IEEE SIGNAL PROCESSING LETTERS, VOL. 14, NO. 5, MAY 2007

363
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Abstract—Computers are increasingly being used to capture
audio in various applications such as video conferencing and
meeting recording. In many of these applications, user may be
simultaneously typing on the keyboard, e.g., to take notes or
search for information. As a result, the captured speech signals
are significantly corrupted by sounds generated by the user’s key-
strokes. In this paper we propose an algorithm to automatically
detect and remove keystrokes from speech signals. The proposed
method does not require any user training or enrollment and
is computationally efficient. The keystroke removal algorithm
generates significantly enhanced speech as measured by both user
listening tests and speech recognition experiments.

I. INTRODUCTION

ERSONAL computers and laptops are increasingly being
P used as devices for sound capture in a variety of recording
and communication scenarios including the recording of meet-
ings and lectures for archival purposes, and audio/video instant
messaging. Sound capture in these scenarios often faces a
unique source of additive noise, that of the user typing on the
keyboard. For example, if a meeting attendee takes notes while
recording a meeting using the laptop’s local microphone, the
recorded audio will be significantly corrupted by the sound
of the user’s keystrokes. This can be very unpleasant for the
listener and has a detrimental effect on any subsequent pro-
cessing, such as automatic speech recognition or stationary
noise suppression.

The enhancement of keystroke-corrupted speech can be
viewed as a special case of the detection and removal of impul-
sive noise. There have been several algorithms proposed in the
literature for this purpose, e.g., [1]-[4]. However, most of these
algorithms target improved speech recognition performance,
not perceptual quality.

In this letter, we present novel algorithms for the detection
and removal of typed keystrokes in recorded speech that re-
sult in significant perceptual improvement. The proposed algo-
rithms do not rely on an explicit model of the keystroke noise,
which can be highly variable across different users and devices,
but instead exploit several well-known properties of speech sig-
nals. The algorithms are computationally efficient, and gener-
alize to unseen deployment environments and devices, without
any training or enrollment required by the user.
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II. AN ANALYSIS OF KEYSTROKES

Because keys on a keyboard are mechanical pushbutton
switches, a typed keystroke appears in the signal as two closely
spaced noise-like impulses, one generated by the key-down
action and one by the key-up action. The duration of a keystroke
is typically between between 60—80 ms but may last up to 200 ms.
While keystrokes can be broadly classified as spectrally flat, they
also contain a high degree of randomness due to the inherent
variety of typing styles, key sequences, and the mechanics of
the keys themselves. Because of this variability, traditional ap-
proaches based on noise models and stationarity assumptions,
such as spectral subtraction, perform poorly for this task.

A. Effect of Keystrokes on Speech Signals

In order to systematically evaluate the effect that keystrokes
have on speech signals we digitally mixed clean speech utterances
with sequences of keystrokes at signal-to-noise ratios (SNRs)
typical of the target applications. The resulting keystroke-
corrupted utterances were processed by spectral subtraction
using full a priori knowledge of the noise. From these en-
hanced magnitudes, two output waveforms were generated, one
which used the phase directly from the noise-corrupted speech,
and one which used the phase from the clean speech signal.
Empirically, we found that these two signals were perceptually
indistinguishable. From this, we concluded that a keystroke
removal algorithm should concentrate primarily on enhancing
the spectral magnitudes of the keystroke-corrupted speech.

III. DETECTION OF KEYSTROKES IN SPEECH

In this section, we propose a keystroke detection algorithm
that exploits the local smoothness in speech signals present
across time and frequency.

A. Unsupervised Keystroke Detection

Each speech utterance s(n) is windowed using a Hamming
window of length 20 ms with 10-ms overlap, and then con-
verted to the frequency domain using a short-time Fourier trans-
form (STFT). We define the magnitude of each time-frequency
component of the utterance as S(k,t) where ¢ represents the
frame index and k represents the spectral index. S(t) represents
a vector of all spectral components of frame ¢. We assume that
the signal in each subband follows the following linear predic-
tive model:

M
S(ht) =" oxmS(k,t — ) + V(k, 1) (1)

m=1
where, 7 = {71, ..., 7as} defines the frames used to predict the
current frame, o, = {ay1,...,agn} are the weights applied
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Fig. 1. Top: spectrogram of an utterance corrupted with keystrokes. Bottom:
value of F; for this utterance. The ground-truth locations of the keystrokes are
shown by black solid vertical lines.

to these frames, and V (¢, k) is zero-mean Gaussian noise, i.e.,
V(t, k) ~ N(0,02). Thus, we can write

p(S(k,t)|S(k,t —11),...,S(k,t —Tar))

M
=N (Z akmS(k,t — Tm),afk) . @
m=1

If we assume that the frequency components in a given frame
are independent, the joint probability of the frame can be written
as p(S(t)) = [[, p(S(k,t)). Thus, the conditional log-likeli-
hood F} of the current frame S(¢) given the neighboring frames
defined by 7 is

Fy= log{p(S(k,t)|S(k,t = 71),...,S(k,t — o))}

M 2
(S(k,t) = ormS(k,t - Tm)) . 3)
m=1

Thus, F} measures the likelihood that frame ¢ can be predicted
by its neighbors. A frame is classified as a keystroke if F; < T,
where T is an appropriately chosen threshold. Empirically, we
have found that keystrokes typically last three frames. As aresult,
wesetT = {—2,2}. In addition, we use ag,, = 1/M, and
estimate the variance in (1) as o2, = 1/M Y", (S(k,t—7m))%.

Fig. 1 shows the spectrogram of an utterance and the cor-
responding score F;. The solid black vertical lines represent
ground-truth locations of keystrokes. As the figure shows, the
minima of F} give an accurate estimate of keystroke locations.

1 1
=32

tk

B. Event-Constrained Keystroke Detection (EKD)

While the proposed unconstrained keystroke-detection algo-
rithm can effectively identify keystrokes in speech signals, it
has the potential to generate false alarms or missed keystrokes
if the likelihood threshold is improperly chosen or varies over
time, users, or devices. We can make the detection algorithm
more robust by exploiting information available from the com-
puter itself. When a key is pressed, the operating system (OS)
generates a key-down event. Similarly, when a key is released, a
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key-up event is generated. Unfortunately, there is usually a sig-
nificant delay between the actual physical event and the time the
OS generates the event. This delay is highly unpredictable and
varies with the type of scheduling used by the OS, number of ac-
tive processes, and a number of other factors. In spite of this, we
can incorporate the use of OS timestamps in order to improve
the keystroke detection algorithm described in Section III-A.

Event-constrained keystroke detection is performed by
searching for both the key-down and the key-up events in the
audio signal for every key-down event received by the operating
system. Empirically, we have found this to be a more robust
approach than searching for the key-down and key-up events
independently. Thus, for each received key-down time stamp
p, the algorithm operates as follows.

1) Find the frame ¢,, corresponding to system clock time p.

2) Define a search region ©,, as all frames between previous
time stamp #,_; and current time stamp ,,.

3) Find {p = argmin{F;,Vt € ©,}, classify frames
t

Up = {fD —1,...,tp+ [} as keystroke-corrupted frames
corresponding to the key-down action.

4) Find iy = argmin{F},Vt € ©,, t ¢ Up}, classify frames
t

Uy = {ty —1,...,ty + 1} as keystroke-corrupted frames
corresponding to the key-up action.

We have found that because keystrokes typically last three
frames, setting [ = 1 gives good performance.

In Fig. 1, the OS keydown time-stamps are shown as dotted
stems. The centers of keystrokes (tp or ty) detected using
event-constrained keystroke detection algorithm are shown as
squares on the F} curve. This figure illustrates the significant
variability in the lag between the physical occurrence of the
keystroke and the OS time stamp. The figure also shows that the
proposed detection algorithm can accurately detect the location
of keystrokes. By using the time stamps from the OS, we have
created a threshold-free keystroke detection algorithm. One
potential pitfall of the above algorithm is that it would fail if the
user-produced multiple keystrokes between a pair of received
OS events. However, in our experience, we have noticed that
this rarely, if ever, occurs in practice.

IV. REMOVAL OF KEYSTROKES FROM SPEECH

In this section, we present a method for removing keystrokes
from speech, once the corrupted frames have been identified.
The proposed method employs a “missing feature” approach
to the enhancement of keystroke-corrupted speech. In missing
feature methods, e.g., [5], components of log spectral feature
vectors with low local SNR are removed and replaced with new
estimates generated using data imputation techniques.

One of the main difficulties of missing feature methods is de-
termining which spectral components to remove and impute. In
this work, because keystrokes are spectrally flat and keystroke-
corrupted frames have a low local SNR due to the proximity of
the microphone to the laptop keyboard, we assume that all spec-
tral components of a keystroke-corrupted frame are missing.
While this assumption is not strictly true, it allows us to recast
the keystroke removal problem to one of reconstructing a se-
quence of frames from its neighbors.
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A. MAP Estimation of Keystroke-Corrupted Frames

To reconstruct the keystroke-corrupted frames, we employ
the correlation-based reconstruction technique in [5]. In this al-
gorithm, a sequence of log-spectral vectors of a speech utterance
is assumed to be generated by a stationary Gaussian random
process. The statistical parameters of this process, its mean and
covariance, are estimated from a clean training corpus. By mod-
eling the sequence of vectors in this manner, we estimate covari-
ances not just across frequency, but across time as well. Because
we assume the process is stationary, the estimated mean vector
is independent of time and the covariance between any two com-
ponents is only a function of the time difference between them.
In order for the data to better fit the Gaussian assumption of the
model, we operate on log-magnitude spectra rather than on the
magnitude directly. Thus, we define X (¢t) = log(S(t)), where
S(t) represents the magnitude spectrum as before.

We now define X, and X,, to be vectors of clean (“ob-
served”) and keystroke-corrupted (“missing”) speech, respec-
tively. Under the assumption that p(X,,, X,(¢)) is Gaussian
with mean p and covariance Y, it can be shown that the poste-
rior distribution p(X,,|X,(t)) is also Gaussian, and therefore,
the MAP estimate of X, is the posterior mean, given by

Xin(t) = B[Xm|Xo()] = pim + BimoYgy (Xo(t) = o) (4)

where u, and pu.,, are the components of u corresponding to
the clean and keystroke-corrupted speech, respectively. Sim-
ilarly, X,,, and X, are the appropriate partitions of the co-
variance matrix Y that was learned in training. For a deriva-
tion of (4), see [6]. Thus, for each keystroke-corrupted frame
in¥ = {Up, ¥y}, the keystroke removal algorithm operates
as follows.

1) Set { Xm(t) = [X(t:D -nT.. .X(tAQ + DT
X,(t) =[X(ip—1—1)T X(ip + 1+ 1)T]T

2) Compute the MAP estimate Xm(t) according to (4).
3) Repeat steps 1-2 for Uy

Note that X,,(t) is a MAP estimator as the posterior is
Gaussian and thus unimodal with its mode occuring at its mean.
The experimental setup and results obtained using this algo-
rithm are presented in Section V. However, some shortcomings
in the overall performance of the reconstruction algorithm for
this application were discovered. Most notably, the large di-
mensionality of the vectors required computationally expensive
matrix operations and the mismatch in noise and reverberation
between the training and test environments resulted in esti-
mation errors which produced artifacts in the resulting audio
signal.

B. Improved MAP Estimation Using Locality Constraints

1) Reconstruction Using a Block-Diagonal Covariance: In
the log spectral domain, each frame consists of N components,
where 2N is the DFT size. Consequently, ¥,, is ¢cN x ¢N,
where c is the number of frames of observed speech used to
estimate the missing frames. Typically, N > 128 and ¢ > 2,
making the matrix inversion required in (4) computationally

expensive. To reduce the complexity of the operations, we as-
sume that covariance matrix has a block-diagonal structure, pre-
serving only local correlations. If we use a block size B3, then we
need to compute the inverse of N/B matrices of size ¢cB x ¢B
thus reducing the number of computations. In our experiments,
we set B = 5.

Using a block-diagonal covariance structure also improves
the environmental robustness for farfield speech. There
can be long-span correlations across time and frequency in
close-talking speech. However, these correlations can be sig-
nificantly weaker in a farfield audio. This mismatch results
in reconstruction errors, producing artifacts in the resulting
audio. By using a block-diagonal structure, we utlize short-span
correlations only, making the reconstruction more robust in
unseen farfield conditions.

2) Locally Adapting the Gaussian Mean: The Gaussian
model described in Section IV-A uses a single mean vector to
represent all speech. This model, though weak, worked reason-
ably well in [5] because the training and test data were both
from a close-talking microphone, and the algorithm operated
on smoothed spectral vectors, i.e., log mel spectra. Because
our algorithm reconstructs the full magnitude spectrum, and
operates on farfield audio, there is considerably more variation
in the observed spectra. As a result, using a single pre-trained
mean vector to compute the MAP estimate results in significant
reconstruction artifacts.

To improve the model’s accuracy, but still keep the compu-
tational cost low, we maintain the use of a single mean vector
but locally adapt its value. To do so, we utilize a linear predic-
tive framework similar to that proposed for detection in Sec-
tion III. The mean vector is estimated as a linear combination
of the neighboring clean frames surrounding the keystroke-cor-
rupted segment. In our experiments, we estimated i simply as
the sample mean of the frames used for reconstruction.

V. EXPERIMENTAL SETUP AND RESULTS

In order to evaluate the proposed algorithms, we performed
two experiments. In the first experiment, we compared the
performance of a simple frame relacement algorithm described
below (REPLACE), the original MAP reconstruction algo-
rithm described in Section IV-A (MAP), and the proposed
locally-constrained MAP reconstruction algorithm described
in Section IV-B (LMAP). The REPLACE algorithm simply
replaces a missing frame with the closest occuring observed
frame (either in the past or future). In the case of a tie, we
simply replace with the mean of the frames in question. To
evaluate these algorithms, we simulated keystrokes by ran-
domly dropping frames in an utterance. The missing frames
were then reconstructed using the REPLACE, MAP, and LMAP
algorithms. The Gaussian statistics for the MAP and LMAP
algorithms were trained using the WSJO SI84 training set [7].
As keystrokes occur in clusters of two or more frames, we
first randomly dropped 10% of the frames in the utterance. In
order to simulate higher drop percentages, we dropped frames
surrounding the missing frames, i.e., to simulate a 30% drop,
we randomly dropped 10% of the frames, and then determinis-
tically dropped one frame on either side of randomly dropped
frames. Fig. 2 shows the log spectral distortion (LSD) between
the original and reconstructed frames for various percentages
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Fig. 2. LSD between original and reconstructed frames for REPLACE, MAP,
and LMAP techniques.

TABLE I
DMOS EVALUATION CRITERIA AND RESULTS

Score | A vs. B
3 B much better than A

2 B somewhat better than A

1 B slightly better than A

0 B nearly identical to A

-1 B slightly worse than A

-2 B somewhat worse than A
-3 B much worse than A
KS vs. MAP | KS vs. LMAP | MAP vs. LMAP
Mean -1.9231 1.7713 2.0128
STD 0.4523 0.3402 0.3203

of dropped frames for all the algorithms. The figure shows
that a naive algorithm such as REPLACE results in large
reconstruction errors, while for small percentages of dropped
frames (< 20%), the performance of MAP and LMAP is
similar. However, when 30% or more of the frames are missing
(typical of an actual keystroke-corrupted utterance), LMAP
achieves significantly lower distortion than the original MAP
reconstruction algorithm.

In the second experiment, we collected a corpus of keystroke-
corrupted speech data in a conference room environment. Three
different laptops were placed on a conference room table. Users
were asked to take notes on each laptop while a loudspeaker
located across the table played utterances from the WSJO test
set. Approximately one-third of the test set was recorded on each
laptop. This recording session was then repeated in the same
environment without any typing on the laptops. This yielded two
corpora of 300 utterances, one corrupted by keystrokes (KS),
and one that was clean (CL). Note that both corpora contained
farfield speech data.

The proposed keystroke removal algorithm was then per-
formed on all utterances of the KS corpus. In order to evaluate
the performance, user listening tests were conducted using a
differential mean opinion score (DMOS) criterion. Test subjects
were asked to make A/B comparisons of a series of utterances
processed using different algorithms, using the criteria shown
in Table I. The ordering of the utterances presented to each user
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was randomized. Pairwise comparisons were made across three
algorithms: the unprocessed keystroke-corrupted speech (KS),
MAP, and LMAP.

The results of the DMOS tests averaged over 36 subjects are
shown in Table I. As the results indicate, users showed a strong
preference for unprocessed KS utterances over the MAP pro-
cessing. This indicates that MAP generates artifacts more an-
noying to users than the keystrokes themselves. On the other
hand, users showed a strong preference for the LMAP utterances
compared to the KS utterances, with an average DMOS score of
1.77. Thus, the proposed locality constraints significantly im-
prove the reconstruction algorithm and create minimal artifacts
or distortion. Finally, the table shows that users preferred LMAP
over MAP, as expected given the previous results. The results
were found to be significant to the 95% level.

We also performed speech recognitions experiments on the
processed LMAP utterances. The HTK speech recognizer was
trained using the WSJO SI84 training set (close-talking speech).
The resulting HMMs were then adapted via supervised MLLR
using 100 utterances of farfield speech from the CL corpus.
Speech recognition was then performed on the remaining 200
utterances from CL, as well as the same utterances from the KS,
and LMAP test sets.

The CL corpus obtained a Word Error Rate (WER) of 66.2%.
Because this data was not corrupted by keystrokes, this repre-
sents the upper bound on recognition performance. The WER
of the KS speech increased to 81.6%, showing that keystrokes
degrade recognition performance significantly. The WER of the
LMAP corpus, processed by our keystroke removal algorithm,
improved to WER of 76.6%, closing the gap in performance be-
tween KS and CL by 32%.

VI. CONCLUSIONS

In this paper, we have proposed effective and efficient algo-
rithms to detect and remove keystroke noise from speech sig-
nals. The proposed removal algorithm aims to leverage the nat-
ural correlations in speech. Further, the algorithm does not re-
quire any thresholds that might hinder its generalization ability
or any noise statistics for keystroke removal.
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