
WiDS Checker: Combating Bugs in Distributed Systems

Xuezheng Liu
Microsoft Research Asia

Wei Lin
Microsoft Research Asia

Aimin Pan
Microsoft Research Asia

Zheng Zhang
Microsoft Research Asia

Abstract

Despite many efforts, the predominant practice of debug-
ging a distributed system is still printf-based log min-
ing, which is both tedious and error-prone. In this paper,
we present WiDS Checker, a unified framework that can
check distributed systems through both simulation and
reproduced runs from real deployment. All instances of a
distributed system can be executed within one simulation
process, multiplexed properly to observe the “happens-
before” relationship, thus accurately reveal full system
state. A versatile script language allows a developer to
refine system properties into straightforward assertions,
which the checker inspects for violations. Combining
these two components, we are able to check distributed
properties that are otherwise impossible to check. We
applied WiDS Checker over a suite of complex and real
systems and found non-trivial bugs, including one in a
previously proven Paxos specification. Our experience
demonstrates the usefulness of the checker and allows us
to gain insights beneficial to future research in this area.

1 Introduction

From large clusters in machine rooms to large-scale P2P
networks, distributed systems are at the heart of today’s
Internet services. At the same time, it is well recog-
nized that these systems are difficult to design, imple-
ment, and test. Their protocols involve complex inter-
actions among a collection of networked machines, and
must handle failures ranging from network problems to
crashing nodes. Intricate sequences of events can trigger
complex errors as a result of mishandled corner cases.
The most challenging bugs are not the ones that will
crash the system immediately, but the ones that corrupt
certain design properties and drive the system to unex-
pected behaviors after long runs.

Yet the predominant practice in debugging distributed
systems has remained unchanged over the years: manu-

ally inspecting logs dumped at different machines. Typ-
ically, developers embed printf statements at various im-
plementation points, perform tests, somehow stitch the
logs together, and then look for inconsistencies. How-
ever, log mining is both labor-intensive and fragile. Log
events are enormous in number, making the inspection
tedious and error-prone. Latent bugs often affect appli-
cation properties that are themselves distributed across
multiple nodes, and verifying them from local events can
be very difficult. More important, logs reflect only in-
complete information of an execution, sometimes insuf-
ficient to reveal bugs. Pip [23], for instance, logs the
application behavior in terms of communication struc-
tures, timing and resource usage, and compares them
against developer expectations. However, our experience
shows that applications with correct message sequences
can perform wrong things and mutate inner states be-
cause of buggy logic. Therefore, it is impossible to catch
the existence of these subtle bugs only from communica-
tion logs, unless much more state is also logged.

It is a common experience that omitting a key logging
point can miss a bug thus defeating the entire debugging
exercise, yet adding it could substantially change subse-
quent runs. The non-determinism of distributed applica-
tions plus the limitations of log-based debugging makes
such “Heisenbugs” a nightmare for developers. Build-
ing a time machine so that bugs can be deterministically
replayed gets rid of the artifacts of using logs [8]. How-
ever, one still lacks a comprehensive framework to ex-
press correctness properties, catch violation points, and
identify root causes.

We believe that a desired debugging tool for dis-
tributed applications needs to: 1) efficiently verify ap-
plication properties, especially distributed ones; 2) pro-
vide fairly complete information about an execution, so
that developers can observe arbitrary application states,
rather than pre-defined logs; 3) reproduce the buggy runs
deterministically and faithfully, and hence enable the
cyclic debugging process.

In this paper, we address the above debugging require-
ments with a unified framework called WiDS Checker.
This platform logs the actual execution of a distributed
system implemented using the WiDS toolkit [15]. We
can then apply predicate checking in a centralized simu-
lator over a run that is either driven by testing scripts or is
deterministically replayed by the logs. The checker out-
puts violation reports along with message traces, allow-
ing us to perform “time-travel” inside the Visual Studio
IDE to identify the root causes.

1.1 Our Results

Evaluating the effectiveness of our tool is a challenge.
The research community, though acutely aware of the
difficulties of debugging distributed systems, has not suc-
ceeded in producing a comprehensive set of benchmarks
so that different debugging approaches can be quantita-
tively compared. While we believe the set of applications
we have experimented with are representative, there is
also no clear methodology of how to quantify the useful-
ness of the tool. To alleviate these problems, we resort to
detailed discussions of case studies, hoping that other re-
searchers working on similar systems can compare their
experiences. Where possible, we also isolate the benefits
coming from predicate checking from using log and re-
play only. Our tool is targeted at the scenario in which
the system is debugged by those who developed it, and
thus assumes that the bugs are hunted by those who are
intimately familiar with the system. How to propagate
the benefits to others who are not as versed in the system
itself is an interesting research question.

We applied WiDS Checker to a suite of distributed
systems, including both individual protocols and a com-
plete, deployed system. Within a few weeks, we have
found non-trivial bugs in all of them. We discovered
both deadlock and livelock in the distributed lock ser-
vice of Boxwood [19]. We checked an implementation
of the Chord protocol [1] on top of Macedon [24] and
found five bugs, three of them quite subtle. We checked
our BitVault storage system [32], a deployed research
prototype being incrementally improved for more than
two years. We identified mishandling of race conditions
that can cause loss of replicas, and incorrect assumptions
of transient failures. The most interesting experience
was checking our Paxos [13] implementation, revealing
a bug in a well-studied specification itself [21]. Most of
these bugs were not discovered before; All our findings
are confirmed by the authors or developers of the corre-
sponding systems.

We also learned some lessons. Some bugs have deep
paths and appear only at fairly large scale. They can-
not be identified when the system is downscaled, thus
calling for more efficient handling of the state explosion

problem when a model checker is applied to check actual
implementation. Most of the bug cases we found have
correct communication structure and messages. There-
fore, previous work that relies on verifying event order-
ing is unable to detect these bugs, and is arguably more
effective for performance bugs.

1.2 Paper Roadmap
The rest of the paper is organized as follows. Section 2
gives an overview of the checker architecture. Section 3
provides implementation details. Section 4 presents our
results, including our debugging experience and lessons
learned. Section 5 contains related work and we con-
clude with future work in Section 6.

2 Methodology and Architecture Overview

2.1 Replay-Based Predicate Checking
The WiDS1 checker is built on top of the WiDS toolkit,
which defines a set of APIs that developers use to write
generic distributed applications (details see Section 3.1).
Without modification, a WiDS-based implementation
can be simulated in a single simulation process, simu-
lated on a cluster-based parallel simulation engine, or
deployed and run in real environment. This is made
possible by linking the application binary to three dif-
ferent runtime libraries (simulation, parallel simulation
and deployment) that implement the same API interface.
WiDS was originally developed for large-scale P2P ap-
plications; its parallel simulation engine [14] has simu-
lated up to 2 million instances of a product-strength P2P
protocol, and revealed bugs that only occur at scale [29].
With a set of basic fault injection utilities, WiDS allows a
system to be well tested inside its simulation-based test-
ing framework before its release to deployment. WiDS
is available with full source code in [3].

However, it is impossible to root out all bugs inside the
simulator. The deployed environment can embody differ-
ent system assumptions, and the full state is unfolded un-
predictably. Tracking bugs becomes extremely challeng-
ing, especially for the ones causing violation of system
properties that are themselves distributed. When debug-
ging non-distributed software and stand-alone compo-
nents, developers generally check memory states against
design-specified correctness properties at runtime using
invariant predicates (e.g., assert() in C++). This dynamic
predicate checking technique is proven of great help to
debugging; many advanced program-checking tools are
effective for finding domain-specific bugs (e.g., race con-
ditions [25, 31] and memory leaks [22, 10]) based on
the same principle. However, this benefit does not ex-
tend to distributed systems for two reasons. First, dis-

tributed properties reside on multiple machines and can-
not be directly evaluated at one place without significant
runtime perturbations. Second, even if we can catch a vi-
olation, the cyclic debugging process is broken because
non-determinism across runs makes it next to impossible
to repeat the same code path that leads to the bug.

To address this problem and to provide similar check-
ing capabilities to distributed systems, we propose a
replay-based predicate checking approach that allows
the execution of the entire system to be replayed after-
wards within a single machine, and at the same time
checks node states during the replayed execution against
user-defined predicates. Under modest scale, this solves
both problems outlined above.

2.2 Checking Methodology

User-defined predicates are checked at event granularity.
An event can be an expiration of a timer, receiving a mes-
sage from another node, or scheduling and synchroniza-
tion events (e.g., resuming/yielding a thread and acquir-
ing/releasing a lock) specific for thread programming.
WiDS interprets an execution of a single node or the en-
tire distributed system as a sequence of events, which
are dispatched to corresponding handling routines. Dur-
ing the replay, previous executed events from all nodes
are re-dispatched, ordered according to the “happens-
before” relationship [12]. This way the entire system is
replayed in the simulator while preserving causality.

Each time an event is dispatched, the checker evalu-
ates predicates and reports violations for the current step
in replay. The choice of using event boundaries for pred-
icate checking is due to a number of factors. First, the
event model is the basis of many protocol specifications,
especially the ones based on I/O-automata [18, 17]. A
system built with the event model can be regarded as a
set of state machines in which each event causes a state
transition executed as an atomic step. Distributed prop-
erties thus change at event boundaries. Second, many
widely adopted implementation models can be distilled
into such a model. We have used the WiDS toolkit [15]
to build large and deployed systems as well as many pro-
tocols; network middle-layers such as Macedon [24] and
new overlay models such as P2 [16] can be regarded as
event-based platforms as well. We believe event granu-
larity is not only efficient, but also sufficient.

2.3 Architecture

Figure 1 shows the architecture of WiDS Checker.
Reproducing real runs. When the system is run-

ning across multiple machines, the runtime logs all non-
deterministic events, including messages received from

�

���������	

�������	
�

��������	��

�
�
�
�

����

���

�������

������
�� ��	����	��
��	
��

����������	��

����
	
����
���������

���	������

��
��	�
�����������
�

������	

����

������	���

������ ���

����� !"�

���
������

��
������	��

��

Figure 1: Components of WiDS Checker. The upper-left
box was employed as debugging support in WiDS before the
Checker was developed.

network, data read from files, thread scheduling deci-
sions and many environmental system calls. The exe-
cutable binary is then rerun inside the simulator, and all
non-deterministic events are fed from the logs. We use
Lamport’s logical clock [12] to decide the replay order of
events from different nodes, so that the “happens-before”
relationship is preserved. Therefore, inside the simulator,
we reconstruct the exact state of all instances as they are
run in the real environment.

Checking user-defined predicates. We designed a
versatile scripting language to specify system states be-
ing observed and the predicates for invariants and cor-
rectness. After each step of event-handling, the observed
states are retrieved from the replayed instance in the sim-
ulator, and refreshed in a database. Then, the checker
evaluates predicates based on the current states from all
replayed instances and reports violations. Because pred-
icates generally reflect design properties, they are easy to
reason and write.

Screening out false alarms with auxiliary informa-
tion. Unlike safety properties, liveness properties are
only guaranteed to be true eventually. This poses a se-
rious problem when checking liveness properties, since
many violations can be false alarms. To screen out false
alarms, we enable user-defined auxiliary information to
be calculated and output along with each violation point.
When a violation occurs, the auxiliary information is typ-
ically used to produce stability measures based on user-
provided heuristics.

Tracing root causes using a visualization tool. In
addition to the violation report, we generate a message
flow graph based on event traces. All these facilities are
integrated into the Visual Studio Integrated Development
Environment (IDE). Thus, a developer can “time-travel”
to violation points, and then trace backwards while in-
specting the full state to identify root causes.

The first two components make it possible to check
distributed properties, whereas the last two are critical
features for a productive debugging experience. Note
that developers can incrementally refine predicates and
re-evaluate them on the same reproduced execution. In
other words, by means of replay, cyclic debugging is re-
enabled.

3 Design and Implementation

WiDS Checker depends critically on the replay function-
ality, which is done at the API level. In this section, we
will first briefly describe these APIs. We then explain
the replay facility and the checker implementation. This
section concludes with a discussion of the known limita-
tions. WiDS has close to 20K lines of code. The replay
and checker components add 4K and 7K lines, respec-
tively.

3.1 Programming with WiDS
Table 1 lists the class of WiDS APIs with some exam-
ples. The WiDS APIs are mostly member functions of
the WiDSObject class, which typically implements one
node instance of a distributed system. The WiDS run-
time maintains an event queue to buffer pending events
and dispatches them to corresponding handling routines
(e.g., OnMsgHandler()). Beside this event-driven model,
WiDS also supports multi-threaded programming with
its thread and synchronization APIs. The context switch-
ing of WiDS threads is encapsulated as events in the
event queue. We use non-preemptive scheduling in
which the scheduling points are WiDS API and block-
ing system calls, similar to many user-level thread im-
plementations. The fault-injection utilities include drop-
ping or changing the latency of messages, and killing and
restarting WiDS objects.

Macedon over WiDS. It’s not easy to write a dis-
tributed application with message-passing and event-
driven model. Defining better language support is an ac-
tive research area [16, 24]. WiDS can be used as the low-
level mechanism to implement such languages, and thus
make its full functionality available to their applications.
As an experiment, we ported Macedon [24], an infras-
tructure to specify and generate implementation of over-
lay protocols. Macedon has been used to reimplement
many complex overlay protocols with a simple domain
language and conduct performance comparisons. Port-
ing to the WiDS API is simplified because both Macedon
and WiDS provide a set of APIs working in an event-
driven manner, and programming entities such as mes-
sages and timers exist in both platforms. An overlay pro-
tocol expressed with Macedon is composed of a .mac file,
which our parser takes as input to generate a set of WiDS

implementation files. Many overlay specific functionali-
ties provided by the Macedon library are replicated in a
WiDS-based library. Finally, all these files are linked to
generate an executable, which, with a proper driver, can
be both simulated and deployed. Supporting Macedon is
accomplished with about 4K lines of code.

3.2 Enabling replay

The primary goal of the deterministic replay is to re-
produce the exact application memory states inside the
simulator. To achieve this, we need to log all non-
deterministic inputs to the application and feed them to
the replay simulator.

Logging. The WiDS runtime logs the following
two classes of non-determinism: The first is internal to
WiDS. We record all the WiDS events, the WiDS thread
schedule decisions and the incoming message content.
The second class are OS system calls, including read-
ing from files, returned memory addresses for allocation
and deallocation in heap, and miscellaneous others such
as system time and random number generation. In Win-
dows NT, each API call is redirected by the linker to the
import address table (IAT), from which another jump is
taken to reach the real API function. We changed the
address in the IAT, so the second jump will lead to the
appropriate logging wrapper, which will log the return
results after the real API is executed. Furthermore, to
enable consistent group replay [8], we embed a Lam-
port Clock [12] in each out-going message’s header to
perserve the “happens-before” relation during the replay.
Table 1 describes logging and replay mechanisms for
API calls.

In addition, we use a lightweight compressor to effec-
tively reduce the log size. As we report in Section 4.5,
the computation overhead for logging is small in the tests
we performed.

Checkpoint. We use checkpoints to avoid over-
committing storage overhead from logging and to sup-
port partial replay during replay. A checkpoint includes
the snapshot of memory of the WiDS process and the
running context for user-level threads and sockets as well
as buffered events in the event queue.

Replay. Replaying can start from either the beginning
or a checkpoint. Note that checking predicates requires
all instances to be replayed with causality among them
preserved. Therefore, during the replay, events from dif-
ferent instances are collected from logs, sequentialized
into a total execution order based on the Lamport Clock,
and re-executed one-by-one in the simulator.

To improve replay performance and scalability, we use
only one simulation process to replay all instances, and
use file-mapping to deal with the memory switch be-
tween different instances. The state of an instance is

WiDS API set
Category API example Logging and replay mechanism

Event-driven program SetTimer, KillTimer, OnTimerExpire Log the event type and the sequence; redo the same events in replay

Message communica-
tion

PostMsg, PostReliableMsg, OnMsgHandler Embed Lamport Clock to maintain causal order, log incoming message
contents. Replay with correct partial order, feed message content.

Multi-threaded
program

CreateThread, JoinThread, KillThread,
YieldThread, Lock, Unlock

Log the schedule decision and the thread context. Ensure the same sched-
ule decision and the same context during replay

Socket APIs for net-
work virtualization

WiDSSocket, WiDSListen, WiDSAccept,
WiDSConnect, WiDSSend, WiDSRecv

Log the operation along with all received data. Feed the received data
from log during replay. Sending operations become no-ops in replay

Fault injection and
message delay

ActivateNode, DeActivateNode, SetNet-
workModel, OnCalculateDelay

Log the operation of activation/deactivation, and redo the operation in re-
play

Operation system APIs (for Windows)
File system CreateFile, OpenFile, ReadFile, WriteFile,

CloseHandle, SetFilePointer
Log the operation along with all input data. Feed the input data from log
during replay. Write operations become no-ops in replay

Memory management VirtualAlloc/Free, HeapAlloc/Free Ensure identical memory layout in replay.

Miscellaneous GetSystemTimeAsFileTime, GetLastError Log the return value, and feed the same value in replay

Table 1: WiDS API set and OS APIs with logging and replay mechanisms

stored in a memory mapped file, and is mapped into
the process memory space on-demand. For example, to
switch the replayed instance from A to B, we only up-
date the entries in the page table of the simulation pro-
cess to the base address of the mapped memory of B.
Starting a process for each replayed instance and switch-
ing the processes would require local process communi-
cation (LPC) that is typically tens of times slower than
function calls. Therefore, our approach has significant
advantages. When the aggregated working set of all re-
played instances fit into physical memory, the only over-
head in switching instance is the update to the page ta-
ble. It also avoids redundant memory usage caused by
process context and executable binary for each instance.

The largest per-instance working set in our experi-
ments is about 20MB, meaning that more than 40 in-
stances can be replayed in 1GB physical memory with-
out going to the disk. When the aggregated working set
exceeds the physical memory, depending on the com-
putation density of the replayed instance, we have ob-
served 10 to 100 times slowdown due to disk swapping.
The checker itself maintains a copy of the states being
checked, and that varies across applications. Ultimately,
the scalability is bound by the disk size and acceptable
replay speed.

3.3 Checker

Deterministic replay that properly preserves causality
has enabled the reconstruction of memory states of a dis-
tributed system. The next step is to write predicate state-
ments to catch the violation points of correctness proper-
ties. We define a simple scripting language for specify-
ing predicates, so that developers can easily specify the
structure of the investigated states, retrieve them from the

memory of the instances, and evaluate properties from
these states.

As mentioned before, checking predicates is invoked
at event boundaries. Each time an event is re-executed
in a replayed instance, the checker examines the state
changes in the instances, and re-evaluates the affected
predicates. The states being checked are copies kept in
a separate database. The checker refreshes these states
in the database from the replayed instance and evalu-
ates predicates based on the state copies of all instances.
Therefore, checking predicates is decoupled from mem-
ory layout of the instances, and we do not require all in-
stances to reside in memory simultaneously for evaluat-
ing global properties. This makes replay and the checker
more scalable. Furthermore, maintaining state copies
separately allows us to keep past versions of states if
needed, which is useful for evaluating certain properties
(see Section 4.1).

In this section, we explain the checker implemen-
tation, including the necessary reflection facilities that
make memory states in C++ objects observable by the
checker, state maintenance and predicate evaluation, and
the auxiliary information associated with violations that
deal with false alarms.

3.3.1 Observing memory states

For programming languages such as Java and C# that
support runtime reflection, the type system and user-
defined data structures are observable during the run-
time. Unfortunately, this is not the case for C++, which
is what WiDS uses. To check application states, we need
to record the memory address of each allocated C++ ob-
ject with type information during its lifetime. We use the
Phoenix compiler infrastructure [2] to analyze the exe-
cutable and inject our code to track class types and object

addresses. Phoenix provides compiler-independent inter-
mediate representation of binary code, from which we
are able to list basic blocks, function calls, and the sym-
bol table that contains all type definitions. We then inject
our logging function to function calls of constructors and
deconstructors of the classes. The logging function will
dump the timestamp, type of operation (i.e., construc-
tion or deconstruction) along with the address of object
and type information. This information is used by the
checker to inspect memory states. The following assem-
bly codes show an example of a constructor after code
injection. The lines beginning with “*” are injected code.
They call our injected logging function onConstruct with
the index number of this class found in symbol table. We
perform similar code injection for object deconstruction.
As a result, at each step of the replay, the checker is ca-
pable of enumerating pointers of all objects of a certain
class, and further reading their memory fields according
to the symbol table. The runtime overhead is negligible
since the actions are only triggered at object allocation
and deallocation time.

$L1: (refs=0) START MyClass::MyClass
MyClass::MyClass: (refs=1)
this = ENTERFUNC

* [ESP], {ESP} = push 0x17 //index number for MyClass

* call _imp__onConstruct@4, $out[ESP] //call log func
[ESP], {ESP} = push EBP
EBP = mov ESP [ESP],
{ESP} = push ECX
... // other code in original constructor
ESP = mov EBP EBP,
{ESP} = pop [ESP]
{ESP} = ret {ESP}, MyClass::MyClass
MyClass::MyClass: (refs=1) Offset: 32(0x0020)
EXITFUNC
$L2: (refs=0) END

This code injection is carried out in a fully automated
way. In addition, we provide some APIs that allow de-
velopers to explicitly calculate and expose states of an
instance in the source code.

3.3.2 Defining states and evaluating predicates

A script for predicate evaluation is composed of three
parts: declaration of tables, declaration of internal vari-
ables, and the predicates. Figure 2 shows the script we
used for checking the Chord protocol [28] implemented
on Macedon (see Section 4.4 for details).

The first section (starting with “declare table”) in-
structs the checker to observe objects of some classes
and refresh the states of certain member fields into the
database. Each row of the table corresponds to one object
in the system, and table columns correspond to member
fields of the object. Each table has two built-in columns
instance id and memory addr, corresponding to the re-
played instance and the object’s memory address, respec-
tively. The declaration gives the user shorthand nota-

� � � ����������������	
��

�������	
������������
�����
���

�����
��������������
������

�����
������������������������
��

�����
������	

�������������
���

�����
���������	��������������

���	��������

� � ����������������������	
���

�������	��������
����
�	��������

�����	��
�
��

�
��������������� ��

����������������������������� �������������������
����!�

��"����������������#�$%&�� ��'()�*+,-�./0,*1�

��
����"�������������������&�

������
����
��������������&�

���	��
�
��

�

�������	�������������
�����

�����	��
�
��

���������
�������
�����������������2�
��������������%�3�#���&�

�������������
�4�#%�����
���������
&�

������
����#&�

���	��
�
��

� � ��������������������

�������
���������������
�����������������
����5�

�����
��������������6�����
����������6��

����������������������������	

���������

7�

Figure 2: An example of check scripts for chord. The auxiliary
information Stabilized is reset to 0 when joins or failures occur;
otherwise it gradually grows to 1.

tions to name the table and the states. A table stores
global states from all instances, e.g., the table Node here
maintains the investigated states of all the Chord nodes
in the system. Sometimes it is useful to keep a short
history of a state for checking. We provide an optional
keep version(N) after a column declaration to declare
that the recent N versions of the state should be kept in
the table.

The second section allows users to define vari-
ables internal to the checker with the keyword de-
clare derived. These variables can also have histories,
again using keep version(N). Between begin python
and end python are python snippets to calculate the
value of a named variable. The python snippet has read
access to values of all prior declarations (i.e., data tables
and internal variables), using the declared names. Data
tables are regarded as enumerable python containers, in-
dexed by a (instance id, memory addr) pair.

The last section uses the keyword “predicate” to spec-
ify correctness properties based on all declared states and
varables, which are evaluated after refreshing tables and
after the evaluation of internal variables. Each predicate
is a Boolean expression. We support the set of common
logical operators, e.g., and, or, imply. We also support
two quantifiers, forall and exist, which specify the extent
of validity of a predicate when dealing with tables. These
built-in operators make it easy to specify many useful in-
variants. In Figure 2, the predicate states that the ring
should be well formed: if node x believes node y to be
its predecessor, then y must regard x as its successor. It is

a critical property for the stabilization of Chord topology.
After each step of the replay, the checker does the fol-

lowing. First, it enumerates all objects of classes defined
in data tables in the memory of a replayed instance. It
uses the type information and memory address provided
by the log to refresh the table, inserting or deleting rows,
and updating the columns accordingly. After updating ta-
bles, the checker also knows which declared states have
changed, and it only re-evaluats all the affected derived
values and predicates. When some predicates are eval-
uated as “false,” the checker outputs the violation into a
violation report, which contains the violated predicates,
Lamport Clock value for each violation, and the auxiliary
information defined in the script (discussed shortly).

Sometimes it is useful to replay and check a segment
of execution, rather than to do it from the beginning.
The problem here is how to reconstruct the states main-
tained by checker scripts when the checkpoint is loaded.
To solve this problem, we support checkpoints in replay
runs, which store both replay context and the tables and
variables used by predicate scripts. These replay check-
points can be used seamlessly for later checking. To start
checking with an intermediate checkpoint from testing
runs, the developers have to provide additional scripts to
setup the states required by the script from the memory
of instances in the checkpoint. Otherwise, there might be
incorrect predicate evaluations caused by checkpoints.

3.3.3 Auxiliary information for violations

For safety properties that must hold all the time, every
violation reveals a bug case. In contrast, liveness prop-
erties only guarantee to be true eventually, so a violation
of liveness properties is not necessarily a bug case. For
example, many overlay network systems employ self-
stabilizing protocols to deal with churns, therefore most
of their topology-related properties are liveness ones. As
a result, checking liveness properties could generate a
large number of false alarms that overwhelm the real vi-
olations. Adding a time bound to liveness properties is
not always a desirable solution, because usually it’s hard
to derive an appropriate time bound.

To solve the problem, we enable users to attach aux-
iliary information to the predicates. The auxiliary infor-
mation is a user-defined varable calculated along with the
predicate, and it is only output when the predicate is vi-
olated. Developers could used the information to help
screen out false alarms or prioritize violations. For live-
ness properties, an appropriate usage for auxiliary infor-
mation is to output a measurement of a stabilization con-
dition. For example, in Figure 2 we associate the even-
tual ring consistency property with an auxiliray variable
Stabilized ranging from 0 to 1, as a measure of stabiliza-
tion that shows the “confidence” of the violation.

Figure 3: A screenshot of message flow graph. The vertical
lines represent the histories of different instance, arcs denote
messages across instances, and the nodes correspond to event
handlings. Arcs with two ends on the same vertical lines are
either timer events or messages sending to the instance itself.

We also maintain some built-in system parameters in
the checker, e.g., the current time in the node, the current
message type, and statistics of recent messages of each
type. These parameters can be directly accessed in the
scripts, and are useful in stabilization measurement. Our
evaluation section contains more examples of using the
auxiliary information.

3.4 Visualization tools

To pinpoint the root cause of a bug, a user often needs
to trace back in time from a violation point. In addition
to our replay facility, we provide the message flow graph
generated based on message trace (Figure 3) to make this
process easier. It is a common practice in our experience
to perform time travel following the message flow, replay
to a selected event point and inspect memory state of the
replayed instance. We find that the visualization helps
us understand system behaviors as well as the root cause
after catching violations.

4 Evaluation

In this section, we report our experience of finding bugs
using WiDS Checker over a comprehensive set of real
systems. Table 2 gives a summary of the results. The
checking scripts to reveal the bugs are short and easy to
write from system properties. For each of these systems,
we give sufficient descriptions of their protocols and ex-
plain the bugs we found and how they are discovered. We
also summarize the benefits from WiDS Checker at the

end of each case study. We will discuss relevant perfor-
mance numbers and conclude with lessons that we have
learned.

Application # of lines # of bugs Lines of script

Paxos 588 2 29

Lock server 2,439 2 33

BitVault 17,582 3 181

Macedon-chord 2,468 5 86

Table 2: benchmark and result summary

4.1 Paxos
Paxos [13] provides a fault-tolerant distributed consen-
sus service. It assumes an asynchronous communication
model where messages can be lost and delayed arbitrar-
ily. Processes can operate at arbitrary speed, may fail-
stop and restart. Our implementation strictly follows the
I/O-automata specification in [21], in which there are two
types of processes: leaders and agents.2 Leaders propose
values to the agents round-by-round, one value for each
round. Agents can accept or reject each received pro-
posal independently, and a decision is made if the major-
ity of the agents agree on the same round/value pair. The
important safety property in Paxos is agreement: once a
decision is made, the decided value will stay unchanged.

The main idea of the algorithm is to have leaders work
cooperatively: endorse the latest accepted round/value
pair in the system as they currently understand it, or pro-
pose their own if there is none. The following is an in-
formal description. The protocol works in two phases,
learning (steps 1 and 2) and submitting (steps 3 and 4):

1. A leader starts a new round by sending a Collect
request to all agents with its round number n. The
round number must be unique and increasing.

2. An agent responds to a Collect request with its lat-
est accepted round/value pair (if any), if and only if
the round number in the request is greater than any
Collect requests to which it has already responded.

3. Once the leader has gathered responses from a ma-
jority of agents, it sends a Begin request to all
agents to submit the value for round n. The sub-
mitted value is the previously accepted value in
the highest-numbered round among the responses
in Step 2, or the leader’s own value if there is none.

4. An agent that receives a Begin message of round
number n accepts the value (and accordingly up-
dates its latest accepted value and round number),
unless it has already responded to a Collect request
with a higher round number than n.

�

����������	��
���������������	
��
���

����
������	
�����������	��������������
������������������

����
������
������������	�����������������

�����������

�

���������������
������
�������
���������������

	�����������

�����
���
�������� ��������������
��
������������
���

�����
������������ ��������������
��
���������	���������������

�������������
��
�	� � ���
���	���
����	��
������	��
�

������������!"�	�#��
������
���
�!$�%	��� ��

�
���
�&�!"�	�#��
�'�(��)��

������������� ��� �����������
�*�����	��
�

�
���
�&�!"�	�#��
�'���)��

�
�����&�!"�	�#��
�'����!"�	�+������

�������
�,����
������
���
�!����	��� � ����������-������	��
�

��������������
��.��/� ���������
�����&���
�'�

�����������012"3�

����������

 ������	��
�	-����
������-�
���

���������
��
����
�����������

����������
�������!��������4)��==�������
�������!��������5���

�������������
�������!��������4)����012"3�

��

� ��������������
��
������	-�������*�%	��
����	��

������������������	
�������������
��

��������������������������

�����!����	
���!��������4)��6���!����	
���!��������5��

���

�

Figure 4: Checker script for Paxos

In our implementation, leaders choose monotonically
increasing round numbers from disjoint sets of integers.
An agent broadcasts to all leaders when it accepts a value
so that leaders can learn the decision. Each leader sleeps
for a random period before starting a round, until it learns
a decision is made. The test was carried out using sim-
ulation with seven processes acting as both leaders and
agents. To simulate message loss, we randomly dropped
messages with a probability of 0.3.

We wrote two predicates that are directly translated
from safety properties in the specification (see Figure 4).
The Python snippet of decision value calculates the value
accepted by the majority of agents. The first predicate,
GlobalConsistency, specifies the agreement property: all
decision values should be identical. It is a distributed
property derived from all agents. The second predicate,
AcceptedRoundIncreasing, states a local property in the
specification that the newly accepted round number in-
creases monotonically in an agent.

The checker caught an implementation bug in Step 3
with the GlobalConsistency predicate, finding that after
an agent accepted a new Begin message, the decision
value changed to a different one. The root cause is that,
in Step 3, after the leader gathers responses from a major-
ity of agents, it sends a Begin request with the submitted
value from the latest received agent response, instead of
the highest-numbered round among all responses. The
predicate breaks immediately after the Begin message is
handled that changes the decision. Tracing back one sin-
gle step in the message flow and replaying the code for
Step 3 allows us to immediately identify the root cause.

The second bug is far more subtle. We found that with
very small probability, the accepted round number in an
agent may decrease, which violates the second predicate.
We ran our test several hundred times, each of them hav-
ing thousands of messages, but only caught one viola-
tion. Using replay to trace back from the violation point,
we identified that the bug was not in the implementation,
but in the specification itself. In Step 3 the Begin re-
quests are sent to all agents; under message loss it is pos-
sible for an agent to receive a Begin request without the
pairing Collect request of the round. This means that the
agent can have its accepted round number greater than its
round number responding to the Collect request (the two
are kept in separate counters). Thus, based on Step 2 the
agent may in the future respond to (and in Step 4 accept a
value from) some smaller-numbered rounds, decreasing
the accepted round number. With a small probability, the
bug can actually break the ultimate agreement property.
(We have constructed such a sequence of events starting
with our violating trace). However, this is a corner case
and the protocol is robust enough that it never happened
in our test. After researching the specification carefully,
we also understood where the original proof went wrong.
This bug and our fix for the specification is confirmed by
one of the authors.

Study on effectiveness. The checker gives precise
bug points from thousands of events in both bug cases.
After that, identifying the root cause becomes simply
tracing back one or a few messages in replay. Replay
(or only logging, if we dump states of Paxos nodes to the
log) is necessary for understanding root causes, however,
as GlobalConsistency is a distributed property that can-
not be directly verified from logs. Without the checker a
developer has to go through a huge number of events in
replay trace and check the correctness property manually,
which is very inefficient. The second predicate, though
a local one, proves the usefulness of rigorous predicate
checking for distributed systems. Without this predicate,
we would miss the specification bug altogether.

4.2 Lock Server in Boxwood

The Boxwood [19] storage system implements a fault-
tolerant distributed lock service that allows clients to ac-
quire multiple-reader single-writer locks. A lock can be
in one of the states: unlocked, shared, exclusive, and
multiple threads from one or more clients acquire or re-
lease locks by communicating to a server. The server
uses a pendingqueue to record locks for which transac-
tions are still in flight.

The system was written in C#. In order to check it, we
ported it to C++ and the WiDS APIs in about two weeks;
most of the effort was spent on the language difference
(e.g., the pointers). In the resulting code, almost every

� ������������	���������������
����	����
�����
����������
��

��������������������	
���
���
���

��������
��

�

������������	���	
���
�
���������

����������
��

����
���
���
��	����
���������
���
���
��	����
����������

����������������
������	������� �
��!�

������������	
���
�
��������!� "����#
�����$#�����

��������
��

�

������������	���������������%�

����������
��

���������������������������� �
���&�	
���
�
�����������'��$���$�(��

��������
��

�

��

����������������
�����������

)�

Figure 5: Checker script for lock server

line can be mapped to the original code. This enables
us to map bugs found by WiDS Checker to the original
C# code. At first we checked the safety property that if
multiple clients simultaneously own the same lock, they
must be all in shared mode. However, during the experi-
ment we did not find any violations in both simulated and
reproduced runs. Next, we focused on deadlock and live-
lock checking on a larger scale and found both of them.

We ran the test inside a simulator and used 20 clients,
one server and four locks. Each client has five threads
that keep randomly requesting one of the locks and then
releasing it after a random wait. Rather than writing so-
phisticated predicates to look for cycles of dependencies,
we used a simple rule that if the protocol is deadlock-
free, the pendingqueue should eventually be empty. The
predicate is just that: return true if the pendingqueue is
empty. Clearly there could be many false alarms. We
attached an auxiliary output that computes how long the
predicate remained broken since the last time the queue
size changed (Figure 5).

Livelock. The livelock we discovered involves one
lock and two clients. Based on replay and the mes-
sage flow graph, we isolated the following bug scenario.
Client A holds lock l in shared mode, and client B re-
quests l in exclusive mode. The server inserts l to the
pendinglock queue and sends a revoke message to A.
While this message is on its way, another thread in A

requests to upgrade l to exclusive. According to the
protocol, A needs to release l first before acquiring it
again with the desired mode. A does so by first setting
a releasepending flag and then sending the server a re-
lease message.

According to the protocol, the server always denies
a lock release request if a lock is in the pendinglock

queue. The revoke message arrives at A and spawns a
revoking thread, which in turn was blocked because the
lock is being released (i.e., the releasepending flag is

� ��� ��� ��� ��� ����

����

��	�

����

��	�

����

��	�

���

��
�������

�
��

�
��

��
�
�
�
�
��

�
��

�
�
��

�
�
�
�

������������� ���������������� !�

!���"������#�������"�$���" %�����
"����
!���"������#����"�$���" %�����
"����
�������������������������

Figure 6: Violations reported in the livelock case. The stripe at
the bottom contains all the violations; the dark ones are those
with enough time above the threshold.

set). When A finds its release is unsuccessful it resets
the releasepending flag and retries. However, the retry
code is in a tight loop, and thus the release request is sent
again and the releasepending flag is set. As a result
the revoke thread wakes up only to find that it is to be
blocked again. This cycle continues onwards and repeats
as a livelock. It is livelock in the sense that there is a
small possibility that the blocked revoking thread can cut
in after the release response is handled but before the next
release retry occurs.

Figure 6 visualizes the violation reports in a run that
discovered the livelock. There were altogether five
rounds of competition and the bug appears at the final
one. We use enough time to screen out false alarm in
violations. After screening, many false alarms are elimi-
nated. Auxiliary output helped us to prioritize inspection
of violations; otherwise the violations will be too large
in number to inspect.

Deadlock. The deadlock case is more sophisticated.
The client implementation has an optimization of using
a socket pool for outstanding requests, and a thread will
be blocked if it cannot find a socket to use. Because the
socket pool is shared among threads, it creates extra de-
pendencies and induces a deadlock.

We configured the socket pool to use only one socket.
The resulting deadlock case involves four clients and two
locks. The initial state is that A has shared lock l1, and
C has exclusive lock l2. Next, B and D request exclu-
sive mode on l2 and l1, respectively. After a convoluted
sequence of events, including threads on A and B at-
tempting to upgrade and release their locks, the system
enters a deadlock state. Based on replay and message
flow graph, we find the deadlock cycle, which consists
of a lock acquiring thread whose request is blocked on
the server because the lock is in the pendinglock queue,
a revoking thread blocked by the lock’s releasepending

flag, and a release thread blocked by the unavailability of
socket.

Study on effectiveness. Unlike the Paxos case in

�

����������

��

�� �� ��

�������� �������� ��������

Figure 7: BitVault ID space and index structure. B and C are
owners of object x and y, respectively. Object x has three repli-
cas, whereas object y has one dangling pointer.

which the checker directly locates the bug point, here
we do not have effective predicates to reveal dead-
lock/livelock; the predicate based on pendingsize only
provides hints for the starting point of the replay. So,
the checker is more like an advanced “conditional break-
point” on the replay trace, and mining the root cause
heavily depends on the replay facility and the message
flow visualization tool.

4.3 BitVault Storage System

BitVault [32] is a scalable and content-addressable stor-
age system built by ourselves. The system is composed
of more than 10 interdependent protocols, some of which
incrementally developed over a stretch of two years. Bit-
Vault achieves high reliability with object replication and
fast parallel repair for lost replicas. Self-managing rou-
tines in BitVault ensure that eventually every existing ob-
ject in the system has its specified replication degree.

To understand the bugs, it is necessary to describe Bit-
Vault’s internal indexing structure and repair protocols.
BitVault uses a DHT to index the replicas of each ob-
ject. Each object has a unique 160bit hash ID, and the
entire ID space is uniformly partitioned by the hashes of
the participating nodes, each node owning a particular ID
range. An object’s replicas can reside on any node, while
its index (which records locations of the object’s repli-
cas) is placed on the owner node that owns the ID of the
object. The design of the index enables flexible control
of replica placement. Figure 7 shows the index schema.
Mapping between ID space and nodes is achieved by
a decentralized weakly-consistent membership service,
in which every node uses heart-beat messages to detect
node failures within its ID neighborhood, and maintains
a local membership view of all nodes in the system. Ac-
cording to the membership view, the owner of an index
can detect replica loss and then trigger the creation of an
another replica. A replica also republishes itself to the
new owner node of the index when it detects the change
of the owner node.

BitVault has the following correctness properties de-
rived from its indexing scheme: 1) correct index own-
ership, i.e., for each object, eventually the owner node

holds the index; 2) complete reference, i.e., when the sys-
tem stabilizes, there should be neither dangling replica
references nor orphan replicas; 3) correct replica de-
gree, i.e., in a stabilized system every object has exactly
degree (say 3) replicas. Because a node’s membership
view is guaranteed to converge eventually, all these must
be considered liveness properties. We use these prop-
erties to check BitVault, and associate them with a sta-
bilization measure based on membership change events.
All experiments are conducted over an 8-node configu-
ration in a production run, and we found the three bugs
with the checker. Due to space limitations, we only ex-
plain two of them.

Replica loss due to protocol races. BitVault passes
intensive testing before we added a routine that balances
load between nodes by moving replicas. After adding
the load balancing routine, we observed an occasional
replica loss from our monitor GUI. Before we developed
WiDS Checker, we did not actually know the root cause
because the bug case was buried in irrelevant log events.

The checker catches a violation of the replica degree
predicate saying that an object’s replica number should
be no less than 3. From the violation point we trace
back a few messages and quickly found how the replica
number for this object goes from 3 to 2. BitVault has
a “remove-extra-replicas” routine that periodically re-
moves over-repaired replicas which are caused by tran-
sient failures and retries during replica repairing. The
bug was caused by a race between the load balancing
routine and the remove-extra-replica routine, where the
load balancing routine copies the replica from node A to
B and deletes the replica in source node A, and at the
same time the remove-extra-replicas routine detects that
there are 4 replicas in total and chooses to delete the one
in B.

Mishandling of transient failures. Sophisticated
predicates enable more rigorous and thorough checks to
catch bugs. As an example, the predicate of reference
correctness (“no dangling references nor orphan repli-
cas”) checks the matching between index entries and
replicas, and it helps us to identify a subtle bug caused
by transient failures, which may degrade reliability. We
killed a process in a node and restarted it after about 5
seconds. The predicate remained violated after quite a
long time, even when the auxiliary measure for stabi-
lization was high. Then we refined the predicate to out-
put the owner of orphan replicas, which turned out to
be the node suffering the transient failure. The bug is
caused by mishandling of transient failures. The churn
of the failed node cannot be observed by other nodes be-
cause the churn duration is shorter than the failure detec-
tion timeout (15 seconds). As a result, other nodes will
not repair replicas or re-publish the index to this failed
node, whose memory-resident state (e.g., the index) has

already been wiped out by the failure.
Study of effectiveness. Both bugs are non-

deterministic, complicated and sensitive to the environ-
ment, while catching the bugs and understanding the root
causes require detailed memory states. Deterministic re-
play is necessary because we cannot dump all the mem-
ory states in logs in production runs. Like the Paxos case,
the predicates directly specify the complex guarantee for
correctness. Although they are liveness properties, pred-
icate checking is very useful to pinpoint the starting point
for inspection in replay. Suppose that we only have re-
play but not checking facility. For the first bug where
replica loss has been observed, screening traces and find-
ing out the root cause is tedious, while possible. In con-
trast, the second bug is difficult to even detect. This is
because, eventually the replicas and owner nodes will
notice the data loss through a self-managing routine in
BitVault and repair the loss. Thus, the delay in repair is
undetected and will degrade reliability.

4.4 Macedon-Chord

From the latest version of the Macedon release (1.2.1-
20050531) [1], we generated the WiDS-based implemen-
tation for three protocols, RandTree, Chord, and Pastry.
Due to space limitations, we only report our findings of
Macedon-Chord. The Macedon description files already
have logics of initialization, joining and routing, and we
wrote our drivers to add our testing scenarios. The test
is carried out in the simulator: 10 nodes join the ring
around the same time and then remove one node after
stabilization. We use the predicate in Figure 2 to check
that the ring is well-formed, and add another to check
fingers to be pointing to correct destinations.

Interestingly, this simple test altogether revealed five
bugs. Two bugs are not caught by the predicates - they
are programming errors that crash the simulation (divide-
by-zero and dereferences of uninitialized pointers). The
remaining three bugs are protocol implementation bugs
caught by the predicates.

The first one caused a broken ring after the node
leaves, caught by the RingConsistency predicate3. Us-
ing replay to trace the origin of the incorrect successor
value from the violation point, we found that the field of
the successor’s successor is wrongly assigned with the
hash of the corresponding node’s IP address, instead of
the IP address itself.

The remaining two bugs caught by finger predicates
cause problems in finger structures. One does not prop-
erly update the finger table, making the fingers converge
to their correct targets much later than it needs to take.
The last one is a mishandled boundary case. Let f be
the ID of the ith finger and f.curr denote its current
value. f.start records the ID that is 2i away from this

node’s ID. If f.start equals to f.curr, then the current
finger is the perfect one. When a new candidate node
with ID y is evaluated, a checking function isinrange

is called, and f.curr is replaced with y if y falls be-
tween [f.start, f.curr). isinrange regards the special
case [f.start, f.start) as the entire ring and returns true
for arbitray y. As a result, the perfect finger is replaced
by any arbitrary y. In later rounds the perfect finger
will make it back, and the process continues to oscillate.
Macedon-Chord is later re-written with Mace. The au-
thor confirmed that the first four bugs were removed as a
result of this exercise, yet the last one still remains in the
new version.

Study of effectiveness. Structured overlay protocols
are perfect examples of the complexity of distributed
logic. Based on system properties on topology struc-
tures, checking overlay protocols could be very effective
and productive. Sometimes the violation report is suffi-
cient to infer the root cause and find the buggy code, e.g.,
the oscillation bug reveals the buggy logic for choosing
finger node ID, without the need for the replay.

4.5 Performance and overhead
The logging overhead heavily depends on the applica-
tions. We performed a test run on BitVault with 4 nodes,
each of which is a commodity workstation with 3GHz
Pentium IV CPU and 512MByte memory, and the results
are shown in Figure 8. The experiments consists of in-
serting 100 100KB objects at the 3rd minute, crashing a
node at the 6th minute, rejoining it at the 9th, and finally
retrieving all objects at the 12th. The replication degree
is set to 3. The peak of the performance hit occurs on
the 3rd minute, with roughly a 2% runtime overhead. To
collect logs more efficiently, we generate the objects that
mostly contain a single value so as to achieve high com-
pression rates. As a result, the log size reaches close to
600KB after compression. For uncompressed logs, the
size is around 60MB.

Table 3 summarizes the performance of the checker.
The second column shows how long it takes to perform
the original run, with logging turned on. Depending on
the message rate and complexity of predicate calcula-
tion, the checker slows down the replay between 4 and
20 times. The 15-minute BitVault run consumes about
37 minutes. We believe that given the benefits of using
the checker, these overheads are acceptable for debug-
ging tasks.

4.6 Discussions
Our experience validates a number of design points. In
almost all cases, on-the-fly scripting has allowed us to
adaptively refine predicates in response to predicate er-

�

���

���

���

���

���

���

���

� � � � 	 �� �� ��

��
�
��
��
�
	

�
�

�� �	� �

���� �����

�
��

�
��

�
��

�
��

�
��

�
��

� � � � 	 �� �� ��

�
�
��
�
�
��
�
�
��
��
��
�
�
��
�
��
��

�

�� �	� �

����������� �

Figure 8: Logging overhead: (a) running time; (b) disk space.

Application Original run w/o checker w/ checker

Paxos(simu.) 0.62 0.34 6.56

BitVault(deployed) 900.00 236.25 2219.77

Lock server(simu.) 5.34 3.14 11.99

Chord(simu.) 1.64 0.719 3.00

Table 3: Running time (in seconds) for evaluating predicates.
Orignal run, w/o checker, and w/ checker columns show the
running time for testing with log turned on, replay, and replay
with predicate checking, respectively.

rors and to chase newly discovered bugs. This iterative
process is especially useful when we check reproduced
runs from deployed experiments, since the trace can be
reused to find all the bugs it contains. The experiences
also gave us a number of interesting lessons.

The advantage of predicate-based checking is its sim-
plicity: it depends on only a snapshot of states (and
sometimes augmented with a short history) to define in-
variant properties and catch violations. This methodol-
ogy does not require the developer to build a state ma-
chine inside the checker that mirrors the steps of the im-
plementation. At the same time, however, this means
that we need to pay extra effort to trace the root cause
backwards from violation point, which might be far be-
hind. Time-travel with message flow definitely helps, yet
it can be tedious if the violation involves long transac-
tions and convoluted event sequences, as is the case of
the Boxwood lock server. In these scenarios, the pred-
icate checking is more like a programmable conditional
breakpoint that people use to “query” the replay trace.
Effectively pruning the events to only replay the relevant
subset is one of the directions for our future work.

We also obtained considerable insight in terms of de-
bugging distributed systems in general. The Paxos bug
involves at least 5 processes, the deadlock case in the
lock server involves 4 clients and 1 server, 2 locks, and
the client has 6 flags in total. In both cases the error is
deep and the system scale is larger than what a model
checker is typically applicable to. It is therefore unclear
whether a model checker can explore such corner states
successfully. Also, 9 out of the 12 bugs have correct mes-
sage communication pattern. For example, the bug found
in the Paxos specification will not cause any violation of

the contract between proposers and acceptors on send-
ing and receiving messages. Thus, without dumping out
detailed states, it is questionable whether log analysis is
able to uncover those bugs.

5 Related Work

Our work is one of many proposals to deal with the chal-
lenging problem of debugging distributed systems. We
contrast it with the three broad approaches below.

Deterministic replay. In response to the lack of con-
trol of testing in real deployment, building a time ma-
chine to enable deterministic replay is required [7, 8, 27].
Most of this work is for a single node. Our implemen-
tation is capable of reproducing the execution of a dis-
tributed system within one simulation process. Friday [9]
enhances GDB with group replay and distributed watch-
points. We share their methodology that incremental re-
finement of predicates is an integral part of cyclic de-
bugging process, however, replay in WiDS checker is
much more efficient because we use one process to re-
play all instances. In addition to debugger extensions,
WiDS checker provides a unified framework with ad-
vanced features tailored for distributed systems. It allows
simulation with controlled failures, which is valuable for
early development stages. It can trace user-defined object
states with historical versions and evaluate predicates
only at event-handler boundaries, and thus provides bet-
ter functionalities and performance for predicate check-
ing. These unique contributions of WiDS Checker are
proven to be important for debugging. Our current draw-
back is that the tool is limited to applications written us-
ing the WiDS API or Macedon.

Model-check actual implementation. Our work
complements these recent proposals [20, 30] that check
actual implementations. Model checking explores the
state space systematically, but the issue of state explosion
typically restricts the scale. MaceMC [11] and WiDS
checker share many design concepts, but differ funda-
mentally on how we test a system and hit bugs. MaceMC
uses model checker with heuristics to deal with liveness
properties, but has to tradeoff the scale of the system.
As we discussed in Section 4.6, some bugs rely on a
fairly large scale and low-level implementation details,
and cannot manifest in a downscaled or abstracted sys-
tem (e.g., the deadlock case in Boxwood derived from
running out of the socket pool). For such cases, tools like
WiDS checker which simulates low-level OS APIs and
uses deployed testing with replay-based checking will be
necessary.

Log-based debugging. Communication structures en-
code rich information. Logs can be used to identify per-
formance bottlenecks, as advocated by Magpie [5], Pin-
point [6] and many others [4, 23]. The logs that WiDS

Checker captures contain enough information to enable
performance debugging, but the focus of this study is on
correctness debugging. Pip [23] also proposes that log-
based analysis can root out structural bugs. In general,
we are more confident that log-based analysis can reveal
performance bugs than structural ones (a close read on
Pip’s results seems to confirm this). As demonstrated
by the bug cases in this study, a correct communication
pattern is only the necessary but not the sufficient con-
dition to enforce correct properties. Logging detailed
states is prohibitively expensive; it is easier to log non-
deterministic events and to reconstruct the states. From
our experience, full-state inspection with time-travel is
critical to identify the root cause of a correctness bug. A
nice by-product is that it also enables us to exhaustively
test all bugs in a given reproduced run, an endeavor that
is usually quite labor-intensive. We also differ on how
correctness is expressed. Pip can construct path expec-
tations from history. Since we are taking logs, this al-
ternative is also available. However, we believe that our
assertions are more powerful. They represent the mini-
mum understanding of a system’s correct properties, and
are much easier to write and refine than a model.

Singh et al. [26] propose to build an online monitoring
and debugging infrastracture based on a declarative de-
velopment language [16]. They require that the system is
programmed with a highly abstracted deductive model so
as to enable checking, while WiDS Checker mimics low-
level OS API semantics (thread, sockets and file I/O) and
enhance them with replay, in order to check predicates
and find bugs in existing systems. In addition, their on-
line checking methodology is restricted by the communi-
cation and computation overhead in distributed systems,
and thus the checking facility is less powerful than the
offline checking used in WiDS Checker. As online and
offline checking complement each other, our future work
is to look at interesting combinations of the two methods.

6 Conclusion and On-going Work

In a unified framework, WiDS Checker is capable of
checking an implementation using both simulated as well
as deterministically reproduced runs reconstructed from
traces logged in deployment. Its versatile script lan-
guage allows a developer to write and incrementally re-
fine assertions on-the-fly to check properties that are oth-
erwise impossible to check. Single console debugging
and message-flow based time-travel allows us to quickly
identify many non-trivial bugs in a suite of complex and
real systems.

Our on-going work addresses the limitations in sup-
porting legacy binaries with function interception tech-
niques. We intercept OS system calls and APIs to change
them into events, and use an event queue to schedule the

execution, including thread switches, OS notifications,
and socket operations. We also intercept a layer beneath
the socket interface to add Lamport Clock annotation be-
fore network data chunks in a transparent way. By this
means application can be logged and faithfully replayed
in a transparent way, and we can futher bring the simula-
tion, virtualization, and checking functions to legacy bi-
naries in the fashion we performed with WiDS Checker.

7 Acknowledgments

We would like to thank our shepherd Petros Maniatis
and the anonymous reviewers for their comments and
suggestions. We are also indebted to Linchun Sun,
Fangcheng Sun, Shuo Tang, Rui Guo for their help with
the WiDS Checker experiments, as well as Roberto De
Prisco, Lidong Zhou, Charles Killian, and Amin Vahdat
for verifying the bugs we found.

References
[1] Macedon: http://macedon.ucsd.edu/release/.

[2] Phoenix compiler framework. http://research.microsoft.
com/phoenix/phoenixrdk.aspx.

[3] WiDS release. http://research.microsoft.

com/research/downloads/details/

1c205d20-6589-40cb-892b-8656fc3da090/details.

aspx.

[4] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L.,
REYNOLDS, P., AND MUTHITACHAROEN, A. Performance de-
bugging for distributed systems of black boxes. In SOSP (2003).

[5] BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER, R.
Using magpie for request extraction and workload modelling. In
OSDI (2004).

[6] CHEN, M., KICIMAN, E., FRATKIN, E., FOX, A., AND
BREWER, E. Pinpoint: Problem determination in large, dynamic,
internet services. In Int. Conf. on Dependable Systems and Net-
works (2002).

[7] DUNLAP, G. W., KING, S. T., CINAR, S., BASRAI, M. A.,
AND CHEN, P. M. Revirt: enabling intrusion analysis through
virtual-machine logging and replay. SIGOPS Oper. Syst. Rev. 36,
SI (2002).

[8] GEELS, D., ALTEKAR, G., SHENKER, S., AND STOICA, I. Re-
play debugging for distributed applications. In USENIX (2006).

[9] GEELS, D., ALTEKARZ, G., MANIATIS, P., ROSCOEY, T., AND
STOICAZ, I. Friday: Global comprehension for distributed re-
play. In NSDI (2007).

[10] JUMP, M., AND MCKINLEY, K. S. Cork: dynamic memory leak
detection for garbage-collected languages. In POPL (2007).

[11] KILLIAN, C., ANDERSON, J. W., JHALA, R., AND VAHDAT,
A. Life, death, and the critical transition: Finding liveness bugs
in systems code. In NSDI (2007).

[12] LAMPORT, L. Time, clocks, and the ordering of events in a dis-
tributed system. Commun. ACM 21, 7 (1978).

[13] LAMPORT, L. The part-time parliament. ACM Trans. Comput.
Syst. 16, 2 (1998).

[14] LIN, S. D., PAN, A. M., GUO, R., AND ZHANG, Z. Simulat-
ing large-scale p2p systems with the wids toolkit. In MASCOTS
(2005).

[15] LIN, S. D., PAN, A. M., ZHANG, Z., GUO, R., AND GUO, Z. Y.
Wids: an intergrated toolkit for distributed system development.
In HotOS (2003).

[16] LOO, B. T., CONDIE, T., HELLERSTEIN, J. M., MANIATIS, P.,
ROSCOE, T., AND STOICA, I. Implementing declarative over-
lays. SIGOPS Oper. Syst. Rev. 39, 5 (2005).

[17] LYNCH, N. Distributed Algorithms. 1996, ch. 8.
[18] LYNCH, N., AND TUTTLE, M. An introduction to input/output

automata. In Technical Memo MIT/LCS/TM-373 (1989).
[19] MACCORMICK, J., MURPHY, N., NAJORK, M., THEKKATH,

C. A., AND ZHOU, L. Boxwood: Abstractions as the foundation
for storage infrastructure. In OSDI (2004).

[20] MUSUVATHI, M., AND ENGLER, D. Model checking large net-
work protocol implementations. In NSDI (2004).

[21] PRISCO, R. D., LAMPSON, B. W., AND LYNCH, N. A. Fun-
damental study revisiting the paxos algorithm. Theoretical Com-
puter. Science. 243, 1-2 (2000).

[22] QIN, F., LU, S., AND ZHOU, Y. Safemem: Exploiting ecc-
memory for detecting memory leaks and memory corruption dur-
ing production runs. In HPCA (2005).

[23] REYNOLDS, P., KILLIAN, C., WIENER, J. L., MOGUL, J. C.,
SHAH, M. A., AND VAHDAT, A. Pip: Detecting the unexpected
in distributed systems. In NSDI (2006).

[24] RODRIGUEZ, A., KILLIAN, C., BHAT, S., KOSTIC, D., AND
VAHDAT, A. Macedon: Methodology for automatically creating,
evaluating, and designing overlay networks. In NSDI (2004).

[25] SAVAGE, S., BURROWS, M., NELSON, G., SOBALVARRO, P.,
AND ANDERSON, T. Eraser: A dynamic data race detector for
multithreaded programs. ACM Trans. Comput. Syst. 15, 4 (1997).

[26] SINGH, A., ROSCOE, T., MANIATIS, P., AND DRUSCHEL, P.
Using queries for distributed monitoring and forensics. In Eu-
roSys (2006).

[27] SRINIVASAN, S. M., KANDULA, S., ANDREWS, C. R., AND
ZHOU, Y. Flashback: A lightweight extension for rollback and
deterministic replay for software debugging. In USENIX (2004).

[28] STOICA, I., MORRIS, R., LIBEN-NOWELL, D., KARGER,
D. R., KAASHOEK, M. F., DABEK, F., AND BALAKRISHNAN,
H. Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Trans. Netw. 11, 1 (2003).

[29] YANG, H., PIUMATTI, M., AND SINGHAL, S. K. Internet scale
testing of pnrp using wids network simulator. In P2P Conference
(2006).

[30] YANG, J., TWOHEY, P., ENGLER, D., AND MUSUVATHI, M.
Using model checking to find serious file system errors. ACM
Trans. Comput. Syst. 24, 4 (2006).

[31] YU, Y., RODEHEFFER, T., AND CHEN, W. Racetrack: efficient
detection of data race conditions via adaptive tracking. In SOSP
(2005).

[32] ZHANG, Z., LIAN, Q., LIN, S. D., CHEN, W., CHEN, Y., AND
JIN, C. Bitvault: A highly reliable distributed data retention plat-
form. In MS Research Tech Report (MSR-TR-2005-179) (2005).

Notes
1WiDS, a recursive acronym that stands for “WiDS implements

Distributed System”, is the name of the toolkit.
2For conciseness, we omit the learners of paxos in our description.
3This is only a simplified ring consistency predicate for illustration

purpose. The more complicated one which also detects disjoint and
loopy rings would possibly catch more problems.

