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Abstract. Pattern matching of algebraic data types (ADTs) is a stan-
dard feature in typed functional programming languages but it is well
known that it interacts poorly with abstraction. While several partial so-
lutions to this problem have been proposed, few have been implemented
or used. This paper describes an extension to the .NET language F#
called “Active Patterns”, which supports pattern matching over abstract
representations of generic heterogeneous data such as XML and term
structures, including where these are represented via object models in
other .NET languages. Our design is the first to incorporate both ad
hoc pattern matching functions for partial decompositions and “views”
for total decompositions, and yet remains a simple and lightweight ex-
tension. We give a description of the language extension along with nu-
merous motivating examples. Finally we describe how this feature would
interact with other reasonable and related language extensions: existen-
tial types quantified at data discrimination tags, GADTs, and monadic
generalizations of pattern matching.
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1 Introduction

Pattern matching in statically-typed functional languages (STFLs) is a pow-
erful feature that facilitates the concise analysis of data via a switch-and-bind
control construct. However a well-recognized problem with pattern matching is
its inability to operate on abstract data types. This problem prevents pattern
matching from being used in scenarios where its effectiveness is highly sought
after. For example many STFLs include a lazy list data structure but choose to
hide the implementation of the data type by exporting it as an abstract type.
This precludes library users from pattern matching over the data type, which
would be an intuitive thing to do considering the data is a list. For example,
consider a module that exports functions to construct and analyze lazy lists:

type LazyList<’a>

val nonempty : LazyList<’a> -> bool

val hd : LazyList<’a> -> ’a

val tl : LazyList<’a> -> LazyList<’a>

val consl : ’a -> Lazy<LazyList<’a>> -> LazyList<’a>

val nil : LazyList<’a>

Tasks that were once very simple to code using pattern matching become obtuse
using these analysis functions, e.g. consider pseudo-code that sums elements of
a list of integers pairwise using pattern matching:

let rec pairSum xs =

match xs with



| Cons (x, Cons (y,ys)) -> consl (x+y) (lazy (pairSum ys))

| Cons (x, Nil ()) -> consl x (lazy nil)

| Nil () -> nil

becomes

let rec pairSum xs =

if nonempty xs then

let x, ys = hd xs, tl xs

if nonempty ys then

let y, zs = hd ys, tl ys

consl (x+y) (lazy (pairSum zs))

else consl x (lazy nil) )

else nil

Even if LazyList were not an abstract type, pattern matching would still be
problematic because of the need to force evaluation of the list in the middle
of matching. Note that it is nested pattern matching that causes particular
problems in this regard.

While this problem has long been recognized ([Wad87,Oka98]), it becomes
chronic when STFLs are placed in the context of modern object-oriented pro-
gramming frameworks such as .NET and Java (as in the case of F#, SML.NET,
Nemerle and to some extent Scala [SM06,BKR06,Con06,Ode06]) because ab-
stract types are heavily employed as the fundamental concept of object-oriented
encapsulation. This is a problem not only for the consumers of object-oriented
frameworks, but also to the authors of these frameworks, i.e. library designers.
The advent of “framework-oriented” languages such as C# has shown that it is
important to ensure that language devices both enable and encourage the library
designer to author long-lived, maintainable software components. In this context
the traditional approach to revealing algebraic data types through abstraction
boundaries fixes the usage model of the type to such a degree that their use
in the public APIs of framework components is hard to encourage. Indeed, it
quickly becomes evident that apart from simple cases such as lists, pairs and
options, algebraic data types are implementations of types, rather than descrip-
tions of long-term maintainable abstractions. It is also evident that this is one
of the reasons why pattern matching and algebraic data types have not been
successfully transferred to OO languages such as Java and C# despite proposals
in that direction [OW97].

Because of these problems we decided in 2006 to conduct a series of “design,
implement and use” experiments to determine a suitable design for extensible
pattern matching over abstract types in the context of F# programming, con-
cluding with a concrete extension to the language. This report documents the
chosen design and some of the lessons we learned along the way.3 While some
3 Aspects of the design were first presented in July 2006 at the WG2.8 workshop,

Boston, then a prototype implemented in the F# release of August 2006 and doc-
umented on the F# website and blog. User feedback was received throughout this
time. This report describes the revised design of March 2007.



details of the design are F#-specific, we are confident that its essence can be
transferred into other settings.

The particular contributions of this report are as follows:

– We describe a simple extension to F# that allows programmers to write
specially-named functions that act as active recognizers for existing types,
including both partial (ad hoc) and total recognizers. Active recognizers
can be used as first-class values and the inherently algebraic nature of total
recognizers allows the compiler to check for match redundancy and incom-
pleteness.

– We demonstrate the use of the active patterns in F# through numerous
examples, many of them novel.

– We consider how this feature would interact with three other reasonable and
related language extensions: existential types quantified at data discrimina-
tion tags, GADTs, and monadic generalizations of pattern matching.

One particular observation is that the problem of pattern matching takes on an
added significance when decomposing generic, heterogeneous data formats such
as the untyped structured representations XML used on object-oriented plat-
forms, or untyped representations of term structures. In these cases a significant
part of programming is the imposition of an ad hoc, application-specific schema
that carves out subsets of the heterogeneous format. The proposed design seems
particularly effective in this context. We give examples in Section 3.

2 Background

In this section we cover background on pattern matching in general and the
problems that reveal the need for an extensible pattern matching mechanism.

2.1 Patterns are Everywhere

Patterns occur throughout the design of languages such as F#, OCaml and
Standard ML — in the words of Hickey, “patterns are everywhere” [Hic06]. Some
of the locations where patterns occur in the F# grammar are shown below

let pat = expr // binding

fun pat -> expr // anon. function values

let f pat ... pat = expr // named function values

match expr with // match expressions

| pat -> expr

| pat -> expr

| pat -> expr



try expr // exception handling

with

| pat -> expr

| pat -> expr

{ for pat in expr // sequence expressions

for pat in expr

...

-> expr }

{ new type with // object expressions

member x.M1(pat ,...,pat ) = expr

...

member x.MN(pat ,...,pat ) = expr

}

In F# patterns are formed using a number of compositional constructs, shown
by form and example below.

(pat , ..., pat ) -- tuple pattern

[pat ; ...; pat ] -- list pattern

[| pat ; ...; pat |] -- array pattern

{ id= pat ; ...; id=pat } -- record pattern

Point(pat , pat ) -- tagged data pattern

pat | pat -- either pattern

_ -- wild pattern

x -- variable binding

36 -- constant pattern

"36" -- constant pattern

System.DayOfWeek.Monday -- constant pattern

:? type -- type test pattern

:? type as id -- type test pattern

null -- null test pattern

The widespread use of patterns and their compositional nature mean that pat-
tern matching is a major part of the enduring appeal of typed functional lan-
guages, and patterns are a fundamental workhorse used throughout F# coding.

2.2 Patterns are Problematic

The primary way to define pattern discriminators in STFLs is through the dec-
laration of a discriminated union type (viz. a “tagged union”). Discriminated
union types are declared in F#/OCaml as follows:

type expr =

| Add of expr * expr

| Mul of expr * expr

| Var of string

| Const of float



This data type could be used to represent simple arithmetic expressions. The tags
of a discrimiated union type (in this case Add, Mul, etc.) have special significance
in the language. Firstly, they are can be used as functions to construct values,
e.g.,

let e = Add (Var "x") (Const 1.0)

Secondly, they can be used as patterns to deconstruct values, e.g.,

let eval env e =

match e with

| Add (e1,e2) -> eval env e1 + eval env e2

| Mul (e1,e2) -> eval env e1 * eval env e2

| Var x -> lookup x env

| Const n -> n

Discriminated union types and pattern matching are linked because only union
tags can introduce new patterns to match against. This connection makes pattern
matching inflexible.

For example, say that the developer of a library wants to hide the implemen-
tation of the expr type above by exporting it from a module as an abstract type.
An abstract type does not reveal the underlying tags used for a discriminated
union type, so users of this module would have no way of doing anything useful
with its type. One way for the developer to remedy this is to export a collection
of functions that construct and deconstruct values of the abstract type. E.g.,

(* abstract type *)

type expr

(* construction functions *)

val makeAdd : expr * expr -> expr

val makeMul : expr * expr -> expr

val makeVar : string -> expr

val makeConst : float -> expr

(* deconstruction functions *)

val tryAdd : expr -> (expr * expr) option

val tryMul : expr -> (expr * expr) option

val tryVar : expr -> string option

val tryConst : expr -> float option

The construction functions do not pose any problem as they work just as well
as union tags. However the deconstruction functions cannot be used in patterns
like their union tag counterparts could. Hence the previously simple and concise
eval function becomes a series of repeated matches that match against the
option type.



let eval env e =

match tryAdd e with

| Some (e1, e2) -> eval env e1 + eval env e2

| None ->

match tryMul e with

| Some (e1, e2) -> eval env e1 * eval env e2

| None ->

match tryVar e with

| Some x -> lookup x env

| None ->

match tryConst e with

| Some n -> n

| None -> failwith "should never happen"

The problem with deconstruction functions becomes worse when the corre-
sponding pattern matching code would use nested sub-patterns. Consider writing
an optimizer for the expr language that transforms the data structure based on
a collection of rewrite rules, (e.g., the distributive law, ab+ bc = a(b+ c)). Using
pattern matching this function is a simple translation of the declarative rules.

let optimize x =

match x with

| Add (Mul a b) (Mul a’ c) when a = a’ -> Mul a (Add b c)

| // more rules...

With the deconstruction functions this code becomes an unreadable mess of
match blocks which force the programmer to duplicate code at each failure point
in a sub-pattern or refactor each rule into its own function.

let optimize x =

match tryAdd x with

| Some (x1, x2) ->

match tryMul x1 with

| Some (a, b) ->

match tryMul x2 with

| Some (a’, c) when a = a’ -> Mul a (Add b c)

| _ -> // remaining rules...

| _ -> // remaining rules...

| _ -> // remaining rules...

To summarize, pattern matching is problematic because—

– it is not extensible;
– it encourages programmers to break abstraction boundaries;
– it cannot evolve: for example, discriminator tags may not be renamed while

continuing to support the old “deprecated” tag for backwards compatibility,
which is an essential technique heavily used by languages such as C# in order
to move library designs forward without catastrophically breaking user code;



– it leads to a discontinuity in programming: programmers start down a path of
using pattern matching heavily, and are then forced to abandon the technique
in order to regain control over their representations;

– it encourages programmers to use unoptimized term representations (since
optimizations would be visible to clients pattern matching against the rep-
resentation).

The authors have witnessed all of these problems in practice in compiler, theorem
prover and library implementations.

3 F# Active Patterns By Example

In this section we introduce F# active patterns by example, covering total pat-
terns (which discriminate into one or many cases), partial pattens (which dis-
criminate into one case or failure), and parameterized patterns.

3.1 Simple Total Patterns (“Basic Bananas”)

We all know that there are (at least) two equally valid ways of thinking about
complex numbers: rectangular and polar coordinates. We use this example to
introduce the main technique used in this report: the adoption of some simple
notational devices that give rise to special structured names to the functions
play the role of active recognizers (or just recognizers for short). Here are two
constructors and two recognizers for the F# type complex:

let MkRect (x,y) = Complex.mkRect(x,y)

let MkPolar (r,th) = Complex.mkPolar(r,th)

let (|Rect|) (x:complex) = (x.RealPart, x.ImaginaryPart)

let (|Polar|) (x:complex) = (x.Magnitude, x.Phase)

The first two lines above define construction functions for these two views, and
the last two lines define recognizers for the same. The names of the first two
functions are (of course) MkRect and MkPolar, the names of the second two
are (|Rect|) and (|Polar|), i.e. structured names that include the “banana”
symbols (| |). The four functions can now be used as follows:

let mulViaRect c1 c2 =

match c1,c2 with

| Rect(ar,ai), Rect(br,bi) -> MkRect(ar*br - ai*bi, ai*br + bi*ar)

let mulViaPolar c1 c2 =

match c1,c2 with

| Polar (r1,th1),Polar (r2,th2) -> MkPolar(r1*r2, th1+th2)



The use of the tags Rect and Polar in the match constructs of these functions
select the recognizers (|Rect|) and (|Polar|). Hence structured names intro-
duce new identifiers into the set of valid pattern tags, which previously could
only be done by a discriminated union data type declaration.4

The types of these recognizers are simply:

val (|Rect|) : complex -> float * float

val (|Polar|) : complex -> float * float

The selection of recognizers is syntax-directed (based on names and lexical scope)
rather than type-directed.

The recognizers are executed as part of the pattern matching process to
decompose the inputs c1 and c2 into tuples (ar,ai), (br,bi), (r1,th1) and
(r2,th2), just as if we had written:5

let mulViaRect c1 c2 =

let (ar,ai) = destRect c1

let (br,bi) = destRect c2

MkRect(ar*br - ai*bi, ai*br + bi*ar)

let mulViaPolar c1 c2 =

let (r1,th1) = destPolar c1

let (r2,th2) = destPolar c2

MkPolar(r1*r2, th1+th2)

Recognizers such as (|Rect|) are also called “tagged conversions.” Patterns
can be used in many places in the F# grammar, so the above functions could
also have been written:

let mulViaRect (Rect(ar,ai)) (Rect(br,bi)) = MkRect(ar*br-ai*bi, ai*br+bi*ar)

let mulViaPolar (Polar(r1,th1)) (Polar(r2,th2)) = MkPolar(r1*r2, th1+th2)

Ignoring issues related to floating-point precision, mulViaRect and mulViaPolar
define the same computations via different views. In passing we note that the
performance of the functions will depend on the concrete representation used for
the input and output complex numbers. However, the input concrete represen-
tation has not syntactically dictated the representations used in intermediary
steps of the client algorithms, as it would if we used pattern matching over the
concrete structure.

4 Recognizers can be given the same names as functions, i.e., (|Polar|) and Polar,
but for clarity we have not done that here, and the technique tends not to be used
in practice.

5 Here destRect and destPolar are assumed to have the same definitions as (|Rect|)
and (|Polar|).



3.2 Decomposition with Recognizers (“Banana Splits”)

Since F# is a dual functional and object-oriented language, there is often a need
to engage in the use of class types – either types authored in another .NET
language, including the base class libraries, or written in F# itself. Traditional
pattern matching cannot be used in these circumstances despite the fact that
a discriminated union decomposition of a class hierarchy might be a natural
and intuitive way to structure code in a functional setting. One such example
is the System.Type type from the .NET base class library which represents
reified runtime types and is used throughout the Reflection and code generation
libraries of .NET. The .NET API being used here is as follows:

type System.Type

with

member IsGenericType : bool

member GetGenericTypeDefinition : unit -> Type

member GetGenericArguments : unit -> Type[]

member HasElementType : bool

member GetElementType : unit -> Type

member IsByRef : bool // nb. ByRef = ‘‘managed pointer’’

member IsPointer : bool // nb. Pointer = ‘‘unmanaged pointer’’

member IsGenericParameter : bool

member GenericParameterPosition : int

Note that the algebra includes structured generic types and free generic type
parameters, though no binding constructs.6 We can now define a recognizer that
captures the essential algebraic structure of System.Type values:

let (|Named|Array|Ptr|Param|) (typ : System.Type) =

if typ.IsGenericType then Named(typ.GetGenericTypeDefinition(),

typ.GetGenericArguments())

elif typ.IsGenericParameter then Param(typ.GenericParameterPosition)

elif not typ.HasElementType then Named(typ, [| |])

elif typ.IsArray then Array(typ.GetElementType(),

typ.GetArrayRank())

elif typ.IsByRef then Ptr(true,typ.GetElementType())

elif typ.IsPointer then Ptr(false,typ.GetElementType())

else failwith "MSDN says this can’t happen"

Here the name (|Named|Array|Ptr|Param|) is a structured name for a sin-
gle function. The name includes multiple tags surrounded by (| |) banana
marks and separated by | marks (a “banana split”). The use of multiple tags
indicates that the function performs simultaneous case-decomposition and data-
decomposition. The declaration brings into scope four recognizer tags that can
be used within pattern matching, e.g. to pretty-print a System.Type:

6 Generic type parameters are bound at method and class definitions.



let rec formatType typ =

match typ with

| Named (con, []) -> sprintf "%s" con.Name

| Named (con, args) -> sprintf "%s<%s>" con.Name (formatTypes args)

| Array (arg, rank) -> sprintf "Array(%d,%s)" rank (formatType arg)

| Ptr(true,arg) -> sprintf "%s&" (formatType arg)

| Ptr(false,arg) -> sprintf "%s*" (formatType arg)

| Param(pos) -> sprintf "!%d" pos

and formatTypes typs = String.Join(",",Array.map formatType typs)

or to collect the free generic type variables in a System.Type:

let rec freeVarsAcc typ acc =

match typ with

| Named (con, args) -> Array.fold_right freeVarsAcc args acc

| Array (arg, rank) -> freeVarsAcc arg acc

| Ptr (_,arg) -> freeVarsAcc arg acc

| Param _ -> (typ :: acc)

let freeVars typ = freeVarsAcc typ []

Note that the tags defined in a structured name (e.g., Named) are used on the
right-hand-side of its let-bound definition to tag the different result cases of the
recognizer. Outside of the let the tags may only be used in patterns.

The recognizer effectively allows us to view System.Type values as if they
had been defined using the following algebra:

type Type ~=

| Named of Type * Type[]

| Array of int * Type

| Ptr of bool * Type

| Param of int

Total recognizers have “identity” in the sense that the F# compiler per-
forms redundancy and completeness analysis for patterns involving uses of total
recognizers. We return to this issue in Section 6.1.

As a second example we consider an recognizer for F# lazy lists.

open LazyList

let (|Cons|Nil|) l = if nonempty(l) then Cons(hd(l),tl(l)) else Nil

The example used in the introduction can now be written in a much more natural
way;

let rec pairSum xs =



match xs with

| Cons (x, Cons (y,ys)) -> consl (x+y) (lazy (pairSum ys))

| Cons (x, Nil ()) -> consl x (lazy nil)

| Nil () -> nil

Types The F# types of an recognizer reveal the encoding of result types as an
anonymous sum type. For example:

val (|Cons|Nil|) : ’a llist -> Choice<(’a * ’a llist), unit>

Here the type constructor Choice represents an F# encoding of anonymous
sum types. Like Tuple, Choice is a special type constructor known to the F#
compiler that is compiled to cascading instances of a fixed number of concrete
ChoiceN types defined in the F# library:7

type Choice<’a,’b> =

| Choice2_1 of ’a

| Choice2_2 of ’b

type Choice<’a,’b,’c> =

| Choice3_1 of ’a

| Choice3_2 of ’b

| Choice3_3 of ’c

...

type Choice<’a,’b,’c,’d,’e,’f,’g> =

...

We return to the question of types for active patterns in Section 7.

3.3 Partial Recognizers (“Banana Slices”)

Our examples so far have been of total decompositions of types. However, in
practice, many types are far too heterogeneous and their decompositions too ir-
regular to make total decompositions the only useful analysis tool. In particular,
heterogeneous types such as term structures, XML and strings can be decom-
posed in many ways, most of which will be irregular and application-dependent.

For this reasons it is essential that any extensible pattern matching technique
incorporate the ability to define and use ad hoc pattern matching techniques,
just as functions allow us to define ad hoc construction techniques. Indeed, many
of the previous and current proposals for extensible pattern matching in other
languages focus only on ad hoc matching and leave total matching unaddressed
[Erw97,EOW06].

It is useful to begin with contrived but simple examples where we treat the
integers as a heterogeneous type. Partial recognizers are defined using identifiers
with the form (|Label| |), e.g.,
7 At the time of writing the concrete library types must be used directly.



let (|MulThree|_|) inp =

if inp % 3 = 0 then Some(inp/3) else None

let (|MulSeven|_|) inp =

if inp % 7 = 0 then Some(inp/7) else None

Partial recognizers return a value of type ty option for some ty . They can be
used as follows:

match 28 with

| MulThree(residue) -> printf "3 * %d = 28! Unlikely" residue

| MulSeven(residue) -> printf "7 * %d = 28!" residue

| _ -> printf "no match!"

This produces the result 7 * 4 = 28!.
We next look at some simple manipulations over term structures of the kind

often found in theorem proving libraries. Consider the following algebraic data
type:

type Expr =

| VarExpr of string

| LambdaExpr of ExprVar * Expr

| AppExpr of Expr * Expr

Partial recognizers can now be defined that correspond to the application of
named variables to 1, 2, 3 or N arguments:

let (|App1|_|) = function AppExpr(VarExpr(k),x) -> Some(k,x) | _ -> None

let (|App2|_|) = function AppExpr(App1(k,x1),x2) -> Some(k,x1,x2) | _ -> None

let (|App3|_|) = function AppExpr(App2(k,x1,x2),x3) -> Some(k,x1,x2,x3) | _ -> None

let (|AppN|_|) =

let rec queryAcc e acc =

match e with

| AppExpr(f,x) -> queryAcc f (x::acc)

| VarExpr (k) -> Some(k,acc)

| _ -> None in

fun e -> queryAcc e []

Instances of these recognizers can now be defined that recognize particular con-
structs:

let (|Cond|_|) = function App3("cond",e1,e2,e3) -> Some(e1,e2,e3) | _ -> None

let (|Tuple|_|) = function AppN("tuple",e) -> Some(ty,e) | _ -> None

let (|Let|_|) = function App2("let",e,LambdaExpr(v,b)) -> Some(v,e,b) | _ -> None

let (|Equality|_|) = function App2("=",e1,e2) -> Some(e1,e2) | _ -> None

Ad hoc additional recognizers can easily be defined for particular term structures:



/// Recognize the encoded form of a && b

let (|LazyAnd|_|) x =

match x with

| Cond(x,y,Bool(false)) -> Some(x,y)

| _ -> None

/// Recognize the encoded form of a || b

let (|LazyOr|_|) x =

match x with

| Cond(x,Bool(true),y) -> Some(x,y)

| _ -> None

/// Recognize two beta-reducible forms

let (|BetaReducible|_|) x =

match x with

| Let(v,e,b) -> Some((v,e),b)

| App(Lambda(v,b),e) -> Some((v,e),b)

| _ -> None

We return to further examples of ad hoc matching in the Section 5.2.

3.4 Parameterized Recognizers (“Scrap Your Banana Plate”)

When using recognizers it quickly becomes apparent that it is very useful to be
able to parameterize recognizers, e.g. to express queries such as “Split a string
at character N”, “Match an attribute A on an XML Node” or “Match any
term involving a call to function M”. For illustrative purposes we continue the
somewhat contrived example from the previous section, where we had

let (|MulThree|_|) inp =

if inp % 3 = 0 then Some(inp/3) else None

let (|MulSeven|_|) inp =

if inp % 7 = 0 then Some(inp/7) else None

These can be replaced by a single parameterized recognizer:

let (|MulN|_|) n inp =

if inp % n = 0 then Some(inp/n) else None

The only remaining question is syntax for parameters at pattern usage points.
For the current F# release we have chosen the following syntax, which is the
most concise imaginable, though has also been criticized because the distinction
between expression arguments and pattern arguments is subtle:8

8 For the moment the F# syntax is considered “provisional” and the compiler will give
a warning to this effect. Peyton-Jones has suggested the syntax (expr -> pat ) for
Haskell [Joc07].



match 28 with

| MulN 3 residue -> printf "3 * %d = 28! Unlikely" residue

| MulN 7 residue -> printf "7 * %d = 28!" residue

| _ -> printf "no match!"

Regardless, syntactic issues should not obscure the fact that parameterized pat-
terns are a useful device, fitting neatly into the existing STFL techniques for
abstraction and code reuse. We will see many examples of parameterized ad hoc
matching in the Section 5.2.

Total recognizers may also be parameterized, e.g. the following recognizer
views an unsigned 32-bit integer through a rotation of n bits.

let (|Rotated|) n (x:uint32) = (x >>> n) ||| (x <<< 32 - n)

begin match 0x04030201u with

| Rotated 8 0x01040302u -> printf "yes!"

| _ -> printf "no! no! no!"

end

Passing parameters to recognizers results in the loss of “identity” for the recog-
nizer, and the F# compiler will not perform redundancy or completeness analysis
for patterns involving uses of parameterized recognizers (see Section 6.1). While
we are unlikely to revise this choice for F# it is possible to consider performing
this analysis up to some equality relation for expression parameters, perhaps as
an optional compiler feature.

3.5 Recognizers as First-Class Values (“First-Class Bananas”)

The next technical point of the F# active pattern design is a simple one: rec-
ognizers are first class values. For example, consider an unfold combinator that
applies a partial function, q, zero or more times (here q has type ’t -> (’a *
’t) option and the input inp has type ’t):

let qZeroOrMore q inp =

let rec queryAcc rvs e =

match q e with

| Some(v,body) -> queryAcc (v::rvs) body

| None -> (List.rev rvs,e) in

queryAcc [] inp

Given the term structure defined in Section 3.3, it is reasonable to define the
partial recognizer:

let (|Lambda|_|) = function LambdaExpr(a,b) -> Some (a,b) | _ -> None

A total recognizer can now be defined using this as a first-class value:



let (|Lambdas|) e = qZeroOrMore (|Lambda|_|) e

Furthermore, qZeroOrMore could even have been written using a variable with
a structured name as a parameter:

let qZeroOrMore (|Q|_|) inp =

let rec queryAcc rvs e =

match e with

| Q(v,body) -> queryAcc (v::rvs) body

| _ -> (List.rev rvs,e) in

queryAcc [] inp

This shows that recognizers really are just “values with structured names.”

3.6 “Both” Patterns

We present one final extension of the standard STFL model of pattern matching.
Many STFLs such as F#, OCaml and SML ’97 include “either” patterns pat

| pat , which succeed if either the left or right patterns match (the patterns
must bind identical variables at identical types). As has been noted by Rossberg
[Ros07a], the natural dual to “either” patterns are “both” patterns pat & pat

that only succeed if both the left and right patterns match. “Both” patterns are
not particularly useful in traditional STFLs since most uses can be combined
into a single pattern. However, that changes when the set of matching constructs
is extensible. For this reason we extend F# matching with “both” patterns. We
will see realistic examples of the use of “both” patterns in the Section 5.2. For
now, here is a simple example showing how to check the value of two particular
bits:

let (|Bit|) n = let mask = 1ul <<< n in fun inp -> ((inp &&& mask) <> 0ul)

match 0b0001000100ul with

| Bit 3 true -> printfn "No!"

| Bit 2 false -> printfn "No No!"

| Bit 2 true & Bit 3 false -> printfn "Yes indeed!"

| _ -> failwith ""

4 Operational Semantics

In this section we give a model operational semantics for pattern match eval-
uation. Since the semantics are not generally difficult, we avoid the traditional
approach of using inference rules. Instead we present a simple interpreter for
pattern matching written as an OCaml/F# program using only well-founded
recursion, pure lambda calculus constructs and simple data types.9 We also do
9 An inference rule presentation is trivial to derive from the one we give, but inference

rules are considerably harder to type check, debug and maintain than a simple
interpreter.



not give the semantics for a full calculus, but rather only the relevant pattern
matching portion of the dynamic semantics.

The input syntax terms are shown in Figure 1. As shown in Figure 2 we
assume the existence of a type of environments, a type of expressions, a func-
tion applyExpr to evaluate/apply expressions, and a function resolveActiveTag
that resolves an active pattern label to an expression and further information
indicating the kind of the recognizer and the position of the tag in the tag set
of the recognizer.

In Figure 3 we give the implementation of a function that matches patterns
against values. We pass an explicit state since evaluating F# expressions may
change a global state. The interesting points of the semantics are:

– Active patterns are first resolved to an expression, the expression is applied
(perhaps to some additional active parameter arguments), and a further
pattern match executed for a Some, None, Choice1, Choice2 etc. tag. That
is, the active pattern must resolve to a function expression which returns
appropriate Choice-tagged data.

– The environment is only extended after pattern matching: identifiers bound
by the pattern may not be used in the pattern. This is different to some
other proposals for extensible pattern matching (e.g. Rossberg [Ros07b]).
We think this helps make patterns more readable and understandable, but
it also reduces expressiveness, and may be reconsidered at a later point in
our design.

We do not give a corresponding static semantics, since the type-checking is a
simple extension to normal type-checking rules for patterns with an additional
case for recognizers that follows the form of the case for the dynamic semantics.10

4.1 Optimization Assumptions

The above operational semantics shown is naive and will lead to inefficient exe-
cution due to repeated invocations of active discriminators. This is unacceptable.
Okasaki has suggested that the only sensible semantics to apply to pattern match
execution in the presence of side effects is to require that active discrimination
functions get run at most once against any given input [Oka98]. While we ap-
preciate this opinion in the context of the stated design goals of Standard ML,
it is in many ways the opposite of the approach we take here, where we assume
we are interested in pattern matching algorithms that can freely run active dis-
criminators multiple times.

The reason we have taken this approach is that we believe that for F# it may
eventually be sufficient in practice to simply fix the pattern matching algorithm
used in the presence of recognizers once and for all. Until the algorithm is fixed
10 The static semantics is simple as long we do not include specifications of redundancy

and incompleteness checking, which do not normally form part of the specification
of pattern matching and are rather compiler-specific features added to enhance pro-
grammer productivity. We return to this question in section 6.1.



type env

type expr

type exprs = expr list

type state

type tag = string

type pat =

| PPair of pat * pat // Tuple patterns

| PTag of tag * pat // A concrete data pattern.

| PActive of tag * exprs * pat // An active pattern

| PEither of pat * pat // ’pat1 | pat2’

| PBoth of pat * pat // ’pat1 &&& pat2’

| PWild // ’_’ patterns

| PId of string // Variable patterns

| PConst of int // Constant patterns

type value =

| VPair of value * value // Pair values

| VTag of string * value // Tagged values

| VConst of int // Constants

Fig. 1. Input terms and values for the operational semantics

val applyExpr : env -> state -> expr -> exprs -> value -> state * value

type activeDiscriminatorInfo =

| Total of int * int

| Partial

val resolveActiveTag : env -> string -> expr × activeDiscriminatorInfo

type bind = string * value

type binds = bind list

Fig. 2. Assumptions and preliminary definitions



let (&&&) f1 f2 (s,binds) =

let s,bindsOpt = f1 (s,binds)

match bindsOpt with

| None -> s,None

| Some(binds) -> f2 (s,binds)

let (|||) f1 f2 (s,binds) =

let s,bindsOpt = f1 (s,binds)

match bindsOpt with

| None -> f2 (s,binds)

| Some(binds) -> (s,Some(binds))

// val matchPat : env -> state -> binds -> pat -> value -> state * binds option

let rec matchPat env pat v (s,binds) =

match pat,v with

| PPair (p1,p2), VPair(v1,v2) ->

(matchPat env p1 v1 &&& matchPat env p2 v2) (s,binds)

| PTag (s1,p’), VTag(s2,v’) when s1 = s2 ->

matchPat env p’ v’ (s,binds)

| PActive (nm,args,p), _ ->

let f,info = resolveActiveTag env nm

let s,v’ = applyExpr env s f args v

match info with

| Total(numChoices,choiceNum) ->

if numChoices = 1

then matchPat env p v’ (s,binds)

else matchPat env (PTag ("Choice"^string_of_int choiceNum,p)) v’ (s,binds)

| Partial ->

matchPat env (PTag("Some",p)) v’ (s,binds)

| PEither (p1,p2),_ -> (matchPat env p1 v ||| matchPat env p2 v) (s,binds)

| PBoth(p1,p2) ,_ -> (matchPat env p1 v &&& matchPat env p2 v) (s,binds)

| PWild,_ -> (s,Some binds)

| PId nm,v -> (s,Some ((nm,v)::binds))

| PConst c1, VConst c2 when c1 = c2 -> (s,Some binds)

| _ -> (s,None)

Fig. 3. Pattern Matching: Operational Semantics



we are content to simply give strong informal guidelines about the assumptions
that characterize the range of feasible pattern matching algorithms we are willing
to contemplate.

The particular assumptions that we make are:

– We assume recognizer invocations will return observationally equivalent re-
sults on observationally equivalent inputs;

– We assume that all recognizer invocations within the evaluation of a set
of rules are commutative, i.e. that observationally results will be returned
regardless of the order of invocation of recognizers ;

– We assume that recognizer invocations do not have additional observable side
effects after their first executions against observationally equivalent inputs.

This raises the question as to the notion of observational equivalence assumed.
The informal specification we rely on is as follows: two expressions are observa-
tionally equivalent if no F# program context (i.e. a program with a hole in it)
can distinguish between the results under any interpretation of under-specified
aspects of F# execution. As with parts of all modern programming languages
some parts of the execution of .NET programs are under-specified, e.g., orderings
in the memory model in the presence of concurrency, the argument evaluation
order, the results of “backdoor” features to access .NET representations such as
unsafe C-style code and pointer equivalence checks, and the use of .NET reflec-
tion to access the compiled version of the program itself. A formal statement of
this property is possible in theory, but is difficult in practice given the breadth
of features supported by .NET Common IL code, including the ability to ac-
cess a multitude of sophisticated and under-specified features such as reflection,
libraries, concurrency and asynchronous I/O.

In practice, this means that the F# pattern compiler is effectively assuming
that recognizers do not have side effects, or if they do then these effects are
commutative and do not re-occur on subsequent re-executions. This places a
semantic burden on the library designer, particularly if any side-effects are used
in active patterns.

5 Further Examples of Active Patterns

In this section we look at three additional examples of the use of active patterns.

5.1 Join Lists

Join lists are a classic example of the use of view-like mechanisms in functional
languages. They are also an example of recursive pattern definitions. Here is the
standard polymorphic join list example in F# code:

type ’a jlist =

| Empty



| Single of ’a

| Join of ’a jlist * ’a jlist

let rec (|Cons|Nil|) = function

| Single x -> Cons(x, Empty)

| Join (Cons (x,xs), ys) -> Cons(x, Join (xs, ys))

| Join (Nil (), Cons (y,ys)) -> Cons(y, Join (ys, Empty))

| Empty

| Join (Nil (), Nil ()) -> Nil()

let jhead js =

match js with

| Cons (x,_) -> x

| Nil -> failwith "empty list"

let rec jmap f xs =

match xs with

| Cons (y,ys) -> Join (Single (f y), jmap f ys)

| Nil () -> Empty

let rec jlist_to_list xs =

match xs with

| Cons (y,ys) -> y :: jlist_to_list ys

| Nil () -> []

The definition of the (|Cons|Nil|) total recognizer is syntactically very close
to the corresponding view definition as proposed by Wadler [Wad87]. This is
pleasing: the recognizer being defined can be used within its own definition, and
type inference works effectively for these definitions.

5.2 XML Matching

XML is perhaps the most important structured heterogeneous data type in use
today. In this section we present an initial version of defining compositional
recognizers for fragments of XML. We focus on recognizers that traverse the
immediate structure of XML nodes, rather than query operators. We believe
this is just an initial step toward applying extensible pattern matching in this
domain, and the talented programmer is free to define suitable new recognizers,
perhaps based on advanced query tools that may be implemented by existing
XML libraries such as XLinq [MB06].

open System.Xml

open System.Collections

open System

open System.Collections.Generic

let (|Child|_|) name (x: #XmlNode) =

match x.Item(name) with



| null -> None

| res -> Some(res)

let (|Elem|_|) name (inp: #XmlNode) =

if inp.Name = name then Some(inp)

else None

let (|Attributes|) (inp: #XmlNode) = inp.Attributes

let (|ChildNodes|) (inp: #XmlNode) = inp.ChildNodes

let (|Attr|_|) attr (inp: XmlAttributeCollection) =

match inp.GetNamedItem(attr) with

| null -> None

| node -> Some(node.Value)

let parsePair (splitchars : string) (str : string) =

match str.Split(splitchars.ToCharArray()) with

| [| a; b |] -> Some(a,b)

| _ -> None

let (|Num|_|) s = try Some (Int32.of_string s) with _ -> None

let (|Float|_|) s = try Some (Float.of_string s) with _ -> None

let (|NumHex|_|) s = try Some (Int32.Parse(s, NumberStyles.HexNumber)) with _ -> None

let (|Char|_|) (s:string) = try Some (s.[0]) with _ -> None

let (|Pair|_|) s = parsePair "," s

let (|PairX|_|) s = parsePair "x" s

Example use:

open System.Xml

open XmlPatternCombinators

type scene =

| Sphere of float * float * float * float

| Intersect of scene list

let (|Vector|_|) = function

| (Attr "x" (Float x) &

Attr "y" (Float y) &

Attr "z" (Float z)) -> Some(x,y,z)

| _ -> None

let rec (|ShapeElem|_|) inp =

match inp with

| Elem "Sphere" (Attributes (Attr "r" (Float r) &

Vector (x,y,z))) -> Some (Sphere (r,x,y,z))

| Elem "Intersect" (ShapeElems(objs)) -> Some (Intersect objs)

| _ -> None

and (|ShapeElems|) inp = [ for ShapeElem y in inp.ChildNodes -> y ]



let parse inp =

match (inp :> XmlNode) with

| Elem "Scene" (ShapeElems elems) -> elems

| _ -> failwith "not a scene graph"

let inp = "<Scene>

<Intersect>

<Sphere r=’2’ x=’1’ y=’0’ z=’0’/>

<Intersect>

<Sphere r=’2’ x=’4’ y=’0’ z=’0’/>

<Sphere r=’2’ x=’-3’ y=’0’ z=’0’/>

</Intersect>

<Sphere r=’2’ x=’-2’ y=’1’ z=’0’/>

</Intersect>

</Scene>"

let doc = new XmlDocument()

doc.LoadXml(inp)

//print_endline doc.DocumentElement.Name

printf "results = %A" (parse doc.DocumentElement)

A second example is given in the appendix.

5.3 Quotations

F# allows a form of meta-programming where F# code can be reified as val-
ues at run-time and manipulated. Quasi-quotation provides a convenient means
of constructing code values; however there is no convenient solution for decon-
structing code values. Traditional pattern matching cannot be used because the
code type a abstract type. Even if it could, it is useful to have multiple different
decompositions to view code at the right level of abstraction for the analysis
being perfromed, e.g. in terms of low-level lambda abstractions or in terms of
high-level control structures.

Matching on quotations was a major consideration for the design of active
patterns, initially sparked by Grundy’s quotation matching in ForteFL [GMO06],
and Taha and Sheard’s code patterns in MetaML [TS97]. In particular, quotation
literals in F# can be used as templates which can be provided as parameters to
a parameterized matching function:

open Microsoft.FSharp.Quotations.Raw

let rec interp inp =

match inp with

| Template <@@. _ + _ .@@> (x,y) -> interp x + interp y

| Template <@@. _ * _ .@@> (x,y) -> interp x * interp y

| Int32(x) -> x

| _ -> failwith "unrecognized"

printf "res1 = %d" (interp <@@ 1+3+3 @@>)



In this example the interpretation of the “holes” in a quotation literal are deter-
mined by the parameterized matching function Template [Sym06b].

6 Implementation

In this section we look at two aspects related to the implementation of the mech-
anism described in this report: pattern match compilation and the representation
of return results.

6.1 Pattern Match Compilation

For pattern match compialtion F# uses Scott and Ramsey’s Generalized Pattern
Match Algorithm [SR00] with a simplistic left-to-right heuristic. This has proved
effective in practice. Modifying this algorithm to implement a valid interpretation
of active patterns was fairly straight-forward.

In this algorithm, the heuristic chooses a point of investigation from a collec-
tion of frontiers. A point of investigation roughly corresponds to a single switch
on an integer or tag and is represented by a path, which is a sequence of integers
roughly indicating a sub-term of the input term. From this, the frontiers are
divided into those edges that are relevant, i.e. where information from the inves-
tigation may result in the failure of the rule, and those that are tips. A decision
tree is then constructed that incorporates the test and has subtrees correspond-
ing to projecting the success/failure of the investigation through the relevant
edge. A default case is added for the tips. The process is then repeated until all
frontiers are exhausted, and match incompleteness warnings can be given if a
final “dummy” rule is ever exercised.

Modification 1: Choosing the Edge Set In pattern matching without active
patterns you can be sure that all edges with any kind of concrete pattern are
actually relevant to the investigation. With active patterns this assumption is
no longer valid. We thus modified the algorithm as follows:

– When partitioning edges, choose a prefix of relevant edges based on the point
of investigation, where all the edges are related to the same recognizer. If
the recognizer has no identity, e.g. is a parameterized active recognizer, then
only the first relevant edge is chosen.

Modification 2: Recognizer Identity and Path Identifiers The second
modification related to the fact that uses of active recognizers without identity
must be considered to have different “paths”. Consider the following:

let (|Bit|) n = let mask = 1ul <<< n in fun inp -> ((inp &&& mask) <> 0ul)

match 0b0001000100ul with



| Bit 3 true -> printfn "NO!"

| Bit 2 false -> printfn "No No!"

| Bit 2 true & Bit 3 false -> printfn "Yes indeed!"

| _ -> failwith ""

If the Bit 3 recognizer succeeds but its true sub-pattern fails then no infor-
mation is gained about the success of failure of the false sub-pattern of Bit 2
false. This is because the parameter to the recognizer is different in each case,
or, more specifically, because we don’t consider parameterized patterns to have
any kind of identity. In a naive extension of the original algorithm these would
be given identical path locations, which would be incorrect.

For this reason, the notion of path was extended so that different instances of
parameterized recognizers encountered through pattern match compilation are
allocated fresh, unique integers and these integers are used within paths.

Modification 3: Rule Chunking The extensive use of active recognizers (par-
ticularly partial recognizers) can quickly lead to significant (even exponential)
blow up in the size of decision trees [Oka98]. This is partly due to the fact that
failing sub-patterns can lead to duplications of the large frontier sets that are
used to investigate multiple rules simultaneously.

For this reason, we additionally modified Ramsey’s algorithm to abandon
the use of large frontier sets whenever partial patterns are used. That is, when
compiling N rules, we have a choice as to whether we compile all rules simulta-
neously, or one-by-one, or in chunks. We choose a prefix of rules up to the first
that uses any kind of partial pattern. This may result in active recognizers being
called more times than may be expected, but reduces code size substantially on
some real-world examples.

6.2 Representation of Return Results

Performance is not the primary focus of this report, for the following reasons:

– We believe that even a naive implementation of the constructs described here
increases expressive power sufficiently to justify their inclusion in a language.

– In practice the strong assumptions we have made with regard to recognizers
in 4.1 are sufficient to allow single calls to multi-way discrimination functions
in the majority of situations.

– Important cases such as “conversion patterns“ (i.e., recognizers such as
(|Complex|)) do not occur any overhead: they are just function calls that
can be inlined or subject to whole-program analysis.

– Prior papers in this areas have often only reported a proposed design. We
have also reported on an implementation and its use on novel real-world
examples. Reporting on performance is thus the subject for later work.

That said, we know of several techniques that should, in theory, substantially
improve the performance of the code generated for uses of recognizers but which
we have not yet implemented. In particular, one performance consideration is



the representation used for return results of recognizers. For partial recognizers
the current F# implementation uses null for a failing partial recognizer (i.e.
None is represented as null), a boxed value for a succeeding partial recognizer
(i.e. Some(1) results in a boxed integer). Single-tag total recognizers return a
simple unboxed value. Multi-tag total recognizers return a boxed tagged value
such as Choice3 1(1). Tuples in these boxed return values also currently re-
quire an extra allocation. This means the current implementation does perform
allocations on many recognizer calls.

However, an easy technique that will eliminate nearly all allocations is avail-
able to us: .NET supports type-safe structs, i.e. types whose representation is not
a heap-allocated GC pointer but rather an inline collection of values, generally
immutable and copied as needed. While the F# compiler doesn’t yet use structs
for options, choices and tuples, it is clear that these are excellent candidates to
do so. This may also bring other performance benefits to F# code.11 However
such a change must be thoroughly performance tested as it has ramifications
well beyond the scope of this report.

7 Issues and Feasible Generalizations

7.1 Types for Recognizers

The types we have given for recognizers use an encoding of anonymous unlabeled
sum-types tagged by the name Choice:

val (|Cons|Nil|) : ’a llist -> Choice<(’a * ’a llist),unit>

However, unlabeled sum types are not a particularly useful extension to func-
tional languages. It is evident that OCaml-style labeled sum types might would
be useful here:

val (|Cons|Nil|) : ’a llist -> [ ‘Cons of (’a * ’a llist) | ‘Nil ]

This raises the question: could an active pattern mechanism be built entirely
in terms of the tag information in a labeled sum type? This appears difficult
without some kind of syntactic extension, but is an open question and no doubt
an interesting one for the OCaml community.

7.2 Multi-discrimination Partial Patterns

A natural extension to the mechanisms defined in this paper is to allow partial
recognizers with multiple tags:

let (|A|B|C|_|) inp = ...

This extension is fairly straight-forward to add to the system as described. How-
ever, we have not yet found cases where this appears particularly useful.
11 The designers of Nemerle [Con06] have reported corresponding performance improve-

ments for tuples in private correspondence.



7.3 Tag-Bound Existentials and GADTs

Existentials are a natural extension to pattern matching in languages with sub-
typing and generics, e.g., the following is a natural syntax for an extension to
F# where existential types can be quantified at pattern matches involving type
tests (in this case the existentials would be witnessed by solving the type tests
w.r.t. the runtime type of the input object):

match obj with

| <’a> :? List<’a> as l -> ...

| <’a> :? ’a[] as arr -> ...

| <’k,’v> :? Dictionary<’key,’value> -> ...

This extension is not yet implemented in F#, but is implementable, by using
some of the reflection machinery of the .NET Common Language Runtime, and
there are many known examples where it would be useful.

But what of active patterns? For example, it would be reasonable to expect
recognizers that might abstract one or more of these patterns:

match obj with

| <’a> AnyListOrArray(l : ’a list) -> ...

| ...

However what is the type of AnyListOrArrray? One natural encoding is to
permit anonymous existentials as part of the return type of recognizers:

val (|AnyListOrArray|_|) : obj -?> (∃’a. ’a list)

let (|AnyListOrArray|_|) (obj) : (∃’a. ’a list) =

match obj with

| <’a> :? List<’a> as l -> Some(l)

| <’a> :? ’a[] as arr -> Some(Array.to_list arr)

| _ -> None

(Here we have assumed an extension to the type algebra of the form ∃α. tau,
τ1 -?> τ2 is used as a shorthand for τ1 -> τ2 option, and we have assumed an
implicit “pack” operation on each branch of the result of the implementation of
the active pattern).

Generalized Algebraic Data Types (GADTs) generalize existentials by al-
lowing data construction tags to existentially quantify constraints as well as
variables. Here a natural encoding is again to enrich the type system to ensure
that simple function types are rich enough to encompass these constraints. For
example, consider the following possible signature for a partial active pattern to
match “lambda” nodes in a strongly typed abstract term structure, one of the
canonical examples of GADTs [SCPD07]:

type Expr<’a> // an abstract type

val (|Lambda|_|) : Expr<’a> -?> (∃’b ’c. (’a = ’b -> ’c) => Var<’b> * Expr<’c>)



(Here we have assumed an extension to the type algebra of the form ∃ C => tau,
where C expresses equational type constraints, which are sufficient to capture
those that correspond to GADT declarations.)

While the above approach to existentials and GADTs is plausible, it is also
an intrusive addition to a STFL, especially (but not only) with regard to type
inference. For this reason it may instead be reasonable to explore non-type-based
extensions that only permit the use of existentials as part of the return type of
recognizers. This is indeed in the spirit of GADTs themselves which draw much
of their expressive power by being a limited locale for existential quantification.
The logical conclusion of this design is that recognizers have a more special status
in the language than they currently do in the design we have described. Adding
recognizers as another “kind” of value is unfortunate but not unparalleled: in
many languages there is a distinction between simple values and other syntactic
value-like elements such as object or type-class members.

7.4 Generalization to Monadic Pattern Matching

So far we have observed that ad hoc patterns are functions of type ’a -> ’b
option. The choice of the option is arbitrary and many other types could be
used. As observed by Tullsen it is possible to generalized the return type of a
pattern to anything that implements Haskell’s MonadPlus type class [Tul00].
Using a MonadPlus the “zero” operation indicates match failure and the “plus”
operation composes case alternatives in a match.

In F# syntax a monadic type for patterns would require an extension for
higher-kinded polymorphism and a suitable syntax might be:

type Pattern<’M,’a,’b> = ’a -> ’M<’b> when ’M :> MonadPlus

where the MonadPlus constraint ensured the existence of values ’M.zero, ’M.plus,
’M.bind and ’M.return. A monadic match expression matchm<ty > can then be
introduced and becomes syntactic sugar for a monadic expression which per-
forms the matching. The desugaring of a simple class of patterns is given by the
rules in Figure 4.

For our purposes the option type can be considered to be an instance of
MonadPlus. Other useful instances of MonadPlus are lazy lists for backtrack-
ing evaluation and the software transactional memory monad for transactional
evaluation [HMPH05]. For example, interpreting pattern matching under the
backtracking monad appears is useful when pattern matching encodes a series
of Prolog-style rules. Consider a function that wants to search a list to find zero
to three elements that match three given criteria, returned as a lazy list:

matchm<LazyList> l with

| P1 x1 -> x1

| P2 x2 -> x2

| P3 x3 -> x3



Match expressions:

[[matchm < M > e with rules]] = (let t=e in [[rules]]M,t)

Rules:

[[p->e|rules]](M,t) = M.plus [[p]]M,t,e [[rules]]M,t

[[∅]](M,t) = M.zero

Patterns:

[[C p]]M ;t;e = M.bind (C t) (fun t′ − > [[p]]M ;t′;e)

[[x]]M ;t;e = let x=t in M.return e

where each t is a fresh variable.

Fig. 4. Monadic desugaring of simple patterns

The monadic interpretation of the match syntax would now yield a lazy list
containing 0, 1, 2 or 3 elements.

Transactions The order of side-effects in a desugaring of moadic pattern match-
ing can be well-specified. As such, one might be tempted to exploit the possibility
of side-effects in pattern recognizers to perform shared-state concurrent opera-
tions. For example consider a pattern that extracts a value from a Haskell-style
MVar, blocking if necessary.

type MVar<’a>

val (|ReadMVar|) : MVar<’a> -> ’a // blocks if necessary

let f mv1 mv2 =

match mv1, mv2 with

| ReadMVar x, ReadMVar 0 -> x

| _, readMVar y -> y

If initially mv1 contains 1 and mv2 contains 2, then evaluating the first match
case will remove these values from mv1 and mv2 and subsequently fail because
2 <> 0. When the second cases is evaluated mv2 will be empty causing the
pattern to block. What is needed is a way rollback the effects of a failed cases
before the succeeding case is executed.

A way to do this is using software transactional memory (STM). In Haskell,
STM can be exposed through a MonadPlus [HMPH05]. Let’s assume a language
is extended with monads, active patterns and a monadic pattern matching inte-
gration of the two. Then STMs could be used in monadic pattern matching. The
zero operation of STM causes a transaction to potentially block and re-execute



and the plus operation rolls back the effects of the first transaction if it fails and
then executes the second.

val (|ReadMVar|_|) : MVar<’a> -> STM<’a>

let f mv1 mv2 =

atomically (matchm<STM> mv1, mv2 with

| ReadMVar x, ReadMVar 0 -> x

| _, ReadMVar y -> y)

The monadic interpretation of this code would be semantically equivalent to the
Haskell code

f mv1 mv2 = atomically $

do x <- readMVar mv1; y <- readMVar mv2; guard (y==0); return x ‘mplus‘

do y <- readMVar mv2; return y

8 Related Work

Since this work first began in mid-2006 there has been a mini-explosion in dis-
cussions, designs and prototypes of view-like mechanisms in functional program-
ming languages [EOW06,Ros07b,Joc07,Jam07,Sym06a]. Our represents a novel
contribution to this body of work and wee believe it achieves the best over-
all functionality for a simple extension to the core fundamental statically-typed
functional programming model yet proposed.

We can see this as follows. Peyton Jones et al. have started a lengthy and
useful design note on a possible extensible pattern-matching design for Haskell
[Joc07]. In this discussion Peyton Jones highlights five features that a view-
like mechanism may have in Haskell: the value input feature, implicit maybes,
transparent ordinary patterns, nesting and integration with type classes, the last
of which can be seen as a Haskell equivalent of views as first-class values. In the
context of F#, the design described in this report effectively has all five of these
features, which correspond as follows:

Peyton Jones Classification Our Terminology
Value input feature Parameterized recognizers
Implicit maybes Partial recognizers
Transparent ordinary patterns Total recognizers
Nesting Nesting of active patterns
Integration with type classes Recognizers as first-class values

To our knowledge other proposed designs in this area don’t achieve this combi-
nation of features, at least with a single, simple and consistent extension to the
language.

Two other interesting recent points in the design spectrum for languages
close in spirit to F# are Rossberg’s views and ad hoc recognizers for HamletS



[Ros07b], and Emir and Odersky’s ad hoc recognizers (“unapply” or “extractor”
methods) for Scala [EOW06]. Ignoring differences between object-oriented and
functional syntax, the Scala proposal essentially matches the F# design for ad
hoc pattern matching, though the potential to combine the mechanism with
the rich object constraint and composition system of Scala opens interesting
possibilities. Rossberg’s proposal introduces views as a new type-like definition
construct, as in Wadler’s initial proposal for views. Various functions can be used
as partial recognizers. In some ways the proposal is richer (e.g., views are named
and view aliases are supported), in other ways it is weaker (e.g., the introduction
of views as a new kind of semantic element complicates the language). We are
grateful to authors of both of these papers for productive conversations and
insights during the course of this work.

The discussion by Peyton Jones et al gives a good review of related work
in this area, as does the recent paper by Emir et al [Joc07,EOW06]. Many
previous proposals to tackle the problem of pattern matching and abstraction
have concentrated primarily on the supporting the definition of either views or
partial patterns. Notable amongst the proposals for views are Wadler’s origi-
nal proposal for views for Haskell and related extensions and design propos-
als [Wad87,BC93], Okasaki’s proposal for Standard ML [Oka98]. The notion
of partial patterns has come up in a number of settings with slight variations
[GPN96,Erw97,EJ00]. Fähndrich at al. have looked at statically checked defini-
tions of patterns in terms of existing patterns (as opposed to defining views by
arbitrary functions) [FB97]. Using extensible patterns as first-class values was
first proposed by Tullsen [Tul00], where he also observed the monadic general-
ization we consider in 7.4, though not its potential application to transactions.

9 Summary

This report has presented the first design for extensible pattern matching to
incorporate both ad hoc pattern matching and total decompositions within the
context of a regular, simple and lightweight extension. We have given a descrip-
tion of the language extension along with numerous motivating examples. Finally
we have looked at how this feature interacts with other reasonable and related
language extensions.
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A The System.Type Example without Active Patterns

Here is the formatType example from Section 3.2 without the use of active
patterns:

open System

let rec formatType (typ : Type) =

if typ.IsGenericParameter then

sprintf "!%d" typ.GenericParameterPosition

elif typ.IsGenericType or not typ.HasElementType then

let args = if typ.IsGenericType then typ.GetGenericArguments() else [| |]

let con = typ.GetGenericTypeDefinition()

if args.Length = 0 then

sprintf "%s" con.Name

else

sprintf "%s<%s>" con.Name (formatTypes args)

elif typ.IsArray then

sprintf "Array(%d,%s)" (typ.GetArrayRank()) (formatType (typ.GetElementType()))

elif typ.IsByRef then

sprintf "%s&" (formatType (typ.GetElementType()))

elif typ.IsPointer then

sprintf "%s*" (formatType (typ.GetElementType()))

else failwith "MSDN says this can’t happen"

and formatTypes typs = String.Join(",",Array.map formatType typs)

In comparison, here is the code assuming the definition of the active pattern
shown in Section 3.2.

let rec formatType typ =

match typ with

| Named (con, []) -> sprintf "%s" con.Name

| Named (con, args) -> sprintf "%s<%s>" con.Name (formatTypes args)

| Array (arg, rank) -> sprintf "Array(%d,%s)" rank (formatType arg)

| Ptr(true,arg) -> sprintf "%s&" (formatType arg)



| Ptr(false,arg) -> sprintf "%s*" (formatType arg)

| Param(pos) -> sprintf "!%d" pos

and formatTypes typs = String.Join(",",Array.map formatType typs)

B A Second Example of Matching XML with Active
Patterns

Multiple examples of a technique often help to clarify the difference between
what is general and what is application-specific, and to reveal recurring patterns.
Below we show a second example of matching in XML using the recognizers
defined in 5.2.

type GlyphInfo =

bitmapID : int

originX : int

originY : int

width : int

height : int

advanceWidth : int

leftSideBearing : int

// Match the attributes of a glyph element

let (|GlyphElem|_|) inp =

match inp with

| Attributes

(Attr "ch" (Char ch) &

Attr "code" (NumHex code) &

Attr "bm" (Num bm) &

Attr "origin" (Pair (Num ox,Num oy)) &

Attr "size" (PairX (Num sw,Num sh)) &

Attr "aw" (Num aw) &

Attr "lsb" (Num lsb)) ->

Some bitmapID = bm; originX = ox; originY = oy;

width = sw; height = sh; advanceWidth = aw;

leftSideBearing = lsb

| _ -> None

// Look for a number of glyph elements

let (|GlyphElems|) (inp: #XmlNode) = [ for GlyphElem y in inp.ChildNodes -> y ]

// Match the contents of a bitmap element

let (|BitmapElem|_|) inp =

match inp with

| Attributes

(Attr "id" (Num id) &



Attr "size" (PairX (Num x,Num y)) &

Attr "name" name) ->

Some (id , filename = name; x = x; y = y)

| _ -> None

// Look for a number of bitmap elements

let (|BitmapElems|) (inp: #XmlNode) = [ for BitmapElem(y) in inp.ChildNodes -> y ]

// Wrap it up by looking for the ’font’ element in the top

// structure of the input XML

let parse inp =

match inp with

| Elem "font" (Attributes (Attr "base" (Num b) & Attr "height" (Num h)) &

Child "bitmaps" (BitmapElems bitmaps) &

Child "glyphs" (GlyphElems glyphs) ) ->

b,h,bitmaps, glyphs

| _ -> failwith "not a font file"

// Test the program!

let inp =

"<?xml version=’1.0’ encoding=’utf-8’ ?>

<font base=’20’ height=’26’>

<bitmaps>

<bitmap id=’0’ name=’comic-0.png’ size=’256x256’ />

</bitmaps>

<glyphs>

<glyph ch=’ ’ code=’0020’ bm=’0’ origin=’10,10’ size=’1x27’ aw=’5’ lsb=’0’ />

</glyphs>

</font>"

let doc = new XmlDocument()

doc.LoadXml(inp)

printf "results: %A" (parse doc.DocumentElement)


