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ABSTRACT 

The Virtual Computing Lab allows its users to remotely access 

computing resources spread-out across multiple sites. 

Collaboration technology allows users to work with each other 

from distributed sites. These two technologies have a symbiotic 

relationship wherein each potentially improves the capabilities of 

the other. Collaboration technology can be used to make users of 

the virtual computing lab aware of each others’ activities, thereby 

providing a sense of community and allowing sharing of research 

results. More subtle, collaboration technology can be used to 

create a shared environment that allows resource users and 

grantors to fluidly communicate with each other to ensure high 

and safe utilization of the resources. Even more subtle, the virtual 

computing lab can be used to conduct experiments that evaluate 

the scalability of various distributed collaboration architectures. 

Even more interesting, these three ways to integrate the two 

technologies can themselves be integrated.  

Categories and Subject Descriptors 

C.2.4 [Computer-Communication Networks]: Distributed 

Systems – distributed applications. 

General Terms 

Management, Design, Security. 

Keywords 

Virtual Computing Lab, CSCW, Workspace Awareness, Access 

Rights Management. 

1. INTRODUCTION 
Many traditional computer lab resources, such as computers and 

software that are not shared, can be accessed only by users who 

are physically present in the lab. In particular, in order to perform 

some task using a lab machine, a user must go to the lab, wait for 

the desired resource to become available, perform the task, and 

then release the machine before leaving the lab. One issue with 

such labs is the necessary physical presence of the user in the lab. 

Sometimes the user may not have a means of getting to and from 

the lab. For example, a student who relies on public transportation 

to commute between school and home may not be able to reach 

the lab when the public transit system shuts down for the day or 

weekend. Moreover, there may be times during which a person 

feels uncomfortable getting to the lab. For example, an 

undergraduate student may not want to walk alone to the lab late 

in the evening. An even more intrinsic problem is that a lab user is 

confined to machines available in the lab, which determines the 

nature and number of machines that can be used in an experiment. 

This, in turn, can lead to inefficient utilization of the available 

computing resources. For example, available computers in a 

different physical lab that the user could leverage remain idle 

because the user cannot combine resources from different labs for 

a single experiment. 

The concept of the Virtual Computing Lab (VCL) provides a 

solution to these problems by allowing users to reserve and use 

computers distributed among multiple locations. There has been a 

significant amount of research in realizing this vision. Here we 

provide a new angle to this research by exploring how 

collaboration technology can be married to this concept.  

2. TOWARDS A LAB COMMUNITY 
Most of the complementary projects on the VCL reported in these 

proceedings treat a lab as a collection of only machines (Figure 1 

(left)). The challenge in these projects is to distribute the lab 

machines in a way that efficiently and fairly allocates lab 

resources to the distributed users. However, when in use, an 

actual lab is a collection of machines and people (Figure 1(right)). 

Presence of and interaction with others can positively impact the 

lab experience in many ways. Seeing others in the lab may 

motivate one to continue working. Lab members can exchange 

pleasantries or work related information. These conversations may 

lead to them to exploring new avenues for research. Lab members 

may get help from lab attendants, friends, and co-workers. In 

addition, a lab member can interact with other members indirectly 

by putting post-it notes on machines explaining the member’s 

current or future use of the machines. Team members doing pair 

programming or some other form of joint project may wish to 

share a single set of input and output devices. A lab participant 

may wish to share a particularly exciting result with a co-located 

user. People who solve difficult problems may build reputations 

that not only give them a sense of pride but also help them 
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advance in their fields. Moreover, lab members interested in the 

same kind of problems can form groups which lead to a sense of 

community and opportunistic collaborations. It is our hypothesis 

that if a virtual computing lab is to be effective, it should virtually 

support the above and other collaboration scenarios. 

Such support can be support mechanisms simulating physical 

awareness and communication channels, providing users with a 

feeling of “being there.” A popular example of such a channel is 

an audio/video window of a remote collaborator. However, a 

computer system can only provide an approximation of being 

there. If direct simulation of face-to-face interaction modes was 

the only goal of collaboration technology, then it would always be 

the second choice to the real thing, taken when time and cost 

considerations make face-to-face interaction impractical. For this 

reason, Hollan and Stornetta have argued that to be truly 

successful, such technology should go “beyond being there,” 

offering interaction features not directly supported in face-to-face 

collaboration [5]. When this happens, people with use such 

technology even when face to face interaction is a practical 

option. A simple example of such an interaction feature is IM, 

allowing users to carry out multiple private conversations with 

others. 

There has been much work in identifying mechanisms that attempt 

to meet the dual goals of collaboration technology. While these 

mechanisms have not been explored in the context of lab-based 

communities, they have been applied to virtually simulate a (a) 

general-purpose community center [7], (b) a place to gather after 

playing the same game, providing “down time” for the players to 

relax, discussing the game and other issues, after a difficult quest 

[3][4][8][9], (c) a group exchanging bookmarks [6], (d) and users 

rating movies for each other [1]. In some of these cases, social 

interaction became the primary reason for using the system rather 

than the activity such as gaming around which the interaction was 

designed. This is not surprising given that many people with a 

choice of telecommuting prefer to physically commute to work. 

Based on the techniques and experience in these communities, we 

can construct some of the elements of lab-based collaboration 

technology, outlined below. When a group of users decides to 

start/end an experiment, notifications can be sent to others 

informing them about the event and experiment. An architecture 

can be created for placing the various lab resources in a virtual 

space, and the users of these resources can be represented by 

avatars. Users waiting for resources can be put in waiting rooms, 

and/or a virtual shuttle can take them to various parts of the lab. 

Audio/video/text-based communication tools together with screen 

sharing facilities can be used for users to work together on the 

same or related experiments, share social pleasantries, and ask for 

and provide help. Browsable profiles can be created for the users 

of the lab, which can list their personal information, the projects 

on which they work, and the people they have helped. Prizes can 

be awarded to the most helpful participants or those who have 

performed the most interesting experiments. Polls can be used to 

identify the recipients and solicit their experience with the lab. 

Based on the interests listed in the profiles, guilds can be created, 

which can be associated with discussion forums and blogs. If 

these elements can be supported by the lab, people will want to 

visit a virtual lab even when they have access to a physical lab 

with equivalent resources.  

To concretely illustrate and define some of the above 

functionality, consider a scenario in which Alice, Bob, and 

Charlie are working together on a programming assignment. They 

are using a collaborative programming environment installed on 

the virtual lab computers. In the programming environment, there 

is a special pane that shows Alice’s, Bob’s, and Charlie’s 

presence status, as in Jazz [2]. Suppose that Alice has a question 

about the function she is currently writing and she would like 

either Bob’s or Charlie’s input. She looks at Bob’s presence status 

and sees that it is “Busy.” Charlie’s status is currently set to 

“Available” so she decides to start an audio video conference with 

him. The session controls and the video feed are shown in a new 

pane in the programming environment. In addition, next to her 

own coding window, Alice opens a window showing the code 

Charlie can currently see on his screen. Conversely, Charlie opens 

a window showing what Alice can currently see in her coding 

window. Alice and Charlie can now use the coding windows to 

synchronize their locations in the code. As they discuss Alice’s 

question, they can communicate using the audio and video links 

as well as the code itself. For example, if Charlie types something 

in his coding window, the new text will be displayed in the remote 

coding window on Alice’s computer. If Alice agrees with 

Charlie’s changes, she can synchronize her code to his. 

Alternatively, if Charlie was only prototyping ideas, his changes 

can be rejected, and Alice can implement her own solution. Audio 

 

Figure 1. Two Views of the Physical Lab Being Simulated by VCL: (left) Lab = Collection of Machines and (right) Lab = 

Collection of Machines and People 



channels can be turned off and instant messaging can be used 

instead, if Alice and Charlie do not wish to reveal their discussion 

to other people in the lab. For example, suppose that Alice, Bob, 

and Charlie are working on a programming project for a class, and 

they know that at least some of the other people in the lab are 

working on the same homework. In order to avoid unwillingly 

sharing the solution with the rest of the class, Alice and Charlie 

use instant messaging as the communication channel.  

3. COLLABORATIVE ACCESS CONTROL 
The previous scenario raises interesting problems regarding the 

issue of access control. In particular, students in other groups 

should not be able to join in the conversation between Alice and 

Charlie. On the other hand, if Bob decides to jump in on Alice’s 

and Charlie’s chat, he should be allowed as he is their teammate. 

In this section, we discuss how collaborative access control can be 

used in the virtual computing lab to solve the problem. In general, 

a virtual lab with community support must control the 

communication channels available to the lab members. A virtual 

lab with or without community support must also support an 

access-control mechanism that allows administrators to grant 

computing resources to users. Compared to the number of lab 

resources, which can be considered constant, controlling the 

number of possible communication channels, which is 

exponential with respect to the number of users, can be a fairly 

involved task. Thus, protecting these resources and 

communication channels raises usability issues.  

Existing research on this topic has tried to address usability 

problems with access control by providing high-level languages to 

specify access rights that allow a single specification to give a 

large number of rights. A radically different, but complementary, 

approach is based on the following two observations (a) access-

control is an inherently complex collaborative activity (carried out 

to support a more primary collaborative activity such as 

exchanging experiment results) involving one or more 

information guardians and consumers, and (b) collaborative 

environments can make it easier to perform group tasks by 

automating some of these tasks and providing formal interactive 

channels for the collaborators to communicate with each other. 

Traditional systems provide abstractions that assume that the 

difficult task of providing access to different users is carried out 

individually by people manually playing the role of access 

authorizers. Based on the two observations above, it is exciting to 

investigate the idea of designing collaborative environments to 

ease the setting of both general and item-specific privileges. In 
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Figure 3. Traditional Access Control 
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Figure 4. Interactive Access Control 
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Figure 2. Traditional vs. Mixed-Initiative Access Control 



these environments, the initiative in distributing access rights to 

shared objects can be taken by information guardians, information 

consumers, and tools that act as agents of the guardians and 

consumers. Hence, we refer to this form of access control as 

mixed-initiative. Information consumers will be responsible for 

sending access requests to information guardians; their agents will 

(partially or completely) automate this task for them. Information 

guardians will be responsible for authorizing accesses; their 

agents will automate this task for them.  

Figure 2 shows the difference between traditional and mixed-

initiative access control. The box on the left contains the shared 

objects to be protected. With traditional access control, its 

guardians are individually responsible of distributing access to 

different parts of it, though they may use general-purpose, 

informal communication channels such as email and instant 

messaging to consult with others. With mixed-initiative access 

control, a special collaborative environment, shown on the right, 

is created for this task. The environment provides consumer and 

guardian agents, and offers explicit support for the agents to work 

with the humans.  

The primary or protected collaborative environment sets the 

context for controlled collaboration. For example, a course 

instructor for the course COMP-101 could define a collaborative 

environment specifically for it, or for a specific assignment in the 

course. The specification of the environment would include things 

such as the software configuration for the machines, the 

assignments and projects made available to the students accessing 

the environment, and the kinds of controls are enforced on the 

collaboration channels. Once a collaborative environment is 

defined and instantiated, students would be able to access it, just 

as any resource that is available in the VCL. Depending on the 

degree of control specified and enforced on the collaboration 

channels within the environment, students would be permitted or 

restricted from sharing artifacts and objects created within the 

context of the collaborative environment with other students. The 

role of the secondary or access-control environment is to exert 

this control collaboratively, allowing the various parties to 

negotiate the nature of the control.  

Our expectation is that the specialized controlling collaborative 

environment will address key impediments to the fluidity of 

traditional access control, solving some long-standing security 

problems that have been exacerbated with the increased interest in 

distributed programmer-defined shared environments such as a 

community-based VCL. 

Let us show more concretely the difference between traditional 

and mixed-initiative control. The difference between the two is 

when accesses are granted and the parties involved in creating the 

grant. In traditional access control, a resource guardian is solely 

involved in specifying rights to a resource, and he/she must do so 

before an authorized consumer of the resource uses it (Figure 3). 

In interactive access control [10], the resource user sends a formal 

request for access to the information guardian, who can then grant 

it to automatically change the resource access rights (Figure 4). A 

requester with granted rights can later access the resource, as in 

traditional access control. Thus, in this scenario, the consumer 

and guardian collaborate to create the grant – the consumer 

composes the request and the guardian approves it. This is very 

similar to a person sending a formal meeting request to another 

user, who can then accept it to automatically update the calendars 

of both users. In a variation of this idea, instead of explicitly 

composing an access request, a consumer can simply try to access 

the resource. A consumer agent automatically composes the 

request, and sends it to the guardian (Figure 5). A dual of the 

scenario is one in which a guardian agent automatically grants the 

request, which triggers logging of the consumer’s actions. Later, 

the guardian can examine the log and revoke [10] the grant if 

necessary (Figure 6). In mixed-initiative access control, all of 

these schemes are supported by allowing consumers, consumer 

agents, guardians, and guardian agents to collaborate with each 

other to grant accesses. 

To illustrate the role of such control in a VCL, consider a class 

that needs to do projects on the VCL. Students accessing this 

collaborative environment would experience something similar to 

entering a physical lab on a campus – they would be able to “see” 
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Figure 5. Consumer Agent Automatically Composes and Sends Request 
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who else is there, chat with them, and so on. Depending on the 

degree of control specified and enforced on the collaboration 

channels within the environment, students would be permitted or 

restricted from sharing artifacts and objects created within the 

context of the collaborative environment with other students. Let 

us assume that the professor uses traditional access control to 

create a group containing the students, and give the group the 

required access. Later, let us say that a particular student, Bob, 

needs some help debugging an assignment. Another student, 

Alice, might join the debugging session by placing her avatar in 

front of Bob’s computer. However, this is a restricted operation 

requiring appropriate rights. Therefore, Alice’s consumer agent 

determines these rights and sends them to the professor’s guardian 

agent. The professor is not online, but has instructed his/her 

guardian agent to automatically grant these to Alice and other 

trusted students. The resulting collaboration session would be 

automatically audited by the system. Later, the professor can look 

at the logs to see if Alice did indeed follow the honor code by not 

showing her solution to Bob. 

As the VCL is intended to enable institutions to share each others’ 

computing resources, one issue is dealing with cross-institutional 

security policies. For example, how does a student at NCSU 

access a resource physically located at UNC? Facilitating 

seamless collaboration in a secure way across institutional 

boundaries would require several additional aspects to be worked 

out, from a security point of view. Users in one autonomous 

institution will not be known in a different institution. For 

example, user bob@ncsu.edu has certain privileges and attributes 

associated with him, all within the context of his institution, 

NCSU. Within this context, user bob@ncsu.edu is known to be a 

6th semester undergraduate student in Computer Science. If 

bob@ncsu.edu is allocated a resource physically located in the 

UNC campus, the security enforcement modules in UNC have to 

recognize that bob@ncsu.edu is an NCSU student, and that he has 

certain privileges that transfer over to the UNC environment. A 

collaboration environment is defined within an institution, such as 

by a course instructor. The definition of this has to span 

institutional boundaries so that physical resources could be 

allocated anywhere throughout the VCL. Further, the 

collaboration channels have to be opened up across the 

institutional boundaries as well. 

4. MEASURING PERFORMANCE OF 

COLLABORATION ARCHITECTURES 
A collaboration environment would be used only if its 

performance is tolerable. To illustrate, consider the following 

scenario. During candidates’ day at UNC, the computer science 

department invites a number of students for demos of the research 

projects within the department. Unfortunately, some of these 

candidates are also invited to the candidates’ day at Duke and 

MIT, both of which happen on the same day. Therefore, to give 

all invited students a taste of research at UNC, UNC shares the 

demo applications using an application-sharing system. This 

allows the students visiting the other schools to remotely try the 

demos as long as they have with them Internet-connected portable 

devices, such as laptops and PDAs. The interactivity of the demo 

is of the utmost importance. The shared demo application must 

respond to the operations by the students at Duke and MIT 

quickly and notify the student of any operations by other users in 

a timely fashion; otherwise, the student may get bored and quit the 

demo, which could result in the student not coming to UNC. Even 

worse, they may never try collaboration technology again! 

An important interactivity metric illustrated in the above scenario 

is the local response time for an input command, which is defined 

as the time that elapses from the moment a user enters an input 

command to the moment that user sees the output for the input 

command. Another, related interactivity metric illustrated is the 

remote response time for an input command, which is defined as 

the time that elapses from the moment a user enters an input 

command to the moment a different user sees the output for the 

input command. One factor that impacts the interactivity of an 

application-sharing system is the collaboration architecture it 

uses.  

A collaboration architecture defines the logical system 

components, their physical distribution, and the interaction 

between them. Collaborative systems assume that the shared 

application is divided into the program and user-interface 

components. When the application is shared, the user-interface 

component is always replicated on all the users’ machines. The 

program component, on the other hand, may or may not be 

replicated. Regardless of the number of program component 

replicas, each user-interface component must be mapped to a 

Table 1. Systems with different shared layers and employing different architectures 

System Layer Shared Mapping 

Screen Sharing in LiveMeeting, VNC, Webex, SameTime Screen Centralized 

App Sharing in LiveMeeting, Webex, SameTime Window Centralized 

Groove PowerPoint, Webex PowerPoint, SameTime Whiteboard Model Replicated 

LiveMeeting PowerPoint Sharing Model Centralized 

 

 

Figure 7. (left) centralized, (center) replicated, and (right) hybrid architectures 
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program component to which it sends input commands and from 

which it receives outputs. To keep the program component 

replicas synchronized in this many-to-one mapping of user-

interfaces to program components, each program component must 

send input commands it receives from the user-interfaces mapped 

to it to all the other program components. 

Three popular mappings have been used in the past: centralized, 

replicated, and hybrid (Table 1). The centralized mapping maps 

all user-interface components to a single program component. The 

replicated mapping maps each user-interface to its local program 

component. All other mappings are hybrid mappings. To illustrate 

the three kinds of mappings, consider the above candidates’ day 

scenario in which two students, one from Duke and one from 

MIT, are using PDAs to remotely join the application-sharing 

session. The professor demoing the application is also in the 

session and is joined using a desktop computer. A centralized 

mapping in which the program component on the professor’s 

computer is used is shown in Figure 7 (left). The replicated 

mapping is shown in Figure 7 (center). A hybrid mapping in 

which the user-interface on the Duke PDA is mapped to the 

program component on the UNC desktop and the other user-

interfaces are mapped to their local program components is shown 

in Figure 7 (right). 

The choice of mapping can impact the interactivity of the shared 

application. Suppose that the professor is demonstrating an 

exceptionally good but computationally expensive Checkers AI 

and is inviting the students at Duke and MIT to challenge it. What 

mapping should be used to provide good local response times to 

Checkers moves entered by the two students? As UNC and Duke 

are near each other, the network latency between them is low. 

Suppose that the network latency between UNC and MIT is also 

low. Assume that the professor’s desktop is much more powerful 

than the PDAs. Since the AI algorithm is computationally heavy, 

a centralized mapping (Figure 7 (left)) in which the UNC desktop 

runs the program component may offer the best local response 

times. The reason is that it pays for both PDAs to incur the round-

trip costs between them and UNC for using the desktop as a high-

speed computation server. If the network latencies were high, then 

the high round-trip times between the PDAs and the desktop 

would annul the benefit of using the desktop as a high-speed 

server. In this case, the replicated mapping shown (Figure 7 

(center)) could give optimal local response times. 

Experimental results are necessary to verify the intuitive 

conclusions made above about the relative performance of the 

various architectures in the collaboration scenario described 

above. To illustrate the nature of and problems with these 

experiments, consider a specific experiment a student carried out 

recently on this subject. He reserved, at around 4am, 8 public 

computers, got temporary permission to disable firewalls that 

prevent Java RMI server from running, and spent four hours 

running a log he gathered from an internet chat session! A 

dedicated lab in which the computers are constantly updated 

would alleviate some of these problems, but would not allow us to 

scale our experiments to a large number of computers. Such 

scalability studies need to be performed, for instance, to answer 

how many users can IBM SameTime efficiently support in a 

presentation given to the whole company, and can this number be 

increased by a different architecture, and can the architecture be 

dynamically changed to adapt to the number of users, the power 

of their computers, and the network connections among them. 

Therefore, the virtual computing lab is the solution. 

5. CONCLUSIONS AND FUTURE WORK 
There are at least three ways in which collaboration technology 

and the idea of a virtual computing lab can be integrated. 

Collaboration technology can virtually simulate and augment the 

sense of community in a physical lab. In addition, it can create 

rich communication channels to allow resource guardians to grant 

access to us resources to resource consumers. In these two cases, 

collaboration technology is being used to improve the nature of a 

virtual computing lab. Conversely, a virtual computing lab can be 

used to perform scalability experiments comparing the 

performance of various architectures used to implement 

collaborative applications. This is graphically illustrated in Figure 

8. 

Each of these directions can be pursued by an independent 

project. Interestingly, however, these three ways to integrate the 

two technologies can themselves be integrated in a single project. 

Imagine an IM-like tool that provides status about the activities of 

all of the current users of the lab and allows users to communicate 

with each other. Such a tool can be used not only for regular 

communication but also access control requests and grants, much 

as an email tool is used for ordinary communication and adding 

events to the calendar. For example, Alice, once she finishes an 

assignment, can use a special command provided by the tool to 

request the professor rights to help others with their assignments. 

Before granting the right, the professor might open a video, audio 

and/or text channel to Alice to set some limits on the help 

provided. The first version of the tool requires the professor to 

manually determine which of these channels can be expected to 

give tolerable performance. In addition, it requires the system 

administrator to configure the architecture. This tool is used to 

conduct controlled performance experiments with the tool, which 

recursively, requires the use of the tool to request the computers 

needed in the experiments. The results of the experiments are used 

to create a new version of the tool that, given measured user and 

 

Figure 8. The Symbiotic Relationship between VCL and Collaboration Technology 



system parameters, automatically determines the architecture of 

the tool and the channels that can be efficiently supported. 

Future work is needed to explore the various symbiotic 

relationships shown in Figure 8, independently and in an 

integrated fashion. What we have identified above is a set of 

mechanisms potentially exciting and useful for some set of lab 

participants and resource guardians. Further work is needed to 

augment/reduce this set and determine the kind of participants that 

finds the various feature in the set useful. The main goal of this 

paper is to motivate such research. 
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