of prototyping in software design, as well as the
value of prototypes during implementation. Our observa-
tions about the importance of error checking, coupled
with the distributed nature of design knowledge, also
support the claims of pair programming: with two devel-
opers, with slightly different design knowledge, errors
seem more likely to be caught or even prevented.

Last is the issue of notations for software design.
While there is already considerable research on architec-
ture description languages, uML, and various forms of
model checking, our observations raise several pertinent
questions. What can be written down cost-effectively?
How can it be written to be searchable and so that its
accuracy and trustworthiness are assessable by develop-
ers who consult it? It is worth noting that several partici-
pants perceived that face-to-face meetings to be a pleas-
ant and efficient way to transfer design knowledge. The
frequent conversations promote camaraderie and no
effort is wasted recording design information that might
never be read or might go stale before being read. Hence,
a demand-driven approach to recording design knowl-
edge might succeed over an eager “record everything”
approach.

7.3 Study Limitations

Because we performed this study in the context of devel-
opers’ real work, the external validity of our results are
high. The diversity of our sample gives us confidence in
generalizing across different products, team structures
and development phases within the organization we
studied. We were unable to control for corporate culture,
although the communication patterns and development
processes we observed are consistent with studies of
other corporations. Other variations, such as testing
practices, the talent and expertise of a company’s devel-
opers, and more or less formal development processes,
may have biased our findings.

Studies that rely on observations are subject to ob-
servers’ biases, so it was essential that we have multiple
observers. For example, we may have misunderstood
what developers were looking for. To minimize intru-
sion, we chose to have a single observer per session, who
took only written notes. (In several cases, the participants
worked in shared or noisy offices.) Even with a single

IEE l-'

COMPUTER
SOCIETY

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007 IEEE

Authorized licensed use limited to: MICROSOFT. Downloaded on December 1, 2008 at 16:24 from IEEE Xplore. Restrictions apply.

observer, there were several instances of missed interrup-
tions, where a visitor peeked inside the office, saw the
observer, and chose to leave rather than interrupt. There
were also many information seeking tasks that we could
not observe because they were either too subtle, like

References

[1]

Biehl, J.T., Czerwinski, M., Smith, G., Robertson, G.G., Bailey, B.
(2007). FASTDash: A Visual Dashboard for Fostering Awareness
in Software Teams. To appear at CHI 2007.

I . Ker’ invisible. like th [2] Brooks, E.P. Jr. (1975). The Mythical Man-Month: Essays on
glancing at a coworker’s 1M status, or invisible, like the Software Engineering. Addison Wesley, Reading, Ma.

use of memory to recall facts about the code. Our data (3] Cataldo, M., P. Wagstrom,].D. Herbsleb, K. Carley (2006). Iden-
was also biased by those issues that developers chose to tification of Coordination Requirements: Implications for the De-
mention during think aloud. sign of Collaboration and Awareness Tools. Computer Supported

The timestamps in our logs are accurate within the Cooperative Work 2006, Banft, Alberta, 353-362.
minute, but are subject to typical clerical errors during [4] ~ Chong, J., Rosanne Siino. Interruptions on Software Teams: A

Lo d . Al i t Comparison of Paired and Solo Programmers. Computer Sup-
tran.scrlptlon and copying. S.O’ s.ome Hr.le Was.spe.n ported Cooperative Work 2006, Banff, Alberta. p.28-39.
talking to the observers, but this bias was likely distrib- [s] de Souza, CR.B, D.F. Redmiles, G. Mark, J. Penix, M. Sierhuis
uted throughout our observations. We only had a single (2003) Management of Interdependencies in Collaborative Soft-
coder categorize our logs, which affects our quantitative ware Development: A Field Study. ISESE, Rome, Italy, 294-303.
data; however, we feel the orders of magnitude in our [6] Eisenstadt, M. (1997). "My Hairiest Bug” War Stories. CACM,
data are accurate. 40(4) 30-37.

7 onzalez, s . ark. , J. arris (2005). 0 las € eninags
[7]1 G lez, V., G. Mark. , J. Harris (). No Task Left Behind?
Examining the Nature of Fragmented Work. CHI, Portland, o,
8. Conclusions 1330,
[8] Gutwin, C,, R. Penner, K. Schneider, K. (2004). Group Awareness
Our goals in this study were to identify software develop— in Distributed Software Development. CSCW, Chicago, 1L, 72-81.
ers’ information needs and characterize the role of these [9] Hertzum, M. (2002). The Importance of Trust in Software Engi-
needs in developers’ decision making What we found neers’ Assessment of Choice of Information Sources. Information
. . ’ and Organization, 12(1), 1-18.
were 21 types of information. Some of these were easy to _ . .

. I h ith onl [10] Ko, A.J., B.A. Myers, H.H. Aung (2004). Six Learning Barriers in
saUSfy accurate y (awareness) but others with on y ques- End-User Programming Systems. VL/HCC, Rome, Italy, 199-206.
tionable accuracy (the value of a fix and the implications [11] Ko, AJ., B.A. Myers, M.J. Coblenz, H.H. Aung (2006). An Ex-
of a change). Other needs were deferred often (knowl- ploratory Study of How Developers Seek, Relate, and Collect
edge about behavior and design)) Whereas some were Relevant Information during Software Maintenance Tasks. TSE,
impossible to satisfy in certain cases (reproduction steps). 971-987.

: : : [12] McDonald, D.W., M.S. Ackerman (1998). Just Talk to Me: A Field
Not only do these needs call for innovations in tools,) _

d . b h 1 1 h h Study of Expertise Location. CSCW, Seattle, WA, 315-324.
proces.ses’ an no.ta.tl.ons, ut t ey also reveal how the [13] LaToza, T.D., G. Venolia, R. DeLine. (2006). Maintaining Mental
collective responsibility for design knowledge can lead to Models: A Study of Developer Work Habits. ICSE, Shanghai,
intense awareness and communication needs observed in China, 492-501.
this study and others. [14] Perlow, L.A. (1999). The Time Famine: Toward a Sociology of

There are many future directions for this work. One Work Time. Administrative Science Quarterly, 44(1), 57-81.
issue we did not investigate were the decisions that de- [15] Perry, D.E., N.A. Staudenmayer, L.G. Votta (1994). People, Orga-

. . nizations and Process Improvement. IEEE Software, July, 36-45.
velopers made and the true accuracy of the information L D
hich th d h | d [16] Sandusky, R.J., L. Gasser (2005). Negotiation and Coordination of
on which they were based. We have also proposed some Information and Activity in Distributed Software Problem Man-
explanations for the needs we observed, which should be agement. GROUP, Sanibel Island, FL, 187-196.
tested. There are other populations, namely testers and [17] Sarma, A., Z. Noroozi, A. van der Hoek, Palantir: Raising Aware-
architects, whose roles and information needs should ness among Configuration Management Workspaces. ICSE, 2003,
also be studied. We hope that these investigations and Portland, Or, 444-454. o _
others will bring us a more complete understanding of (18] Seaman, C.B., V.R. Basili (1998). Communication and Organiza-
f devel Kk and i tion: An Empirical Study of Discussion in Inspection Meetings.
.so tware deve oPment work and eventual improvements TSE. 24(7), 559-572.
in software quahtY’ [19] Sridharan, M., S.J. Fink, R. Bodik. Thin Slicing. To appearat PLDI
2007.
ACknOWledgements [20] Sillito, J., G. Murphy, K. De Volder (2006). Questions Program-

We extend our thanks to the developers who participated
in our study for their valuable time. We also thank the
VIBE, HIP and Visual Studio User Experience teams at
Microsoft for their feedback. The first author was an in-
tern at Microsoft Research over the summer of 2006.

mers Ask During Software Evolution Tasks. SIGSOFT/FSE, Port-
land, OR, 23-34.

IEE I-'

COMPUTER
SOCIETY

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007 IEEE

Authorized licensed use limited to: MICROSOFT. Downloaded on December 1, 2008 at 16:24 from IEEE Xplore. Restrictions apply.

