
The Symbiotic Relationship between the Virtual

Computing Lab and Collaboration Technology
Prasun Dewan

Computer Science Department
University of North Carolina
Chapel Hill, NC 27599, USA

+1-919-962-1823

dewan@cs.unc.edu

Sasa Junuzovic
Computer Science Department

University of North Carolina
Chapel Hill, NC 27599, USA

+1-919-962-1734

sasa@cs.unc.edu

Govindaraj Sampathkumar
IBM Corporation

3901 S. Miami Blvd.
Durham, NC 27703-9315, USA

+1-919-224-1190

gsampath@us.ibm.com

ABSTRACT

The Virtual Computing Lab allows its users to remotely access

computing resources spread-out across multiple sites.

Collaboration technology allows users to work with each other

from distributed sites. These two technologies have a symbiotic

relationship wherein each potentially improves the capabilities of

the other. Collaboration technology can be used to make users of

the virtual computing lab aware of each others’ activities, thereby

providing a sense of community and allowing sharing of research

results. More subtle, collaboration technology can be used to

create a shared environment that allows resource users and

grantors to fluidly communicate with each other to ensure high

and safe utilization of the resources. Even more subtle, the virtual

computing lab can be used to conduct experiments that evaluate

the scalability of various distributed collaboration architectures.

Even more interesting, these three ways to integrate the two

technologies can themselves be integrated.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed

Systems – distributed applications.

General Terms

Management, Design, Security.

Keywords

Virtual Computing Lab, CSCW, Workspace Awareness, Access

Rights Management.

1. INTRODUCTION
Many traditional computer lab resources, such as computers and

software that are not shared, can be accessed only by users who

are physically present in the lab. In particular, in order to perform

some task using a lab machine, a user must go to the lab, wait for

the desired resource to become available, perform the task, and

then release the machine before leaving the lab. One issue with

such labs is the necessary physical presence of the user in the lab.

Sometimes the user may not have a means of getting to and from

the lab. For example, a student who relies on public transportation

to commute between school and home may not be able to reach

the lab when the public transit system shuts down for the day or

weekend. Moreover, there may be times during which a person

feels uncomfortable getting to the lab. For example, an

undergraduate student may not want to walk alone to the lab late

in the evening. An even more intrinsic problem is that a lab user is

confined to machines available in the lab, which determines the

nature and number of machines that can be used in an experiment.

This, in turn, can lead to inefficient utilization of the available

computing resources. For example, available computers in a

different physical lab that the user could leverage remain idle

because the user cannot combine resources from different labs for

a single experiment.

The concept of the Virtual Computing Lab (VCL) provides a

solution to these problems by allowing users to reserve and use

computers distributed among multiple locations. There has been a

significant amount of research in realizing this vision. Here we

provide a new angle to this research by exploring how

collaboration technology can be married to this concept.

2. TOWARDS A LAB COMMUNITY
Most of the complementary projects on the VCL reported in these

proceedings treat a lab as a collection of only machines (Figure 1

(left)). The challenge in these projects is to distribute the lab

machines in a way that efficiently and fairly allocates lab

resources to the distributed users. However, when in use, an

actual lab is a collection of machines and people (Figure 1(right)).

Presence of and interaction with others can positively impact the

lab experience in many ways. Seeing others in the lab may

motivate one to continue working. Lab members can exchange

pleasantries or work related information. These conversations may

lead to them to exploring new avenues for research. Lab members

may get help from lab attendants, friends, and co-workers. In

addition, a lab member can interact with other members indirectly

by putting post-it notes on machines explaining the member’s

current or future use of the machines. Team members doing pair

programming or some other form of joint project may wish to

share a single set of input and output devices. A lab participant

may wish to share a particularly exciting result with a co-located

user. People who solve difficult problems may build reputations

that not only give them a sense of pride but also help them

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’04, Month 1–2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

advance in their fields. Moreover, lab members interested in the

same kind of problems can form groups which lead to a sense of

community and opportunistic collaborations. It is our hypothesis

that if a virtual computing lab is to be effective, it should virtually

support the above and other collaboration scenarios.

Such support can be support mechanisms simulating physical

awareness and communication channels, providing users with a

feeling of “being there.” A popular example of such a channel is

an audio/video window of a remote collaborator. However, a

computer system can only provide an approximation of being

there. If direct simulation of face-to-face interaction modes was

the only goal of collaboration technology, then it would always be

the second choice to the real thing, taken when time and cost

considerations make face-to-face interaction impractical. For this

reason, Hollan and Stornetta have argued that to be truly

successful, such technology should go “beyond being there,”

offering interaction features not directly supported in face-to-face

collaboration [5]. When this happens, people with use such

technology even when face to face interaction is a practical

option. A simple example of such an interaction feature is IM,

allowing users to carry out multiple private conversations with

others.

There has been much work in identifying mechanisms that attempt

to meet the dual goals of collaboration technology. While these

mechanisms have not been explored in the context of lab-based

communities, they have been applied to virtually simulate a (a)

general-purpose community center [7], (b) a place to gather after

playing the same game, providing “down time” for the players to

relax, discussing the game and other issues, after a difficult quest

[3][4][8][9], (c) a group exchanging bookmarks [6], (d) and users

rating movies for each other [1]. In some of these cases, social

interaction became the primary reason for using the system rather

than the activity such as gaming around which the interaction was

designed. This is not surprising given that many people with a

choice of telecommuting prefer to physically commute to work.

Based on the techniques and experience in these communities, we

can construct some of the elements of lab-based collaboration

technology, outlined below. When a group of users decides to

start/end an experiment, notifications can be sent to others

informing them about the event and experiment. An architecture

can be created for placing the various lab resources in a virtual

space, and the users of these resources can be represented by

avatars. Users waiting for resources can be put in waiting rooms,

and/or a virtual shuttle can take them to various parts of the lab.

Audio/video/text-based communication tools together with screen

sharing facilities can be used for users to work together on the

same or related experiments, share social pleasantries, and ask for

and provide help. Browsable profiles can be created for the users

of the lab, which can list their personal information, the projects

on which they work, and the people they have helped. Prizes can

be awarded to the most helpful participants or those who have

performed the most interesting experiments. Polls can be used to

identify the recipients and solicit their experience with the lab.

Based on the interests listed in the profiles, guilds can be created,

which can be associated with discussion forums and blogs. If

these elements can be supported by the lab, people will want to

visit a virtual lab even when they have access to a physical lab

with equivalent resources.

To concretely illustrate and define some of the above

functionality, consider a scenario in which Alice, Bob, and

Charlie are working together on a programming assignment. They

are using a collaborative programming environment installed on

the virtual lab computers. In the programming environment, there

is a special pane that shows Alice’s, Bob’s, and Charlie’s

presence status, as in Jazz [2]. Suppose that Alice has a question

about the function she is currently writing and she would like

either Bob’s or Charlie’s input. She looks at Bob’s presence status

and sees that it is “Busy.” Charlie’s status is currently set to

“Available” so she decides to start an audio video conference with

him. The session controls and the video feed are shown in a new

pane in the programming environment. In addition, next to her

own coding window, Alice opens a window showing the code

Charlie can currently see on his screen. Conversely, Charlie opens

a window showing what Alice can currently see in her coding

window. Alice and Charlie can now use the coding windows to

synchronize their locations in the code. As they discuss Alice’s

question, they can communicate using the audio and video links

as well as the code itself. For example, if Charlie types something

in his coding window, the new text will be displayed in the remote

coding window on Alice’s computer. If Alice agrees with

Charlie’s changes, she can synchronize her code to his.

Alternatively, if Charlie was only prototyping ideas, his changes

can be rejected, and Alice can implement her own solution. Audio

Figure 1. Two Views of the Physical Lab Being Simulated by VCL: (left) Lab = Collection of Machines and (right) Lab =

Collection of Machines and People

channels can be turned off and instant messaging can be used

instead, if Alice and Charlie do not wish to reveal their discussion

to other people in the lab. For example, suppose that Alice, Bob,

and Charlie are working on a programming project for a class, and

they know that at least some of the other people in the lab are

working on the same homework. In order to avoid unwillingly

sharing the solution with the rest of the class, Alice and Charlie

use instant messaging as the communication channel.

3. COLLABORATIVE ACCESS CONTROL
The previous scenario raises interesting problems regarding the

issue of access control. In particular, students in other groups

should not be able to join in the conversation between Alice and

Charlie. On the other hand, if Bob decides to jump in on Alice’s

and Charlie’s chat, he should be allowed as he is their teammate.

In this section, we discuss how collaborative access control can be

used in the virtual computing lab to solve the problem. In general,

a virtual lab with community support must control the

communication channels available to the lab members. A virtual

lab with or without community support must also support an

access-control mechanism that allows administrators to grant

computing resources to users. Compared to the number of lab

resources, which can be considered constant, controlling the

number of possible communication channels, which is

exponential with respect to the number of users, can be a fairly

involved task. Thus, protecting these resources and

communication channels raises usability issues.

Existing research on this topic has tried to address usability

problems with access control by providing high-level languages to

specify access rights that allow a single specification to give a

large number of rights. A radically different, but complementary,

approach is based on the following two observations (a) access-

control is an inherently complex collaborative activity (carried out

to support a more primary collaborative activity such as

exchanging experiment results) involving one or more

information guardians and consumers, and (b) collaborative

environments can make it easier to perform group tasks by

automating some of these tasks and providing formal interactive

channels for the collaborators to communicate with each other.

Traditional systems provide abstractions that assume that the

difficult task of providing access to different users is carried out

individually by people manually playing the role of access

authorizers. Based on the two observations above, it is exciting to

investigate the idea of designing collaborative environments to

ease the setting of both general and item-specific privileges. In

Resource

Consumer

Resource

Guardian

Access objectAccess object

Specify RightsSpecify Rights

Figure 3. Traditional Access Control

Resource

Consumer

Resource

Guardian

Access objectAccess object

Request rightsRequest rights

Grant/DenyGrant/Deny

Figure 4. Interactive Access Control

CalendarCalendar

File System

Presence

Consumer

Agents

Consumer

Agents

Guardian

Agents

Guardian

AgentsM
ix

ed
-I

n
it

ia
ti

v
e

A
C

T
ra

d
it

io
n

al
 A

cc
es

s
C

o
n

tr
o

l
Protected Objects Controlling Collaborative

Environment

Consumer

Guardian

Guardian Web PortalWeb Portal

Workspace

Figure 2. Traditional vs. Mixed-Initiative Access Control

these environments, the initiative in distributing access rights to

shared objects can be taken by information guardians, information

consumers, and tools that act as agents of the guardians and

consumers. Hence, we refer to this form of access control as

mixed-initiative. Information consumers will be responsible for

sending access requests to information guardians; their agents will

(partially or completely) automate this task for them. Information

guardians will be responsible for authorizing accesses; their

agents will automate this task for them.

Figure 2 shows the difference between traditional and mixed-

initiative access control. The box on the left contains the shared

objects to be protected. With traditional access control, its

guardians are individually responsible of distributing access to

different parts of it, though they may use general-purpose,

informal communication channels such as email and instant

messaging to consult with others. With mixed-initiative access

control, a special collaborative environment, shown on the right,

is created for this task. The environment provides consumer and

guardian agents, and offers explicit support for the agents to work

with the humans.

The primary or protected collaborative environment sets the

context for controlled collaboration. For example, a course

instructor for the course COMP-101 could define a collaborative

environment specifically for it, or for a specific assignment in the

course. The specification of the environment would include things

such as the software configuration for the machines, the

assignments and projects made available to the students accessing

the environment, and the kinds of controls are enforced on the

collaboration channels. Once a collaborative environment is

defined and instantiated, students would be able to access it, just

as any resource that is available in the VCL. Depending on the

degree of control specified and enforced on the collaboration

channels within the environment, students would be permitted or

restricted from sharing artifacts and objects created within the

context of the collaborative environment with other students. The

role of the secondary or access-control environment is to exert

this control collaboratively, allowing the various parties to

negotiate the nature of the control.

Our expectation is that the specialized controlling collaborative

environment will address key impediments to the fluidity of

traditional access control, solving some long-standing security

problems that have been exacerbated with the increased interest in

distributed programmer-defined shared environments such as a

community-based VCL.

Let us show more concretely the difference between traditional

and mixed-initiative control. The difference between the two is

when accesses are granted and the parties involved in creating the

grant. In traditional access control, a resource guardian is solely

involved in specifying rights to a resource, and he/she must do so

before an authorized consumer of the resource uses it (Figure 3).

In interactive access control [10], the resource user sends a formal

request for access to the information guardian, who can then grant

it to automatically change the resource access rights (Figure 4). A

requester with granted rights can later access the resource, as in

traditional access control. Thus, in this scenario, the consumer

and guardian collaborate to create the grant – the consumer

composes the request and the guardian approves it. This is very

similar to a person sending a formal meeting request to another

user, who can then accept it to automatically update the calendars

of both users. In a variation of this idea, instead of explicitly

composing an access request, a consumer can simply try to access

the resource. A consumer agent automatically composes the

request, and sends it to the guardian (Figure 5). A dual of the

scenario is one in which a guardian agent automatically grants the

request, which triggers logging of the consumer’s actions. Later,

the guardian can examine the log and revoke [10] the grant if

necessary (Figure 6). In mixed-initiative access control, all of

these schemes are supported by allowing consumers, consumer

agents, guardians, and guardian agents to collaborate with each

other to grant accesses.

To illustrate the role of such control in a VCL, consider a class

that needs to do projects on the VCL. Students accessing this

collaborative environment would experience something similar to

entering a physical lab on a campus – they would be able to “see”

Grant/DenyGrant/Deny

Resource

Consumer

Resource

Guardian

Grant/DenyGrant/Deny

Access objectAccess object
C

A

C

A

Request rightsRequest rights

Figure 5. Consumer Agent Automatically Composes and Sends Request

Resource

Consumer

Resource

Guardian
Request rightsRequest rights

Grant/DenyGrant/Deny

Access objectAccess object

Request rightsRequest rights

Access objectAccess object

G

A

G

A

RevokeRevokeRevokeRevoke

Figure 6. Guardian Agent Automatically Grants Revokable

who else is there, chat with them, and so on. Depending on the

degree of control specified and enforced on the collaboration

channels within the environment, students would be permitted or

restricted from sharing artifacts and objects created within the

context of the collaborative environment with other students. Let

us assume that the professor uses traditional access control to

create a group containing the students, and give the group the

required access. Later, let us say that a particular student, Bob,

needs some help debugging an assignment. Another student,

Alice, might join the debugging session by placing her avatar in

front of Bob’s computer. However, this is a restricted operation

requiring appropriate rights. Therefore, Alice’s consumer agent

determines these rights and sends them to the professor’s guardian

agent. The professor is not online, but has instructed his/her

guardian agent to automatically grant these to Alice and other

trusted students. The resulting collaboration session would be

automatically audited by the system. Later, the professor can look

at the logs to see if Alice did indeed follow the honor code by not

showing her solution to Bob.

As the VCL is intended to enable institutions to share each others’

computing resources, one issue is dealing with cross-institutional

security policies. For example, how does a student at NCSU

access a resource physically located at UNC? Facilitating

seamless collaboration in a secure way across institutional

boundaries would require several additional aspects to be worked

out, from a security point of view. Users in one autonomous

institution will not be known in a different institution. For

example, user bob@ncsu.edu has certain privileges and attributes

associated with him, all within the context of his institution,

NCSU. Within this context, user bob@ncsu.edu is known to be a

6th semester undergraduate student in Computer Science. If

bob@ncsu.edu is allocated a resource physically located in the

UNC campus, the security enforcement modules in UNC have to

recognize that bob@ncsu.edu is an NCSU student, and that he has

certain privileges that transfer over to the UNC environment. A

collaboration environment is defined within an institution, such as

by a course instructor. The definition of this has to span

institutional boundaries so that physical resources could be

allocated anywhere throughout the VCL. Further, the

collaboration channels have to be opened up across the

institutional boundaries as well.

4. MEASURING PERFORMANCE OF

COLLABORATION ARCHITECTURES
A collaboration environment would be used only if its

performance is tolerable. To illustrate, consider the following

scenario. During candidates’ day at UNC, the computer science

department invites a number of students for demos of the research

projects within the department. Unfortunately, some of these

candidates are also invited to the candidates’ day at Duke and

MIT, both of which happen on the same day. Therefore, to give

all invited students a taste of research at UNC, UNC shares the

demo applications using an application-sharing system. This

allows the students visiting the other schools to remotely try the

demos as long as they have with them Internet-connected portable

devices, such as laptops and PDAs. The interactivity of the demo

is of the utmost importance. The shared demo application must

respond to the operations by the students at Duke and MIT

quickly and notify the student of any operations by other users in

a timely fashion; otherwise, the student may get bored and quit the

demo, which could result in the student not coming to UNC. Even

worse, they may never try collaboration technology again!

An important interactivity metric illustrated in the above scenario

is the local response time for an input command, which is defined

as the time that elapses from the moment a user enters an input

command to the moment that user sees the output for the input

command. Another, related interactivity metric illustrated is the

remote response time for an input command, which is defined as

the time that elapses from the moment a user enters an input

command to the moment a different user sees the output for the

input command. One factor that impacts the interactivity of an

application-sharing system is the collaboration architecture it

uses.

A collaboration architecture defines the logical system

components, their physical distribution, and the interaction

between them. Collaborative systems assume that the shared

application is divided into the program and user-interface

components. When the application is shared, the user-interface

component is always replicated on all the users’ machines. The

program component, on the other hand, may or may not be

replicated. Regardless of the number of program component

replicas, each user-interface component must be mapped to a

Table 1. Systems with different shared layers and employing different architectures

System Layer Shared Mapping

Screen Sharing in LiveMeeting, VNC, Webex, SameTime Screen Centralized

App Sharing in LiveMeeting, Webex, SameTime Window Centralized

Groove PowerPoint, Webex PowerPoint, SameTime Whiteboard Model Replicated

LiveMeeting PowerPoint Sharing Model Centralized

Figure 7. (left) centralized, (center) replicated, and (right) hybrid architectures

mailto:bob@ncsu.edu
mailto:bob@ncsu.edu
mailto:bob@ncsu.edu
mailto:bob@ncsu.edu

program component to which it sends input commands and from

which it receives outputs. To keep the program component

replicas synchronized in this many-to-one mapping of user-

interfaces to program components, each program component must

send input commands it receives from the user-interfaces mapped

to it to all the other program components.

Three popular mappings have been used in the past: centralized,

replicated, and hybrid (Table 1). The centralized mapping maps

all user-interface components to a single program component. The

replicated mapping maps each user-interface to its local program

component. All other mappings are hybrid mappings. To illustrate

the three kinds of mappings, consider the above candidates’ day

scenario in which two students, one from Duke and one from

MIT, are using PDAs to remotely join the application-sharing

session. The professor demoing the application is also in the

session and is joined using a desktop computer. A centralized

mapping in which the program component on the professor’s

computer is used is shown in Figure 7 (left). The replicated

mapping is shown in Figure 7 (center). A hybrid mapping in

which the user-interface on the Duke PDA is mapped to the

program component on the UNC desktop and the other user-

interfaces are mapped to their local program components is shown

in Figure 7 (right).

The choice of mapping can impact the interactivity of the shared

application. Suppose that the professor is demonstrating an

exceptionally good but computationally expensive Checkers AI

and is inviting the students at Duke and MIT to challenge it. What

mapping should be used to provide good local response times to

Checkers moves entered by the two students? As UNC and Duke

are near each other, the network latency between them is low.

Suppose that the network latency between UNC and MIT is also

low. Assume that the professor’s desktop is much more powerful

than the PDAs. Since the AI algorithm is computationally heavy,

a centralized mapping (Figure 7 (left)) in which the UNC desktop

runs the program component may offer the best local response

times. The reason is that it pays for both PDAs to incur the round-

trip costs between them and UNC for using the desktop as a high-

speed computation server. If the network latencies were high, then

the high round-trip times between the PDAs and the desktop

would annul the benefit of using the desktop as a high-speed

server. In this case, the replicated mapping shown (Figure 7

(center)) could give optimal local response times.

Experimental results are necessary to verify the intuitive

conclusions made above about the relative performance of the

various architectures in the collaboration scenario described

above. To illustrate the nature of and problems with these

experiments, consider a specific experiment a student carried out

recently on this subject. He reserved, at around 4am, 8 public

computers, got temporary permission to disable firewalls that

prevent Java RMI server from running, and spent four hours

running a log he gathered from an internet chat session! A

dedicated lab in which the computers are constantly updated

would alleviate some of these problems, but would not allow us to

scale our experiments to a large number of computers. Such

scalability studies need to be performed, for instance, to answer

how many users can IBM SameTime efficiently support in a

presentation given to the whole company, and can this number be

increased by a different architecture, and can the architecture be

dynamically changed to adapt to the number of users, the power

of their computers, and the network connections among them.

Therefore, the virtual computing lab is the solution.

5. CONCLUSIONS AND FUTURE WORK
There are at least three ways in which collaboration technology

and the idea of a virtual computing lab can be integrated.

Collaboration technology can virtually simulate and augment the

sense of community in a physical lab. In addition, it can create

rich communication channels to allow resource guardians to grant

access to us resources to resource consumers. In these two cases,

collaboration technology is being used to improve the nature of a

virtual computing lab. Conversely, a virtual computing lab can be

used to perform scalability experiments comparing the

performance of various architectures used to implement

collaborative applications. This is graphically illustrated in Figure

8.

Each of these directions can be pursued by an independent

project. Interestingly, however, these three ways to integrate the

two technologies can themselves be integrated in a single project.

Imagine an IM-like tool that provides status about the activities of

all of the current users of the lab and allows users to communicate

with each other. Such a tool can be used not only for regular

communication but also access control requests and grants, much

as an email tool is used for ordinary communication and adding

events to the calendar. For example, Alice, once she finishes an

assignment, can use a special command provided by the tool to

request the professor rights to help others with their assignments.

Before granting the right, the professor might open a video, audio

and/or text channel to Alice to set some limits on the help

provided. The first version of the tool requires the professor to

manually determine which of these channels can be expected to

give tolerable performance. In addition, it requires the system

administrator to configure the architecture. This tool is used to

conduct controlled performance experiments with the tool, which

recursively, requires the use of the tool to request the computers

needed in the experiments. The results of the experiments are used

to create a new version of the tool that, given measured user and

Figure 8. The Symbiotic Relationship between VCL and Collaboration Technology

system parameters, automatically determines the architecture of

the tool and the channels that can be efficiently supported.

Future work is needed to explore the various symbiotic

relationships shown in Figure 8, independently and in an

integrated fashion. What we have identified above is a set of

mechanisms potentially exciting and useful for some set of lab

participants and resource guardians. Further work is needed to

augment/reduce this set and determine the kind of participants that

finds the various feature in the set useful. The main goal of this

paper is to motivate such research.

6. ACKNOWLEDGEMENTS
This research was funded in part by IBM and NSF grants ANI

0229998, EIA 03-03590, and IIS 0312328. Discussions with

Diane Pozefsky and Andy Rindos contributed to these ideas, and

the comments of the reviewers helped improve the presentation.

The idea of lab community was inspired by the comprehensive

paper Julia Grace wrote on online communities.

7. REFERENCES
[1] Beenen, G. et al. Using Social Psychology to Motivate

Contributions to Online Communities. CSCW 2004.

[2] Cheng, L.T., et al. Jazzing up Eclipse with Collaborative

Tools. OOPSLA workshop on eclipse technology eXchange.

2003.

[3] Ducheneaut, N. and Moore, R.J. The Social Side of Gaming:

a Study of Interaction Patterns in a Massively Multiplayer

Online Game. CSCW 2004.

[4] Ducheneaut, N., et al. “Along Together?”: Exploring the

Social Dynamics of Massively Multiplayer Online Games.

SIGCHI 2006.

[5] Hollan, J. and Stornetta, S. Beyond Being There. CHI 1992.

[6] Lee, K.J. What Goes Around Comes Around: an Analysis of

del.icio.us as Social Space. CSCW 2006.

[7] Millen, D.R. and Patterson, J.F. Stimulating Social

Engagement in a Community Network. CSCW 2002.

[8] Nardi, B. and Harris, J. Strangers and Friends: Collaborative

Play in World of Warcraft. CSCW 2006.

[9] Seay, A.F., et al. Project Massive: a Study of Online Gaming

Communities. CHI 2004.

[10] Stevens, G. and V. Wulf. A New Dimension in Access

Control: Studying Maintenance Engineering Across

Organizational Boundaries. CSCW 2002.

