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ABSTRACT 

Current large-scale interactive web mapping services such as 

Virtual Earth and Google Maps use large distributed systems for 

delivering data.  However, creation and editorial control of their 

content is still largely centralized.  The Composable Virtual Earth 

project’s goal is to allow seamless interoperability of geographic 

data from arbitrary, distributed sources. 

MapCruncher is a first step in this direction.  It lets users easily 

create new interactive map data that can be layered on top of 

existing imagery such as road maps and aerial photography.  

MapCruncher geographically registers and reprojects the user’s 

map into a standard coordinate system.  It then emits metadata 

that makes it easy for anyone on the Internet to find the published 

map data and import it.  Interactive maps them become 

distributed, seamlessly composable building blocks – similar to 

images in the early days of the Web. 

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications – spatial 

databases and GIS; D.2.6 [Software Engineering]: Programming 

Environments – graphical environments; D.2.12 [Software 

Engineering]: Interoperability; G.4 [Mathematical Software]. 

Keywords 

Interactive maps, composition, mashups, geographic coordinate 

systems, graphical interactive georeferencing, map projections, 

approximate reprojection, decentralized publishing, image tiling. 

1. INTRODUCTION 
In the relatively short time since the introduction of online 

mapping sites like Google Maps [8] and Microsoft Virtual Earth 

[16], hundreds of user-created “mashups” have appeared.  These 

mashups cover a wide diversity of subjects.  For example, Seattle 

Bus Monster [19] plots public transportation routes in Seattle; 

chicagocrime.org [2] highlights dangerous areas of Chicago; 

RunwayFinder [18] summarizes weather and airspace surrounding 

general aviation airports; housingmaps.com [11] shows real estate 

prices.  These specialized sites each display the data from their 

particular application domain on top of maps and aerial imagery 

supplied by Google or Microsoft. 

While useful individually, mashups can be far more useful when 

integrated with each other.  Today, however, mashups are largely 

independent.  For example, to find cheap real estate in a low-

crime neighborhood, or find the public transportation near a 

general-aviation airport, users must visit each mashup individually 

and manually integrate the results.  The goal of Microsoft 

Research’s Composable Virtual Earth (CVE) project is to find 

new ways of constructing geographic Web mashups so that they 

can seamlessly interoperate. 

Existing mashups are implemented largely in imperative code – 

JavaScript that runs in the client.  This design gives site designers 

enormous flexibility, which led to the explosion of creative and 

innovative mashups.  Well-known standards for describing 

geographically-tagged points, lines, and raster graphics had 

already existed for many years (e.g., GML [17], GeoRSS [6]); 

however, the sudden appearance of the mashups suggests many 

applications are not well-served by these standards.  The 

combination of HTML and JavaScript allowed developers to go 

beyond creating layers, to create applications.  In other words, 

mashup developers are using imperative code to customize exactly 

how their application operates, rather than simply creating layers 

declaratively whose user interactivity would be limited to “on” 

and “off.” 

A key design goal of CVE is to offer a mashup framework that is 

sufficiently structured to enable composition, yet sufficiently 

flexible to admit innovation. This interoperability balancing act is 

common in distributed systems design, from domain-specific 

frameworks such as the Flux OSKit [4], x-Kernel [15], and 

stackable file systems [9], to application-agnostic schemes such as 

Placeless active properties [3]. We plan to exploit the 

geographical domain constraints to best achieve this balance. 

1.1 MapCruncher 
As a first step, we created MapCruncher, a tool that allows users 

to add custom raster overlays onto the existing road and aerial 

imagery provided by Virtual Earth or Google Maps.  Overlays are 

typically detailed maps, such as a bicycle route map, building 

floor plan, or campus map.  The resulting web site is an 

interactive web map that features both the user’s maps and the 

standard imagery.  Like the underlying maps, user maps are pre-

rendered into small image tiles at a variety of zoom levels, 

allowing the client to efficiently request the portions of a large 

virtual image that are needed for display. 

MapCruncher first assists in registering the foreign map into the 

same (Mercator) coordinate system used by existing online map 

sites.  Users select correspondence points between their own maps 

and existing maps, using road intersections or other recognizable 

landmarks.  Once enough points are selected, MapCruncher 

estimates the transformation from the original map’s coordinate 

system into Mercator by finding the best fit coefficients of a 

second-degree polynomial; while inexact, the error is typically 

small enough not to affect the results.  MapCruncher then 

reprojects the original map and renders correctly registered and 

zoomed image tiles that can be seamlessly integrated with existing 

imagery. 



Mashups created with MapCruncher do not restrict the 

developer’s freedom to write arbitrary JavaScript that customizes 

the experience of their end-users, satisfying one of our design 

constraints for CVE.  However, MapCruncher also emits metadata 

about the mashup, such as its geographic bounds, the file naming 

scheme for the tiles, and a brief description of the data as entered 

by the user.  Because this data is semantically meaningful, it 

facilitates later discovery and integration of the imagery into other 

applications.  In addition, much of this data is encoded as 

specially constructed strings that enable ordinary web search 

engines to find mashups matching geographic criteria.  This 

combination of composability and discoverability takes us a step 

closer to our goal of a system that is capable of more seamless 

integration of geographic data on the web. 

In the next section, we briefly describe the history of geographic 

mashups on the web.  In Section 3, we review some of the 

difficulties in creating mashups using raster overlays.  Section 4 

describes approximate reprojection, the central technique used by 

MapCruncher to simplify the creation of raster mashups.  In 

Section 5, we describe how this idea can be used to efficiently 

generate a database of image tiles.  We review deployment issues 

and briefly describe a few sample applications in Section 6.  

Finally, we conclude in Section 7 with some thoughts on how 

MapCruncher might lead us towards an integrated and 

composable Virtual Earth. 

2. INTERACTIVE WEB MAPS AND THE 

RISE OF MASHUPS 
Online mapping services have existed for years.  Until recently, 

they all had the same general architecture: maps would be custom-

rendered from the underlying data on demand, in response to 

users’ viewing requests.  The only way to move the viewport was 

by clicking discrete buttons (e.g., “north”).  The web service 

would then render a new custom map in a slightly different 

position. 

Starting in 2005, Google, Microsoft, Yahoo!, and MapQuest 

began to offer a new class of online, interactive maps.  These map 

services pre-rendered a standard set of map tiles covering the 

entire coverage area.  A sophisticated JavaScript program running 

in the user’s browser dynamically downloads the set of tiles that 

cover the user’s desired map viewport.  The client positions and 

crops those tiles on the screen to produce a map with exactly the 

desired size and extent. 

Interactive maps have several advantages over their on-demand 

predecessors.  Perhaps most importantly, user interaction is 

significantly more intuitive.  Because the final step of assembling 

tiles into an image is done on the client, it’s possible to support 

fluid panning of a seemingly infinitely-sized image.  Pre-rendered 

services typically have higher quality images as well; because tiles 

are no-longer rendered in realtime, slow enhancements such as 

anti-aliased fonts can be used. 

Shifting so much of the map’s implementation to the client also 

had an unexpected effect.  Soon after the release of Google Maps 

(the first such public service), web hackers learned to create 

Google Maps mashups.  A mashup is a combination of maps with 

other geographically interesting data, such as those listed in the 

Introduction.  Geographic mashups gained popularity quickly.  

Most major online mapping sites released official APIs that 

allowed web developers to create mashups “legally.” 

For the most part, geographical mashups so far have consisted of 

drawing fairly simple shapes on top of the online maps—for 

example, layers of pushpins (houses for sale) or polylines (bus 

routes).  Largely ignored, however, is the practice of 

superimposing an entire image layer onto the underlying imagery.  

We speculate that this is because raster overlays are difficult to 

construct, as we will explore in the next section. 

The difficulty in constructing raster overlays is unfortunate, 

because they can be quite useful.  Figure 1 shows an example.  

The left pane shows the image of the University of California, Los 

Angeles as seen in either Google Maps or Microsoft Virtual Earth.  

The aerial imagery shows a densely built area, but the street atlas 

has no data describing any of the buildings or the campus’ 

internal roads.  However, UCLA publishes a detailed campus 

map.  The right pane of Figure 1 shows the same area after we 

used MapCruncher to generate a raster overlay.  The map can be 

panned and zoomed, just as was possible before the overlay was 

added. 

The main contribution of MapCruncher is that it makes a task 

accessible to casual users that had typically been the domain of 

geographic-information-systems (GIS) professionals.  

3. CHALLENGES TO THE CASUAL MAP 

MASHER 
In this section, we consider the difficulties encountered in taking 

an arbitrary map—say, a PDF map of a university campus—and 

 

 Figure 1.  (left) Base imagery of the UCLA campus  (right) UCLA’s campus map superimposed, using MapCruncher 



turning it into an interactive map layer.  That is, we’d like to 

superimpose our map onto the road and aerial photography 

already provided by online mapping sites, such that the two maps 

can be viewed together, as in Figure 1. 

Map overlays have existed for as long as maps have existed, so it 

may seem surprising that a new tool was necessary to accomplish 

a seemingly well-known task.  In fact, our original intent was not 

to create a tool, but to create a mashup using existing tools.  In 

this section, we describe some of the hurdles we encountered and 

how they motivated us to build a new tool to overcome them. 

3.1 Reprojection of Unknown Map 

Projections 
The Earth is round, but maps and the computer screens that 

display them are flat.  Maps that depict very small extents of the 

Earth relative to their level of detail, such as building blueprints, 

can make the simplifying assumption that the Earth is as flat as 

the map that depicts it. However, maps of larger extent can not 

ignore the curvature of the Earth.  A cartographer must therefore 

select a method to convert the position of points on the three-

dimensional Earth’s surface to the two-dimensional map.  The 

mathematical functions used for this purpose are called map 

projections [20]. 

One spatial relationship or another is lost whenever the three-

dimensional Earth is projected into a two-dimensional 

representation.  Consequently, an astonishing variety of map 

projections have been invented.  Each projection makes different 

tradeoffs, typically maintaining high fidelity in some aspect of the 

Earth’s representation (e.g., the shape of objects) by giving up 

fidelity in some other aspect (e.g., apparent relative sizes of 

objects). Cartographers select the best projection based on a 

map’s intended use.  Most map projections are parameterized, to 

enable them to be fine-tuned to the location, size, and aspect ratio 

of the extent of the map. 

For two maps to be superimposed correctly, as is our goal, they 

must both be drawn using the same projection.  In the world of 

traditional GIS systems, this problem is usually easy to solve.  

Most spatial data comes annotated with metadata describing 

which projection was used to draw it, along with the projection’s 

parameters.  This information can be used to perform a 

mathematically exact transformation of a map into any other 

projection. 

For casual mashups, the situation is more difficult.  The vast 

majority of maps available on the Web have been stripped of the 

metadata that describes the map projection.  For maps that do 

have metadata, it is often in a format that can not be automatically 

parsed—for example, a text file describing the projection in 

English.  Consequently, it is nearly impossible to precisely or 

automatically reproject a typical map found on the Web. 

This is a problem for a user who wishes to create an overlay.  

Most maps are not drawn using the same projection as is used by 

the major interactive online map services.  Microsoft’s and 

Google’s mapping sites, for example, use the Mercator 

Projection.  (Mercator is used because it is conformal.  Conformal 

projections do not distort features’ shapes, making it possible to 

overlay street maps on undistorted aerial photography.)  In 

contrast, most other maps are not expected to be used as overlays 

for photographs, so instead use one of the many projections that 

produce less scale distortion.  It is hard to guess exactly which 

projection a map uses by inspection because there are so many 

projections.  For example, the USGS1 produces maps depicting 

each of the 50 United States using custom projection parameters 

tailored to each state. 

Unfortunately, this problem is not well solved by any of the 

numerous tools available that aid in the production of map 

overlays.  After a week or two of tinkering with various test maps, 

we concluded the existing tools were all either too simple or too 

complex.  The simple tools were limited to linear transformations 

such as scaling, translation and rotation.  Our test maps did not 

use the Mercator projection, so the simple tools could not warp 

them sufficiently to produce good alignment at all points.  The 

complex tools could perform arbitrary reprojections, but required 

complete specification of the projection, which was unavailable 

for our test maps. 

MapCruncher addresses this problem using approximate 

reprojections.  As we will see in Section 4, MapCruncher allows 

users to point out correspondences between the two maps, then 

estimates how to reproject the user’s map into Mercator without a 

model of the source map’s projection.  Although less accurate 

than an exact reprojection, this design choice fills a useful niche 

in between the low- and high-end. 

3.2 Management of Large Datasets 
The simple, intuitive pan-and-zoom interface provided by online 

maps makes it easy to forget that they are providing access to 

immense repositories of data.  Microsoft’s Virtual Earth platform 

has nearly 200 terabytes (1014 bytes) of imagery.  While a casual 

user is unlikely to ever create such a large dataset, we’ve found 

that even modest maps can overwhelm normal desktop image 

processing tools. 

For example, consider the map of neighborhood bicycle routes 

produced by King County, Washington.  Two of the authors 

commute to work by bicycle, so this map was of particular 

interest.  We tried to overlay it on several interactive maps 

(Google Maps [8], Google Earth [7], and Microsoft Virtual Earth 

[16]) using previously existing tools.  All of them required that we 

provide the overlay as a single rasterized image (e.g. a PNG).  

The 2005 edition of the King County bicycle map is a 30”x36” 

poster.  If rendered at a zoom level large enough that its smallest 

features are easily readable, it is a 3-gigapixel image.  Despite 

considerable effort, we could not find a PDF rendering program 

under Windows or Linux capable of producing an output image of 

that size.  Their failure modes were diverse and often amusing.  

Some ran out of RAM (3GB was available). Others filled the disk 

with temporary files.  Some simply froze the computer. 

Even if we had we succeeded in creating such a large image from 

our source PDF, other roadblocks would have awaited us.  Similar 

limitations existed in the tools available both for registration of 

the image to a reference map and cutting it into browser-

compatible 256x256 pixel tiles.  Our early failure in the seemingly 

simple task of creating a bicycle-map overlay was among our 

motivations to write MapCruncher.   

                                                                 

1 The United States Geological Survey (USGS) is the official 

mapping agency for the United States. 



MapCruncher was designed with enormous output images in 

mind.  As we will describe in Section 5, our tool uses the same 

strategy as the large interactive map sites: instead of producing a 

single image, MapCruncher renders a large number of small 

(256x256) image tiles.  This allows browsers to navigate through 

large custom overlays just as they do the underlying road maps 

and aerial photography: efficiently downloading just the sub-

images they need, on-demand.  In contrast, most other overlay 

generators that require the user download the entire overlay image 

before displaying any of it.  This is impractical for our 3-gigapixel 

test map. 

MapCruncher also handles large source maps gracefully 

generating each 256x256 tile individually, directly from just the 

portion of the source map that it requires.  Again, this is in 

contrast to other tile generators that require the entire source map 

to be rendered in advance, even though the image may be giga- or 

even tera-pixels in size. 

3.3 Mashing Without Programming 
In the earliest days of the Web, content production was an 

engineering discipline.  Writing HTML is similar in some ways to 

computer programming.  Like programming, it is inaccessible to 

people who do not happen to be experts in the field – that is, 

inaccessible to most people who want to create content.  Various 

HTML authoring tools quickly appeared, making it easier for non-

experts to write web pages without needing an intimate 

understanding of the underlying technology. 

The situation today is similar with the creation of mashups, both 

geographic and otherwise.  They are difficult to create without 

first learning JavaScript, HTML, XML, esoteric APIs, map 

projections, and geographic coordinate systems.  Our first attempt 

at creating a bicycle-route mashup was slowed by the requirement 

we learn many new disciplines, from web APIs to map projections 

to online maps’ coordinate systems and naming schemes. 

One of our motivations for writing MapCruncher was to make 

geographic mashups accessible to non-experts – including people 

who would not have been able to create a mashup without it.  As 

we will see in Section 6, MapCruncher lets beginners create 

point-and-click mashups, while still allowing advanced users to 

customize arbitrarily. 

4. APPROXIMATE REPROJECTION 
In this section, we describe how MapCruncher reprojects (changes 

the shape of) and registers (correctly positions) the user’s map 

such that it correctly overlays the existing Mercator-projected 

maps and aerial photography. 

MapCruncher differs from traditional GIS systems, which 

generally perform mathematically exact map reprojections.  GIS 

software usually includes a large library of commonly used 

projection families; the user is asked to select the one that was 

used to draw the source map.  The user must then enter the 

numerical parameters that specify the exact projection.  The 

nature of these parameters depends on the projection. 

Unfortunately, as we described in Section 3.1, most maps used by 

our target audience have unknown projections.  A user who is not 

a GIS expert may not know even what a projection is.  

Consequently, we designed MapCruncher to estimate the 

transformation.  First, we ask the user to identify some landmark 

that can be found both on the user’s map and also on the Virtual 

Earth map or aerial imagery; we call this identification a 

“correspondence.”  After obtaining several correspondences, we 

find the coefficients to a polynomial function that best fits them.  

A transformation with a 2nd-degree polynomial can look very 

similar to the transformation from many projections into 

Mercator. 

“But wait!” a GIS professional might insist.  “Polynomials may 

look similar to the right answer, but to reproject correctly, you 

need trigonometry.  And asking for user input by pointing out 

map landmarks is horribly prone to error!”  This is true – and the 

users who have spatial data annotated with all the metadata 

required to do an exact transformation are likely to use GIS tools, 

not MapCruncher.  While not exact, we’ve found polynomials 

produce excellent results in a wide variety of maps. By analogy, 

the existence of AutoCAD does not obviate the value of Microsoft 

Paint. 

In Section 4.1, we describe the process of gathering enough data 

from the user to reproject the user’s map.   In Section 4.2, we 

describe how MapCruncher uses that input to produce a usable 

map overlay. 

4.1 Georeferencing 
The first step in creating an overlay with MapCruncher is 

specifying a number of correspondence points between the user’s 

map (the “source map”) and the existing road maps and aerial 

photography (the “reference map”).  Because the reference maps 

are, themselves, already registered to the Earth’s coordinate 

system2, each correspondence identifies the real latitude and 

longitude of a point on the source map. 

MapCruncher provides a simple interface for specifying 

correspondence points.  The MapCruncher GUI, shown in 

Figure 2, has two viewing panes.  The source pane displays the 

source map, which can be panned and zoomed to arbitrary 

locations and zoom levels.  The reference pane displays the 

reference map, using imagery from Microsoft Virtual Earth.  The 

                                                                 

2 Specifically, the “WGS84” datum. 

source map 

crosshairs 
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Figure 2. Establishing a correspondence between a source 

map and the reference map 



reference map can be panned and zoomed independently of the 

source map. 

The user employs the two panes to find a location on the source 

map and a location on the reference map that visually correspond 

to each other.  Any landmark that appears in both maps can be 

used as a correspondence.  For example, in Figure 2, we are 

registering a building floor plan to Virtual Earth’s aerial 

photograph of the same building.  In this example, the corners of 

the buildings are readily visible in both views and make excellent 

references for a correspondence.  For some source maps, it may be 

more convenient to use Virtual Earth’s road-map view instead of 

aerial photography.  Street intersections make excellent 

correspondences for many maps. 

Each pane includes crosshairs that identify the center of the pane.  

The user indicates a location by panning the image until a feature 

is under the crosshairs.  Once the same feature is under the 

crosshairs in both panes, the user clicks a button labeled “Add 

Point”.  This process is repeated until there are enough 

correspondences.  In practice, between two and twenty are 

required, depending on the source map. 

We discovered that in maps that cover a large geographic extent, 

establishing 20 correspondences can be time-consuming.  To 

speed the process, MapCruncher can helpfully guess the spot on 

the reference map that corresponds to an arbitrary source map 

point.  As soon as the first two correspondences are defined, the 

user can “lock” the views of the source and reference maps 

together.  When one locked map is panned or zoomed, the other 

follows suit. 

With just two or three points, the lock is based on a poor 

approximation, but it is usually good enough that it greatly assists 

the user in establishing additional correspondences. Using locked 

views, the user can zoom rapidly to a new location in the source 

map, and the reference map follows along. Often, only a little 

nudging of the (unlocked) reference map is required to find the 

exact matching point.  Thus, the third and following 

correspondences in a mashup become much less tedious to define. 

As each new point is added, the reprojection approximation 

improves.  

4.1.1 Error display 
Sometimes, the user accidentally establishes a correspondence 

between points on the source and reference maps that do not 

actually correspond. A common instance is an “off-by-one-block” 

error (see Figure 3). 

 

The reprojection process will dutifully attempt to distort the 

source map to satisfy the erroneous correspondence. However, if 

the reprojection is overconstrained and there are enough correct 

correspondences, the result will mostly respect the majority.  

MapCruncher uses the distance between the reprojected point and 

the user-placed point to find outliers.  It computes the magnitude 

of disagreement for each correspondence, sorts by decreasing 

disagreement, and presents the list to the user (see Figure 4). 

The observed amount of disagreement provides the user with a 

quick suggestion of which points might have been placed 

incorrectly.  The user can then revisit the top few “suspicious” 

correspondences to ensure they’re in the right place. 

As an additional aid to the user, MapCruncher plots a vector from 

where the user placed a correspondence point towards where the 

majority suggests the point should have been placed (see 

Figure 5). In this case, the correct source map position (left side) 

corresponding to the marked reference map position (right side) is 

one block south of the point selected by the user. The 

disagreement vector points south, suggesting “perhaps the point 

belongs somewhere down there.” 

4.2 Reprojection 
After the user has created correspondences, the next step is to 

generalize them, relating the entire source map to global 

coordinates. Mathematically, we need to produce a function that 

captures the relationship between image coordinates on the source 

map and image coordinates of the Mercator-projected reference 

map. 

 

 Figure 4. Correspondences sorted by disagreement  

 Figure 3. Establishing a correspondence between a source 

map and the reference map 

 

 Figure 5. Disagreement vector points toward likely correct 

location.  



The mathematically exact relationship between two maps is 

determined by (1) the projection of each map and (2) the 

parameters of that projection. The projection of the reference map 

and its parameters are known (in our case, Mercator). Therefore, 

one possible approach (which we do not employ) is to try to fit 

various selections of projection and parameters to the user-entered 

correspondence data to discover a best fit. Given the fitted model 

for the source map projection and the known reference projection, 

the function is determined. 

Unfortunately, the set of projections in which source maps may be 

drawn is quite large, and the process of fitting parameters to each 

projection is diverse and involved. An alternative approach that 

we use in our application is to ignore the precise projections, and 

instead use an approximation to model the entire class of potential 

reprojections. 

Like a projection, an approximate reprojection is a class of 

functions selectable by parameters. MapCruncher includes two 

classes of reprojections: (1) affine reprojections, including both 

general affine reprojections and the restricted subclass of rigid 

reprojections, and (2) bivariate polynomial reprojections, 

specifically the subclass of quadratic reprojections.  These will be 

discussed in the following sections. 

4.2.1 Affine reprojection 
The affine reprojection is a linear relationship between the source 

and reference coordinate systems: 

sx = c00rx + c01ry + c02 

sy = c10rx + c11ry + c12 

An advantage of the affine reprojection is that it has only six 

parameters, which can be inferred with as few as three 

correspondences. (Each correspondence provides two constraint 

equations, one in x and one in y.)  In Section 4.2.5, we discuss 

how these parameters are estimated. 

A limitation of affine reprojection is that it preserves straight 

lines. If the source map is in, for example, a conic projection, then 

exact reprojection will change straight lines in the source map into 

curved lines in the reference projection. Affine reprojection 

cannot produce this effect, and will therefore introduce errors into 

maps where this effect is noticeable. 

4.2.2 Rigid reprojection 
A restricted subclass of affine reprojection is rigid reprojection. A 

rigid reprojection constrains the affine projection to only allow 

translation, scaling, and rotation, eliminating asymmetric scaling 

and skew. If both source map and reference map obey conformal 

projections (a common property which is true of Mercator), then 

the best affine projection will always be rigid. 

The advantage of a rigid reprojection is that it has only four 

degrees of freedom instead of six, and can thus be determined 

with only two user-provided correspondences rather than three. 

MapCruncher includes a simple mechanism by which the 

implementation of affine reprojection may be reused to implement 

rigid reprojection.  As described above, affine reprojection 

requires three correspondences, whereas rigid reprojection 

requires only two.  MapCruncher synthesizes a third 

correspondence and uses the resulting three correspondences to 

solve for the affine reprojection parameters as described above. 

Suppose we have two correspondences A and B, each comprised 

of points (As,Ar) and (Bs,Br) on the source and reference maps, 

respectively. To synthesize the third correspondence, we find on 

each map a point C that forms a right isosceles triangle with A 

and B. 

4.2.3 Quadratic reprojection 
To accommodate maps where the constraints of affine 

reprojection introduce significantly visible error, we also provide 

polynomial reprojection, in particular the subclass quadratic 

reprojection. A quadratic reprojection takes the form: 

sx = c01rx
2
 + c01rxry+ c02rx + c03ry

2
 + c04ry + c05 

sy = c11rx
2
 + c11rxry+ c12rx + c13ry

2
 + c14ry + c15 

By introducing terms of higher degree than the linear terms of 

affine reprojection, the quadratic reprojection can better 

approximate an exact reprojection, including some curvature. The 

curvature is still not perfect, because exact reprojection generally 

involves trigonometric functions rather than polynomials. In 

practice, however, we have found that the quadratic reprojection 

usually suffices.  For most source maps, reprojection error is 

dominated by sources other than the limitations of our quadratic 

model. 

The disadvantage versus affine of quadratic reprojection is that it 

requires six user-entered correspondence points to completely 

constrain its parameters.  These parameters are inferred in the 

same manner as those for affine reprojection, as discussed in 

Section 4.2.5. 

4.2.4 Higher-degree polynomials 
Of course, the technique used for quadratic reprojections can be 

extended to polynomials of higher degree. We have found in 

practice that quadratics are sufficient for most applications. 

Higher degree polynomials might better approximate the exact 

 

 

 Figure 6. Reprojecting from a conic projection requires 

bending straight lines.  



trigonometric projection for some maps where curvature is 

exaggerated, but we have only rarely encountered such situations. 

The top image In Figure 6 shows a source map in conic 

projection.  The bottom image shows the map reprojected into 

Mercator, based on eleven manually identified correspondences. 

Because the image covers a large longitudinal extent, its curvature 

is noticeable in the reprojection.  Even in this extreme case, the 

quadratic reprojection is sufficient for the scales of interest. 

4.2.5 Parameter fitting and Error Minimization 
The preceding subsections describe formulas and their parameters, 

but not how the parameters are determined. If a user provides the 

exact number of correspondences necessary for the reprojection 

(three correspondences for affine or six correspondences for 

quadratic), the parameter values can be determined with a simple 

matrix inverse. The resulting reprojection will place the specified 

correspondence points of the reprojected map at the exact 

locations on the reference map that the user has identified. 

A user may choose to provide more correspondence points than 

strictly necessary. There are several reasons for this: The user may 

be concerned about the possibility of errors in the source map; the 

user may have some uncertainty about which locations in the 

source map correspond to which locations in the reference map; 

or the user may be unsure of where points should be optimally 

placed to minimize distortion of the reprojected map.  When 

additional correspondences are specified, it is not generally 

possible to satisfy all correspondences simultaneously.  Instead, 

MapCruncher produces a reprojection that places the specified 

correspondence points of the reprojected map at locations nearby 

those on the reference map that the user has identified.  In 

particular, it attempts to minimize the mean squared distance 

between the reprojected correspondence points and the reference 

points.  In other words, the parameters are determined using a 

linear least-squares fit. In practice, our system employs singular 

value decomposition (SVD) [1] to implement the fitting 

procedure. 

4.2.6 Automatic selection 
MapCruncher can reproject a source map with as few as two 

correspondence points established, using rigid reprojection. When 

a third point is added, the application begins using a general 

affine reprojection. As more points are added, the approximation 

is improved by using parameter fitting to average out error. Once 

there are at least n correspondences, our application switches to a 

quadratic reprojection. 

The minimum value of the threshold n is six, since that many 

correspondences are required to determine a quadratic 

reprojection. We chose to use n=7, because with only six points 

there is no redundant information, so tiny errors can cause the 

application to generate a quadratic projection with undesirable 

distortions.  In contrast, the same six points overspecify an affine 

reprojection, providing sufficient redundancy to average out error. 

MapCruncher allows the user to disable quadratic projection, in 

cases where affine reprojections with more than 7 

correspondences are desired.  This behavior is useful for source 

maps where it is important that straight lines not be curved, such 

as building floorplans. 

5. TILE RENDERING 
Once enough correspondences have been established, 

MapCruncher has sufficient information to determine the source-

map pixel corresponding to every latitude and longitude covered 

by the source map.  When the program is used interactively in the 

“locked” mode (i.e., the source map and reference map moving in 

tandem), reprojected tiles are rendered and cached on-demand 

each time the user looks at a new area of the world.   

However, in the final mashup, we decided against on-demand 

rendering, for several reasons.  First, rendering can take a long 

time.  This is a particular problem for slow computers, mashups 

that have a large number of input source maps, and mashups that 

have complex PDFs as source maps.  Because storage is cheap 

and responsiveness of web applications is important, it makes 

more sense for MapCruncher to exhaustively pre-render all image 

tiles—just like Virtual Earth and Google Maps.  Second, on-

demand rendering places a much higher complexity burden on the 

user. It would require special configuration of the web server, 

which is often not possible for people without administrative 

access to one, and difficult for beginners.  On-demand rendering 

would also limit the number of compatible web server 

implementations and server operating systems.  In contrast, pre-

rendered tiles are just data: they can be served from any Plain Old 

Web Server (see Section 6.2). 

For these reasons, MapCruncher allows users to a pre-render a 
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database of image tiles.  Users can first select the maximum zoom 

level for which tiles are produced.  Each additional zoom level 

increases the spatial resolution of tiles by a factor of two in each 

dimension, and therefore increases the total storage requirements 

by a factor of four.  

5.1 Determining geographic extent of source 

map 
The geographic extent of the source map is determined by 

applying the inverse of the reprojection function to the boundaries 

of the source map. The inverse function maps from source map 

coordinates to reference map coordinates, so this process 

produces a boundary in reference coordinates that corresponds to 

the boundary of the source map. The points on the reference 

boundary are converted into tile coordinates to select the set of 

tiles that contain the entire reprojected source image (see 

Figure 7).  This tile selection process is repeated for each zoom 

level for which the user desires to output tiles. 

5.2 Selecting region of source map to sample 
In theory, the best-fit reprojection function is all that is needed to 

produce a complete set of rendered tiles: it allows us to find the 

source-map pixel that corresponds to every possible reference-

map pixel.  However, there are many choices in the 

implementation of tile rendering that can have dramatic effects on 

its efficiency and resource requirements. 

There are two straightforward approaches by which rendering 

could be done, neither of which we use. First, one could use the 

reprojection function (along with information about the location 

and zoom level of the tile being rendered) to map each individual 

pixel’s location to a location in the source map; render the area of 

the source map defined by the extent of the pixel; and use the 

result of the rendering to assign visibility and color to the pixel. 

This approach is prohibitively expensive in terms of the 

computational cost per pixel. 

A second inefficient approach is to first render the entire source 

map at the scale dictated by the tile set’s zoom level.  Then, for 

each pixel in a final rendered tile, find the corresponding pixel in 

the enormous, rendered source map.  This approach, used by 

many overlay tools, is computationally efficient and conceptually 

simple because the source map needs to be rendered only once.  

However, it is prohibitively memory-intensive when rendering 

maps at high zoom levels.  This is because rasterizing a vector 

image such as a PDF source map requires memory proportional to 

the size of the raster.  For many source maps, rasterizing the entire 

thing at a high zoom level can result in a giga- or tera-pixel image. 

MapCruncher’s approach is to render the pre-image of each tile 

one at a time. This approach is efficient in both computation and 

memory.  For each final rendered tile to be generated, it 

determines the section of the source map needed to generate the 

tile, and renders only that part of the source map. To determine 

the section, the boundary of the reference tile in reference 

coordinates is transformed through the reprojection function to 

produce a boundary in the source map coordinate system (arrow 1 

in the Figure 8). An axis-aligned bounding box is drawn around 

the transformed tile boundary (as shown in the figure).  The 

region is axis-aligned because most source map formats are 

amenable to sampling in such regions. The region is also slightly 

enlarged to account for projections with high curvature.  

Once this target region is computed, we ask the underlying PDF 

renderer to produce a sample image of only the portion of the 

source map needed to render the final tile.  This is memory-

efficient because it only requires rasterization of small (approx. 

300x300 pixel) images.  Of course, at high zoom levels, these 

images may cover a minute portion of the source map.  

MapCruncher uses a PDF renderer licensed from Foxit Software 

[5], which cleverly stores the list of image vectors in the PDF so 

that most of them can be pruned (not rendered) when viewing a 

tiny region, making the pre-image approach even more 

computationally efficient. 

Finally, this small region of the rasterized source-map image is 

sampled to produce the final rendered tile.  For each of the 

256x256 pixels in the final tile, the reprojection function is used 

to find the four nearest pixels in the source-map image.  These 

four pixels are combined using bilinear interpolation. 

6. DEPLOYMENT 
One of our guiding principles in writing MapCruncher was that it 

should minimize the specialized knowledge required by the user 

as much as practical.  Therefore, it was important that 

MapCruncher not only create map image tiles, but automatically 

emit a fully working web application that gives users instant 

gratification of seeing their creation come alive. 

6.1 Sample Web Page 
When MapCruncher renders output tiles, it also creates a sample 

web page that shows the user’s map layers overlaid on top of 

Virtual Earth’s street maps and aerial imagery.  The sample page 

also includes a “Find…” box, allowing users to search for 

businesses (using Virtual Earth’s yellow pages service) and 

overlay pushpins right on top of their custom maps.  The new 

“VE3D” digital globe is also supported – instantly draping the 
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user’s map tiles on top of a three-dimensional rendering of Earth 

that can be viewed from any position and angle.  VE3D uses a 

digital elevation map that is compatible with MapCruncher tiles, 

so bicycle routes can actually be seen going up and over 

mountains (see Figure 9). 

To some, it might seem that this sample web page is unnecessary: 

surely anyone who bothered to create a mashup will also bother to 

write their own web page to display it!  By way of 

counterargument, consider Microsoft’s basic HTML editor, 

FrontPage.  When a user opens FrontPage, it titles the default 

blank document “New Page 1” – a string that appears 6 million 

times in the MSN Search index as of this writing. 

6.2 “Plain Old Web Server” Requirement 
Another important constraint in our design was that the rendered 

mashup can be served by a “POWS” – Plain Old Web Server.  

That is, we do not depend on the availability of any special server 

features, such as the ability to execute CGI scripts, interpret 

server-side includes, or configure custom error documents.  

Dependence on these features would limit our audience to 

technical users who have administrative access to a web server. 

MapCruncher requires nothing from a web server other than its 

most basic function: return a file if it exists and a 404 error code if 

it does not exist.  This means that users can create public mashups 

even without owning a web server – they can simply upload the 

output directory to any public web service.  This includes both 

beginner-oriented services such as GeoCities and more advanced 

offerings such as Amazon S3.  In both of these examples, server-

side execution and custom web configuration are not available. 

6.3 Applications 
MapCruncher has a wide variety of uses.  Three of our favorites 

are described here and available on the web. 

6.3.1 Pacific Northwest Bicycling Guide 
Our most ambitious mashup to date is the Pacific Northwest 

Bicycling Guide [14] – a seamless combination of bicycle route 

maps from 7 counties and 8 municipalities around Washington 

and Oregon.  Overlaying bicycle maps on top of the underlying 

street maps is quite valuable.  Bicycle maps typically do not show 

the smaller off-trail roads, making it difficult to plan an end-to-

end trip without the overlay.  The seamless integration of aerial 

photography can also clear up ambiguities in sometimes casually-

drawn bicycle maps.  For example, we used it to discover that a 

pedestrian overpass was available on trail not clearly depicted as 

crossing a major highway.  The “Find a business…” feature of 

Virtual Earth also makes it easy to, say, find an ice cream shop 

along your route on a hot day. 

6.3.2 National Park Service Maps 
The United States’ National Park Service publishes maps of more 

than 200 National Parks in the public domain [10].  Each is 

annotated with a rich set of data, including hiking trails, the 

names of many small lakes and rivers, geological formations, etc.  

In contrast, vendors of the street-map data found in most online 

mapping sites simply depict the park as a large blank area with the 

park name. 

Using MapCruncher, it’s easy to combine the rich annotations 

found in the park maps with the aerial and satellite photography 

provided by Virtual Earth [13].  It’s also easy to leverage Virtual 

Earth’s other features to produce new composite services – for 

example, getting driving directions from your home to the ranger 

station, drawn right on top of the park map. 

6.3.3 Do-It-Yourself Aerial Photography 
Virtual Earth and Google are both adding and updating imagery 

as quickly as they can; it's a top priority for them. However, for 

the foreseeable future, there will always be people who want high-

quality aerial photography in areas that do not yet have coverage. 

Previously, there was no way for users to add their own 

photography. MapCruncher makes this easy for the first time. 

Two members of the MapCruncher team, coincidentally, are 

private pilots.  While on a flight 4,000 feet over the small town of 

Forks, Washington, we had the idea of using new aerial 
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photography as a source-image instead of a map.  We circled for 

several minutes, taking a few snapshots out the side window with 

an old digital camera.   

On the ground, we imported the photos into MapCruncher, using 

distinctive landmarks shared by both our photos and the Virtual 

Earth reference photos.  The results were surprisingly good [12].  

While seams between the images are visible, the polynomial 

fitting function was able to effectively ortho-rectify large portions 

of our photos.  (Most of them had severe perspective distortion 

due to being shot at an oblique angle.) 

Despite these problems, there was a dramatic increase in image 

quality, especially relative to the time and financial cost of our 

project.  In May of 2006, Virtual Earth’s coverage of Forks was 

1m/pixel, 12-year old, black-and-white USGS aerial photography; 

Google’s was 8m/pixel satellite photography.  After one hour in a 

small airplane and a few hours on the ground, we had modern, 

full-color, 0.5m/pixel photography of a market so small that it’s 

unlikely to be re-photographed by Microsoft or Google in the near 

future. 

7. A COMPOSABLE VIRTUAL EARTH 
Most of the mashups we’ve seen to date are interesting because 

the whole is greater than the sum of the parts.  For example, 

having a bicycle map integrated with a street map is more useful 

than either one individually.  To get the most utility from 

mashups, it’s not enough to combine users’ maps with Virtual 

Earth.  We also need a way to make them easily composable with 

each other. 

Ideally, mashups will no longer be thought of as individual sites, 

disconnected from the rest of the world.  Instead, the building 

blocks of mashups—the layers of rasters, points, and lines that 

underlie them—should be composable, interchangable building 

blocks.  We envision a world where mashups have more structure, 

so that the bicycle layer we render can easily import the Doppler 

weather data you’ve rendered, and can be imported into the web 

site that features hiking layers.  If people publis their applications 

and the underlying data in a semantically meaningful way, a 

nearly infinite set of innovative and diverse applications are sure 

to follow. 

MapCruncher tries to take a step in this direction by cleanly 

separating the imperative code that run the mashup from 

declarative code that describes the raster layer being imported.  

Specifically, each time MapCruncher renders tiles, it also 

describes those tiles—their geographic position, rendering depth, 

and so forth—in an XML file specially seeded with strings that 

can be found by search engines.  With enough people creating 

MapCruncher layers, we can collectively create an enormous 

database of interesting data layers, all geographically registered to 

compatible coordinate systems and instantly searchable using 

existing search engines. 

Who knows what kind of interesting mega-mashups might follow?  
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