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ABSTRACT

The Farsite file system is a storage service that runs on the 

desktop computers of a large organization and provides the 

semantics of a central NTFS file server.  The motivation behind 

the Farsite project was to harness the unused storage and network 

resources of desktop computers to provide a service that is 

reliable, available, and secure despite the fact that it runs on 

machines that are unreliable, often unavailable, and of limited 

security.  A main premise of the project has been that building a 

scalable system requires more than scalable algorithms:  To be 

scalable in a practical sense, a distributed system targeting 10
5

nodes must tolerate a significant (and never-zero) rate of machine 

failure, a small number of malicious participants, and a substantial 

number of opportunistic participants.  It also must automatically 

adapt to the arrival and departure of machines and changes in 

machine availability, and it must be able to autonomically 

repartition its data and metadata as necessary to balance load and 

alleviate hotspots.  We describe the history of the project, 

including its multiple versions of major system components, the 

unique programming style and software-engineering environment 

we created to facilitate development, our distributed debugging 

framework, and our experiences with formal system specification.  

We also report on the lessons we learned during this development.

Categories and Subject Descriptors

D.4.3 [Operating Systems]: File Systems Management – 

distributed file systems.

General Terms

Design, Documentation, Management. 
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1. INTRODUCTION

From 1999 through 2005, Microsoft Research’s Farsite project 

strove to build a scalable, serverless distributed file system.  This 

system functions as a centralized file server, but its physical 

realization is dispersed among a network of incompletely trusted 

desktop workstations.  The Farsite system was intended to provide 

both the benefits of a central file server (a central namespace, 

location-transparent access, and reliable storage) and the benefits 

of local desktop file systems (low cost, privacy, and resistance to 

localized faults).  Farsite replaces the physical security of a server 

in a locked room with the virtual security of cryptography, 

randomized replication, and Byzantine fault-tolerant replicated 

state machines (RSMs) [6].  Farsite was designed to support 

desktop workloads in academic and corporate environments. 

Simply stated, the goal of the Farsite project was to build a 

serverless distributed file system that is truly scalable, particularly 

to the scale of 10
5

 machines.  In the systems community, the term 

“scalable” typically refers to scalable protocols, algorithms, and 

distributed data structures.  However, we chose to regard the term 

in a broader sense, arguing that practical scalability entails three 

other requirements: tolerance of failed machines, security against 

compromised machines, and automatic administration. 

Strong fault tolerance is critical because, in a network of 10
5

machines, partial infrastructure failure is not merely the common 

case; it’s the only case.  There will never be a time when all 

machines are up and working at the same time.  This precluded 

any fault-recovery solution that relied on waiting for a time when 

the infrastructure is fault-free, because no such time will ever 

come to pass. 

Security is just as critical, not only against outside threats but also 

against inside ones.  Virtually every large corporation includes at 

least one disgruntled employee [26], and universities are filled 

with curious, inventive, and occasionally antisocial students.  

Since we were proposing to run an organization’s file services on 

the desktop computers of its constituents, the very infrastructure 

of the system could not be fully trusted. 

Administration is already challenging.  Large data centers simplify 

their administration with uniform hardware selection and standard 

machine configuration, which are not available options when 

running a system on extant desktop computers that have been 

arbitrarily configured by their immediate users.  As a practical 

matter, any system whose manual administration load increases 

with the size of the system will run up against the limits of what 

the administrative staff can reasonably support.  Thus, Farsite 

must adapt to the arrival and departure of machines and changes 

in machine availability, autonomically repartitioning its data and 

metadata to balance load and alleviate hotspots. 

We were very upfront about our non-goals.  We found it quite 

striking that as soon as we’d tell people that we were developing a 

new distributed file system with the above well-defined goals, 

they would immediately suggest other goals we could pursue as 

well.  These other goals included large-scale write sharing, high-

throughput parallel file I/O, transactionality, integration of file-

system stores with database stores, new models of file-system 

structure (such as attribute-based systems), and weak consistency 

for offline access.  In an effort to keep an already challenging 
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problem from becoming unmanageable, we explicitly disclaimed 

these additional goals. 

The next section outlines the project’s history.  Section 3 details 

the multiple versions we wrote of three main system components: 

the file-system driver, the directory service, and the RSM 

substrate.  Section 4 describes our programming models and how 

they evolved over the course of the project.  Section 5 describes 

our distributed debugging framework, and Section 6 reports on 

our experiences with formal system specification.  Section 7 

describes a couple of key lessons we take away from the project. 

2. PROJECT HISTORY 

In early 1999, while ramping down other projects, we
*

 started 

thinking seriously about Farsite as our next big systems project.  

In our spare time, we did a lot of brainstorming throughout the 

spring, and then over the summer, we did a feasibility study [4] to 

determine whether the idea of a serverless distributed file system 

running on desktop machines was even plausible.  Buoyed by our 

results, we soon began designing the system architecture. 

At the beginning of 2000, we started writing user-mode code, and 

by the spring, we started writing kernel-mode code for a file-

system driver based on the Windows Single Instance Store filter 

driver (§3.1.1).  We spent the remainder of 2000 doing two 

things: designing many aspects of the system that were both near-

term and far-term, and implementing much of the near-term 

design.  We designed the security model, the naming and 

certification architecture, the distributed duplicate-file-coalescing 

system, the quota-control architecture, the on-disk file format, a 

strategy for data durability, replica placement algorithms, and a 

scheme for directory encryption [12].  We implemented the secure 

messaging infrastructure, kernel/user communication code, the 

local cache manager, initial parts of the replicated state machine 

substrate (§3.3.1), lots of crypto stuff, and an epidemic upgrade 

system.  By the end of 2000, we were stress testing the system on 

40 machines in our newly set-up lab. 

2001 was the year of rewrites.  We rewrote the file-system driver 

based on the FastFAT file system (§3.1.2), and we then re-rewrote 

it as a mini-RDR (§3.1.3).  We rewrote the directory service 

(§3.2.1) to support persistence.  We rewrote our programming-

model infrastructure (§4) to allow CTM-style code [2] in addition 

to event-driven code.  It wasn’t all rewrites; we also developed an 

encrypted key cache to improve crypto performance, worked out 

details of a metadata-hint caching strategy, and added MACs to 

the messaging system.  We developed, analyzed, and simulated 

file-placement algorithms [7,8,9,10] and the distributed duplicate-

coalescing system [11]. By the end of 2001, the code was 

functional and stable enough that we had a large benchmark – a 

modified version of the Andrew benchmark – working for very 

long runs. 

In 2002, we started thinking seriously about distributing the 

directory service, and we concluded that we would need to start a 

new design (§3.2.2); we began with informal design and decided 

*

 Because this paper is a retrospective, covering work that was 

performed over almost seven years, the term “we” herein refers 

not merely to the present authors but rather to the entire project 

team.

that for a problem of this complexity we would be better off trying 

formal specification (§6).  On the implementation side, we got file 

replication working, got the directory state and local file cache 

stored persistently, implemented caching file data in the driver for 

performance, started implementing the distributed duplicate-

coalescing system, and replaced our earlier file-based metadata 

storage system with a real database, namely SQL Server.  We built 

a trace replayer, which helped to expose a raft of bugs that we 

spent a lot of time fixing, until we got the system stable enough to 

run a full day’s replayed traces.  In the process, we discovered that 

the high loads resulting from initializing the trace state could 

cause significant overloads in the system; it would take much of 

the following year to fully address this problem.  At the end of 

2002, we published our main system paper on Farsite [1]. 

In 2003, tech-transfer was very much on our minds.  We worked 

with several prospective recipients for the Farsite technology, and 

we spent considerable time addressing issues that these groups 

considered important.  This included getting Farsite’s files to 

work with Windows Single Instance Store [5], checkpointing and 

restarting the directory service, supporting quotas, replacing the 

Byzantine-fault-tolerant RSM substrate (§3.3.1) with a fail-stop-

fault-tolerant one (§3.3.2), and significant performance turning. 

By 2004, aside from the ongoing design work on the distributed 

directory service (§3.2.2), all of our efforts were focused on tech-

transfer.  Major components included client-side crash recovery 

and checkpoint/restart for the centralized directory service.  After 

nearly two years of effort in formal specification, we coded the 

distributed directory service this year.  Among other changes, this 

involved switching the service’s persistent store from SQL Server 

to the store in our atomic-action substrate (§4.3). 

By 2005, most of our tech-transfer prospects had disappeared, at 

least those that had the potential of transferring a fully functional 

distributed file system.  We refocused our efforts on transferring 

subsystems and components of the Farsite system, most notably 

our fail-stop-fault-tolerant RSM substrate (§3.3.2).  During this 

year, most of the team began transitions to other projects.  We 

continued developing the distributed directory service, mainly as 

an academic exercise targeted at publication [15]. 

To the extent that research projects ever have a formal end, Farsite 

came to an end in early 2006. 

3. DESIGN ITERATIONS 

Over the course of the Farsite project, we developed three 

implementations of the file-system driver, two implementations of 

the directory service, and two implementations of the RSM 

substrate.  Although these cases seem superficially parallel, their 

reasons for re-implementation differ significantly.  In particular, 

with the benefit of hindsight, we would have developed only one 

file-system driver, but we would still have developed both 

directory services and both RSM substrates. 

3.1 File-System Drivers 

We created the three versions of the file-system driver as our 

knowledge of the proper way to build Windows-based file 

systems improved.  We started with a design that was loosely 

based on some previous kernel-mode work some project members 

had done, primarily because of familiarity with the design rather 

than because it the best way to structure the driver.  After some 
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experience with that problems of that approach, we tried a new 

design based on the existing Windows FastFAT file system on the 

theory that FastFAT was proven to work properly.  However, we 

discovered that while it was an appropriate design for a purely 

local file system, it was at best awkward to do some operations 

necessary for a network file system, such as forcing the system 

cache to purge all of the data for a file so that it can be used 

remotely.  This led to the final design as a mini-Redirector using 

Windows’ (at the time) new functionality for implementing 

network file systems. 

3.1.1 Driver built based on Windows SIS driver 

Our initial attempt at a file-system driver was based on the 

Windows Single Instance Store (SIS) driver [5].  We chose this 

design because a number of us had just finished the SIS project, 

and so were very familiar with the code and its interaction with 

the system.  SIS is implemented as a file-system filter driver, 

which sits above a local or remote file system on the IO stack, and 

is able to inspect, alter or directly implement any calls that are 

destined for the underlying file system.  While this might seem an 

odd design for a service that is a file system itself rather than an 

added service for some existing file system, in point of fact Farsite 

(in all three incarnations) never implemented the on-disk portion 

of the file system and instead relied on NTFS to do that.  So, one 

view of what Farsite does is to provide a (very involved) filter on 

top of a local NTFS implementation. 

After a relatively small time, we discovered that while in principle 

Farsite could be viewed as a filter on NTFS, in practice we had to 

reimplement much of NTFS’s functionality, including the very 

complicated pathname parsing and lookup code.  Dealing with 

whether Farsite or NTFS owned the file object associated with 

handles was at best awkward and never worked quite right, and 

synchronizing access to files among the filter, NTFS and the rest 

of the NT kernel led to difficult-to-fix deadlocks. 

While we abandoned this design early on, some of the code that 

we developed turned out to be useful and made it into the two 

subsequent versions.  In particular, the code that implemented 

convergent encryption and Merkle-tree based content verification, 

and the code for passing messages between the driver and the 

user-mode daemon survived largely unchanged. 

3.1.2 Driver derived from FastFAT 

The experience with the SIS-derived driver led us to start over 

based on an existing file-system driver.  We chose FastFAT rather 

than NTFS not for the obvious reasons (that it is published, 

documented, and publicly available), but rather because its code 

structure is much simpler.  We removed the portion of the driver 

that dealt with on-disk structures and replaced it with calls into 

NTFS.  There was no confusion about ownership of file objects, 

and the deadlocks largely disappeared.  Furthermore, we were 

able to get a mostly-working implementation in fairly short order. 

However, the FastFAT model didn’t provide an easy way to evict 

data from the cache as is required to maintain consistency when a 

file is accessed writably by multiple nodes, it didn’t have code 

dealing with access control lists (all files in FastFAT provide full 

access to all users), and it wasn’t really designed to stop while 

calls are made up to user level during certain operations 

(particularly file open). 

For a second time, we abandoned the driver and started more-or-

less from scratch. 

3.1.3 Driver built as mini-redirector 

The final version of the driver is a mini-redirector written in terms 

of the Windows Redirected-Drive Buffering SubSystem 

(RDBSS), part of the Windows Installable File System Kit [23].  

This is the way that Microsoft recommends building network file 

systems.  At the time we started it, no documentation was 

available.  However, because we were inside Microsoft, we were 

able to obtain a (preliminary) copy of the WebDAV mini-

redirector to use as a template.

WebDAV seemed to be particularly apropos, because, like 

Farsite, it stored files in NTFS and implemented much of its 

functionality in user-mode, and so had to make calls between the 

kernel and user-mode components.  When we merged it in with 

the existing user-mode component and the kernel-mode code we 

retained from the FastFAT implementation, however, we chose to 

keep two parallel user-to-kernel communication channels, the old 

Farsite one and the WebDAV one.  They were very different in 

their design and never lived comfortably together.  However, 

absent a good reason to get rid of one or the other, they co-existed 

from 2001 to 2004.  In 2004, we were working on enabling the 

system to losslessly recover from a crash and restart of the user-

mode component.  Doing this meant keeping careful track of the 

set of calls that were outstanding, and the set of updates that the 

kernel had sent to the user-mode component.  It turned out that 

the WebDAV communication channel was not well-suited to 

either task, and so we finally removed it in favor of the older 

Farsite channel. 

The mini-RDR/RDBSS structure turned out to be a good match to 

Farsite’s needs, even though it wasn’t intended to be used with a 

file system that supplied all its data from the local disk
*

.

RDBSS’s function of handling most of the necessary interface 

with the system’s virtual memory and caching components made 

coding significantly easier, eliminated several potential sources of 

deadlocks and race conditions, and did not remove any flexibility 

that we needed to get our driver working properly.  We should 

have started with this design (and had it been documented when 

we started, we like to think we would have); we wasted far too 

much time on the first two implementations, and learned relatively 

little from them, beyond the fact that they were the wrong choice. 

3.2 Directory Services 

We built two separate versions of the directory service, one that is 

centralized and one that is distributed.  Although this was not 

really intentional, in hindsight we believe it was a good thing to 

do.  The centralized directory service provided an expedient path 

to getting a working system without the significant complexity of 

distributing file-system metadata.  This was particularly important 

since it took two people nearly three years to design and build the 

distributed directory service. 

*

 While the file data in fact go off-machine, all off-machine 

operations are performed in user-mode, so from the kernel’s 

point of view file data are solely local. 
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3.2.1 Centralized directory service 

We did not plan for the centralized directory service to remain 

centralized.  Our intent had been to turn it into a distributed 

service, and we put some substantial effort into thinking about 

how to do that.  However, we focused the bulk of our efforts on 

building a working service, irrespective of the eventual need for 

distribution.

Code structure – The centralized directory service was structured 

as a deterministic state machine, so that it could run on an RSM 

substrate (§3.3).  Writing a sizeable and complex piece of 

software as a deterministic state machine was harder than we had 

expected.  Not only is the state-machine model an unintuitive and 

unfamiliar way to structure systems code, but we had to eliminate 

every potential source of nondeterminism to prevent the state-

machine replicas from diverging (§7.1).  The service was 

originally written in an event-driven style (§4.1) but later evolved 

to a mix of event-driven and cooperative-task-management (§4.2) 

styles.

Leases – This centralized directory service temporarily loans 

authority over portions of file-system metadata to clients via 

leases.  There are four classes of leases: content leases, name 

leases, mode leases, and access leases. 

Content leases govern which client machines currently have 

control of a file’s content.  They can be read/write or read-only, 

and they follow single-writer/multi-reader semantics. 

Name leases govern which client machine currently has control 

over a name in the directory namespace.  Name leases are always 

read/write, and they transitively extend to all unused child names.  

Thus, when a client uses a name lease to create a new directory, it 

can immediately create files and subdirectories in that directory. 

Mode leases govern which clients have a file open for Windows’ 

various access and sharing modes [16], which provide explicit 

control over file-sharing semantics.  There are six types of mode 

leases: read, write, and delete mode leases are used to open a file 

for read access, write access, and delete access, respectively.  The 

other three, exclude-read, exclude-write, and exclude-delete mode 

leases are used to open a file without read sharing, write sharing, 

or delete sharing, respectively.  The sense of these latter modes is 

inverted to preserve standard lease-conflict rules. 

Access leases govern which clients can perform operations that 

have bearing on the deletion of a file.  In Windows, a file is 

deleted by opening it, marking it for deletion, and closing it.  The 

file is not truly deleted until the last handle is closed on a 

deletion-marked file.  While the file is marked for deletion, no 

new handles may be opened on the file.  There are three types of 

access leases: public, protected, and private.  As one might expect, 

a public lease grants shared access and a private lease grants 

exclusive access.  A protected lease grants shared access and the 

guarantee of a callback to the lease holder before any other client 

is granted access.  Opening a file, closing a file, and marking a file 

for deletion all require access leases, selected in a combination to 

provide Windows’ deletion semantics. 

Access control – The centralized directory service enforces write-

access control directly, by checking a user’s cryptographically 

established identity against an access control list for the file or 

directory in question.  Because directory service modifies state via 

a Byzantine-fault-tolerant protocol (3.3.1), we trust the service to 

apply only correct updates.  By contrast, since a single faulty 

machine can inappropriately leak information, the service does 

not directly enforce read-access control.  Instead, file content is 

encrypted so that it is only readable by clients whose users have 

an appropriate decryption key. 

Distribution (conceptual) – We had developed several ideas for 

partitioning and distributing file-system metadata among multiple 

RSM groups.  For purposes of discussion, we regard each RSM 

group as a server.  Our intent had been to partition file metadata 

among servers according to file path names. Each client would 

maintain a cache of mappings from path names to their managing 

servers, similar to a Sprite prefix table [28]. The client could 

verify the authority of the server over the path name by evaluating 

a chain of delegation certificates extending back to the root server. 

To diffuse metadata hotspots, servers would issue stale snapshots 

instead of leases when the client load got too high, and servers 

would lazily propagate the result of rename operations throughout 

the name space. 

Integration with driver –The directory service is all user-level 

code, but the client-side code that communicates with the service 

delegates some of its leased authority to the file-system driver.  

This enables many operations to be performed and logged directly 

in the driver instead of requiring an upcall to Farsite’s user-level 

code, which is important for performance.  For this reason, the 

driver understands much of the directory-service lease structure. 

3.2.2 Distributed directory service 

In attempting to turn the centralized directory service into a 

distributed service, we learned that many of the ideas we had for 

how to do this were problematic.  In particular, the centralized 

service had assumed that metadata partitioning would eventually 

be partitioned according to file path name; however, this turns out 

to complicate rename operations that span partitions, so we opted 

to instead partition according to file identifier.  In the absence of 

path-name delegation, name-based prefix tables are inappropriate. 

Similarly, if partitioning is not based on names, consistently 

resolving a path name requires access to metadata from all files 

along a path, so delegation certificates are unhelpful for 

scalability.  Our ideas about stale snapshots and lazy rename 

propagation would allow the name space to become inconsistent, 

which can in turn cause orphaned loops in the namespace [15].  

We thus built the distributed directory service from scratch, using 

an entirely different code structure, lease arrangement, and 

metadata distribution scheme. 

Code structure – Like the centralized directory service, the 

distributed directory service was structured as a deterministic state 

machine; however, we never completed the integration of the 

distributed directory service with an RSM substrate.  The service 

was written in an atomic-action coding style (§4.3).  Nearly half 

of the application code is data-structure definitions and support 

routines that were mechanically extracted from a formal TLA+ 

specification of the directory service (§6.1). 

Leases – The distributed directory service replaces the four 

classes of leases in the centralized service with two classes: 

shared-value leases and disjunctive leases.  We observed that the 

complex lease classes in the centralized service were conflations 

of metadata with protections over that metadata.  In the distributed 
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service, we separated these notions into specific metadata fields 

and comparatively simple leases that protect those fields. 

Shared-value leases are conventional single-writer/multi-reader 

leases over fields of a file; these leases are used for a file’s content 

field (really a hash of the content, since the actual content is 

stored separate from the directory service), child name fields, and 

various metadata fields, including the file’s deletion disposition.  

As an important efficiency enhancement, the service has a special 

shorthand representation for an infinitely large set of child name 

fields; this representation is used to grant access to all child names 

of a file except an explicitly enumerated exclusion set. 

Disjunctive leases are used to protect seven metadata fields: one 

field represents the set of clients who have handles open on the 

file, and six other fields each represent the set of clients who have 

the file open for each access or sharing mode.  It would be 

inefficient for clients to have to obtain a read/write shared-value 

lease over one of these sets, merely to add itself to the set when 

opening a handle or to remove itself from the set when closing the 

handle.  So instead, each client has a Boolean self value that it can 

write and a Boolean other value that it can read. The other value 

for each client x is defined as: 

∑
≠

=

xy

yx

selfother

where the summation symbol indicates a logical OR.  Clients set 

their self values when opening handles and clear their self values 

when closing handles.  Self values are protected by write leases, 

and other values are protected by read leases. 

Access control (conceptual) – We have neither designed nor 

implemented access control in the distributed directory service.  

However, we believe we could extend the use of shared-value 

leases for the purpose of access control.  The basic idea is that 

each file would have an access-control metadata field for each 

principal; the value of the field would indicate that principal’s 

access rights.  To access a file, a client would obtain a read lease 

over the requesting principal’s access-control field, the value of 

which would let the client know whether to fail the operation or 

proceed.  Like name leases, we would have a shorthand 

representation for leasing an infinitely large set of access-control 

fields; this could be granted to a client whose principal is 

authorized to change the access-control list.  As in the centralized 

service, we would still use cryptography to protect the actual data 

against leaks. 

Distribution – In contrast to our ideas for distributing the 

centralized directory service, the distributed directory service does 

not partition its metadata according to file path name.  Instead, it 

partitions according to file identifier, so as to avoid implicitly 

coupling the logistical issue of which server manages which 

metadata with the operational issue of correctly implementing 

directory rename.  The file identifiers have a tree structure that 

stays approximately aligned with the tree structure of the name 

space, so files can be efficiently partitioned with arbitrary 

granularity while making few cuts in the name space.  One 

consequence of this tree structure is that file identifiers have 

variable length; this is not a problem in practice, because (1) the 

size of identifiers tends to remain quite manageable – generally 

smaller than an MD5 hash – and (2) the variability is encapsulated 

in a small class, so it is unseen by the rest of the system. 

Since file-system metadata is distributed, it is necessary to provide 

a means for obtaining consistent access to file path names.  In the 

absence of such means, two concurrent rename operations can 

produce an orphaned loop in the namespace [15].  The service 

provides such a means in the form of a recursive path lease, which 

is a read-only lease on the chain of file identifiers of all files on 

the path up to the file-system root.  Path leases are recursively 

issued to the child files of the file whose path is being leased, so 

the path-lease load on any given file is bounded by the number of 

children it has. 

There are two file-system operations that can span multiple 

servers: (1) renaming a file and (2) closing the last handle on a 

deletion-marked file, which unlinks the file.  Rename can span 

three servers: the server that owns the source parent directory, the 

server that owns the destination parent directory, and the server 

that owns the file being moved.  Close-and-unlink can span two 

servers: the server that owns the file being closed and the server 

that owns the directory from which the file is being unlinked.  For 

these two operations, the servers coordinate their updates to 

ensure atomicity.  In particular, the servers use two-phase locking, 

wherein one server acts as the leader and the other servers lock the 

relevant metadata fields of their files while they wait for the leader 

to coordinate the operation update. 

Integration with driver (conceptual) – We have not integrated 

the distributed directory service with the file-system driver.  There 

are two challenges to doing so:  First, the driver’s permission 

model is based on the leases used by the centralized directory 

service.  We would have to either modify the driver’s internal 

representation of operational permission or attempt to shim the 

distributed directory service’s leases into a representation that 

could be understood by the driver.  In practice, we would likely 

follow some combination of these approaches.  Second, the driver 

uses fixed-size file identifiers, unlike the variable-size identifiers 

used by the distributed directory service.  The most expedient way 

to address this mismatch is to provide a translation table at the 

interface between the components. 

3.3 Replicated-State-Machine Substrates 

We built two separate RSM substrates, one that tolerates 

Byzantine faults and one that tolerates only stopping faults.  The 

Byzantine-fault-tolerant RSM was intended to address the original 

Farsite vision of running exclusively on client desktop machines.  

However, we found some potential product-group interest in 

running a Farsite-like system on trusted machines inside a data 

center, so we built a second RSM substrate that more efficiently 

supports the weaker faults expected in such an environment. 

3.3.1 Byzantine-fault-tolerant RSM 

We envisioned Farsite being deployed on the desktop computers 

in a university, wherein it would have to continue operating 

despite the curious tinkering of our hypothetical attacker, the 

SUSSCRAM (Smart Undergraduate Student with Source Code 

and Root Access to a Machine).  This is an attack model that is 

ideally suited for Byzantine fault tolerance (BFT), because BFT 

assumes that malicious machine failures are independent, which 

they will generally not be if they are caused by software bugs or 

viruses.

Our BFT RSM substrate was based on the work of Castro and 

Liskov [6].  It ensures both safety and liveness as long as strictly 
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fewer than one third of all replicas are faulty.  Although it requires 

weak synchrony assumptions to provide liveness, it needs no 

synchrony assumptions to guarantee safety.  It executes read-only 

operations with a single round trip and read/write operations with 

two round trips.  It avoids the expense of public-key cryptography 

in the common case, relying instead on symmetric-key message 

authentication codes, which are significantly faster to compute. 

3.3.2 Paxos-based RSM 

Inside a data center, the fault assumptions underlying BFT 

become less applicable.  It is still possible for a machine to exhibit 

Byzantine behavior due to software bugs or viruses, but such 

behavior would not manifest with independent probability among 

machines.  By contrast, stopping failures may well occur with 

independent probability if simple steps are taken to remove the 

most common correlating factors, such as co-locating machines of 

a replica group in a single rack, on a single power supply, or with 

a single cooling unit. 

When stopping failures are the main concern, there are more 

efficient replica-coordination strategies than BFT.  In particular, 

the Paxos algorithm [18, 19] ensures both safety and liveness as 

long as strictly fewer than half of all replicas are faulty.  Our RSM 

substrate [22] allows not merely replication and coordination but 

also migration of the service to a new set of machines, which we 

call changing the configuration of the service.  To accomplish this 

goal without excessively complicating the protocol, we introduced 

the idea of configuration-specific replicas, wherein each replica is 

associated with one and only one configuration.  Multiple replicas 

for different configurations can execute concurrently on a single 

machine, but for simplicity they remain logically separated, 

although they share execution modules for efficiency. 

4. PROGRAMMING MODELS 

Based on our prior experience in building systems, we were well 

aware that the most challenging and frustrating bugs tend to arise 

from concurrency issues, yielding faulty behavior that is often 

difficult to reproduce reliably, let alone to diagnose and correct.  

We thus decided that the primary determinant for a programming 

model should be the prevention of concurrency bugs.  This 

decision led us through three successive of programming models, 

each of which built upon the previous one.  Code written in all 

three models runs side-by-side in the system, interacting across 

programming-model boundaries using shims and wrappers. 

4.1 Event-Driven Programming 

Initially, we followed an event-driven programming model, 

wherein we divided our code into uninterruptable regions that we 

encapsulated in continuations.  Before a continuation ends, it 

often schedules one or more other continuations to execute, either 

at a later time or after some time-consuming non-computational 

task – such as a disk read – completes.  This model reduces 

opportunities for race conditions and deadlocks, relative to the 

more common approach of programming with multiple execution 

threads [24, 27]. Event-driven programming avoids the key 

concurrency problem with standard multithreaded programming, 

namely the interruption of an executing task by another task that 

touches shared state. The event-driven model is significantly less 

complex and error-prone than carefully crafting locks and state-

access policies, which when too liberal admit race conditions and 

when too conservative can cause deadlocks. 

One challenge in writing event-driven code is maintaining a task’s 

context across a set of event handlers that collectively implement 

the task, particularly as the code evolves and a single event 

handler is split into multiple handlers whenever a new I/O call is 

introduced.  This context is trivial to maintain in a multithreaded 

model, because a task is typically performed by a dedicated 

thread, whose context is maintained by a stack that is preserved 

across I/O calls. 

4.2 Cooperative Task Management 

The difficulty of managing context in an event-driven program 

drove us to back to storing a task’s state on a stack, while 

retaining the cooperative scheduling aspect of event-driven 

programming.  In this cooperative task management (CTM) model 

[2], a task is – rather than a collection of event handlers that 

bridge between I/O calls – a single block of sequential code with 

well-defined yield points at each I/O call.  The code between I/O 

calls runs without interruption by other tasks, much like an event 

handler would run.  However, when an I/O call completes, rather 

than reconstructing the task’s state from a manually pickled 

continuation, the state is already available on the task’s stack. 

Compared with multithreading, CTM reduces the opportunities 

for a task’s state to be perturbed by another task; however, it does 

not completely eliminate these opportunities.  In particular, when 

a task yields for an I/O call, other tasks may execute, and these 

other tasks might access or modify shared state.  When the 

interrupted task then resumes, it must be prepared for the 

possibility that any shared state it had accessed prior to the I/O 

call has since changed. 

To deal with this situation, we developed a programming idiom 

we called the pinning pattern [2§5], in which a task is divided into 

two phases. The first phase includes all of the task’s read I/O calls 

(disk reads and network RPCs) inside a loop. If any I/O operation 

yields, the loop is restarted, because the task can no longer be 

certain that any value it has read still reflects the global state.  

Disk reads and RPC results are cached in memory, so this I/O 

read is unlikely to yield again on the next pass through the loop.  

The loop exits only when every read I/O operation executes 

without yielding, so at the end of the first phase, the task has a 

consistent representation of the portion of system state it cares 

about.  In the second phase, the task performs its computation, 

and it records any state updates and outgoing network messages in 

an in-memory buffer.  The contents of this buffer are subsequently 

written back to the disk or transmitted on the network by a 

separate housekeeping thread.  Thus, after possibly looping 

multiple times through read I/O calls that yield, the task ultimately 

executes as an atomic block: The final iteration of the first phase 

does not yield, and the second phase never yields because it 

contains no I/O operations. 

Although a strict adherence to the pinning pattern results in 

correct code, it does not lend itself to modularity.  For example, a 

subroutine that performs both reads and writes cannot be called 

from either phase of a task, since the first phase must contain no 

writes and the second phase must contain no reads.  The pinning 

pattern also demands significant discipline from the programmer, 

and it is quite unforgiving if the task departs from the pattern’s 

strictures in any way. 
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4.3 Atomic Actions 

The difficulties of restricted modularity and stringent coding 

constraints led us one step further.  Our programming model had 

progressively evolved toward writing tasks as atomic blocks, so 

we finally decided to implement our tasks as full-blown atomic 

actions [21].  Our intent was twofold: First, by addressing the 

issue of state consistency at a single place in the code, we hoped 

to eliminate the class of consistency errors we had experienced 

due to the difficulty of honoring the pinning pattern consistently. 

Second, we wanted to write our application code in a more 

modular, readable, and maintainable style than the pinning pattern 

would allow. 

We built an application-generic atomic-action substrate, on top of 

which application-specific code is written using an action for each 

sequential task.  The substrate isolates each action’s effects by 

mediating access to state, time, and messages. 

State – For ease of implementation, we used an explicit state 

interface rather than a transparent memory interface. This decision 

prevents the application from reusing old data-structure code to 

organize its data.  Therefore, instead of a simple address space, 

the substrate provides an interface of single-key dictionaries with 

custom keys.  This is nearly as easy to implement as a linear 

address space, but it supports sorting, efficient indexing, and 

range queries, which largely makes up for the inability to use 

standard data structures in the application code. 

Atomic state is implemented using redo logs.  A redo log is a 

buffer of 〈address,value〉 pairs written by an action. By buffering 

the writes, the redo log isolates the effects from other actions. 

Redo logs are chained, each using the next as its backing store. A 

read that cannot be satisfied by any entry in a redo log is passed 

on to that log’s backing store. An action is atomically committed 

by simply referring to its redo log as the new current state of the 

system. An action is atomically aborted by simply discarding its 

redo log. 

Time – The natural interface to time is to provide the value of the 

clock. For example, a host might evaluate whether a lease has 

expired by evaluating the expression: 

GetCurrentTime() > lease.expiration 

An alternate interface is to let the code make Boolean queries of 

the time: 

IsNowLaterThan(lease.expiration)

The latter approach constrains how much information about time 

flows into the application code, which gives the substrate more 

freedom and can result in fewer action aborts.  Specifically, when 

an action queries a time predicate, the substrate evaluates and 

records the constraint enforced by the predicate before returning 

the result to the application. At the end of the action, if the current 

time violates any of the predicate constraints, the action aborts. 

Thus, the effective time of each action is the time it commits, 

which trivially enforces the temporal consistency of commit order. 

Messages – When a message arrives, it is stored into the shared 

state, and optionally an action is started to process it.  When an 

action sends a message, the message is held in a buffer.  If and 

when the action commits, all buffered messages are transmitted.  

If the action aborts, the messages are discarded. 

5. DISTRIBUTED DEBUGGING 

System components built on the atomic-action programming 

model can be deterministically replayed in the distributed system.  

We have used this facility to isolate several would-be Heisenbugs. 

Although deterministically replaying a distributed system is an old 

idea [25], it can be difficult to achieve because nondeterminism 

enters a system any number of ways, which makes it challenging 

to capture all of its sources and constrain a later run to obey the 

observed behavior. 

The atomic action model provides ideal support for a replay 

system, because isolation requires mediating all of an action’s 

access to the outside world. Likewise, action commits are the only 

way that a host’s state can change. Therefore, a host is a state 

machine whose evolution is completely determined by the 

sequence of actions it commits. Each action can be completely 

characterized by the action’s identity, argument values, and the 

value of time observed by the action. 

The programmer must explicitly cooperate with this discipline. It 

is forbidden to record state that lives beyond a transaction outside 

of the shared state interface, since changes to that state are not 

serialized or rolled back upon action abort. As an example, our 

pseudorandom-number generator object uses the state interface, 

rather than conventional heap storage, to store its state. 

The bane of distributed systems implementation is the difficulty of 

debugging a system in which data is widely dispersed among 

machines. There is no single thread of control to break, and a 

crash is not particularly likely to be reproducible because the run 

that led to it cannot be deterministically reproduced. Divergence 

can arise from the innate entropy of the distributed environment 

or from the perturbations of monitoring code. 

The ability to deterministically replay the system facilitates 

debugging by allowing us to probe the system while ensuring that 

it continues to exhibit the broken behavior. Probing may involve 

using a debug build with extensive assert checking or printf 

logging. It may involve modifying the executable to introduce a 

new sanity check, or even to repair the behavior, although a 

dramatic repair may make the rerun diverge from the logged run. 

Probing may also involve remapping the hosts in the distributed 

system onto different physical machines. For example, we have 

replayed a multiple-machine deployment on a single physical 

machine, in a single process, with a debugger attached. 

Reconfiguration cannot involve changing the number of logical 

hosts in the distributed system, however, because such a change 

would lead to a different set of logs and different behavior. 

During replay, we keep the hosts causally synchronized. When a 

host’s log indicates it should evaluate an action that depends on 

the receipt of a message, the scheduler waits until that message is 

actually received from the sending host before proceeding. This 

ensures that events and debugging messages occur in a sensible 

order in the replayed system. 

6. FORMAL SYSTEM SPECIFICATION 

When we began developing the distributed directory service 

described in section 3.2, we started with the approach we had 

always used for distributed-system design: informal specification 

using textual description, pseudo-code, and block diagrams.  We 

quickly found ourselves getting quite lost in the details of the 
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design, largely because the distributed directory service is a highly 

constrained design problem:  The service must be scalable, 

strongly consistent, and resistant to Byzantine faults.  Initially, we 

were not even clear on what “resistant to Byzantine faults” meant, 

but we were concerned that, as the number of BFT groups in the 

system grows, so too grows the probability that at least one group 

will have more machine failures than it can handle, and we did not 

want to let a random faulty group take out the entire system [14]. 

To tackle these compound challenges, we – slowly and quite 

reluctantly – began using formal system specification for the 

distributed directory service.  We found that a formal specification 

can serve as an abstract prototype that calls attention to errors in 

the design before implementation begins.  This is valuable not 

only because the high level of abstraction makes it easy to reason 

about the design without getting bogged down in implementation 

details, but also because radical changes to the specification tend 

to require far less effort than comparable changes to an 

implemented system.  Although we do not conclude that formal 

specification is an appropriate tool for most system designs, we do 

believe it can have applicability for subtle and highly constrained 

solution spaces, wherein correctness is difficult to reason about. 

The benefits of formal specification accrue from two components: 

a formal mathematical syntax and the concept of refinement. 

6.1 Formal Syntax 

For specifying the distributed directory service, we used the 

TLA+ language [20], which provides well-defined syntax for set 

theory and first-order logic, syntactic shorthand for defining 

systems as state machines, and temporal logic for reasoning about 

liveness. The set theory is easy to use by anyone with a basic 

mathematics background. We found the state machine syntax 

quite natural once we thought a little bit about how invariants are 

maintained inductively. We used very little of the temporal logic, 

because we focused on safety properties rather than liveness 

properties.  Although the language looks intimidating at first, it is 

quite accessible systems builders. 

Formal syntax provides three benefits relative to informal 

specification: unambiguity, decoupling abstraction from precision, 

and explicit indication of dependencies. 

Unambiguity – Because math and sets are well-defined, formal 

syntax does not admit the ambiguity that can creep into prose 

specifications.  For example, in our informal specs, we had 

written, “If a client holds a name lease on name E in directory D,

then the client implicitly holds a name lease on all nonexistent 

children of E.”  This rule turns out to be ambiguous, because a 

server may have stale information about whether a client has 

created a child of E, in which case the server and client interpret 

the meaning of an outstanding lease differently.  Formal syntax 

forces the designer to settle on some unambiguous interpretation 

of the abstract idea, even if it is a straw man.  As later components 

of the design make use of the idea, there is no ambiguity about 

what the current specification means; either it satisfies the needed 

properties, or it must be changed. 

Decoupled abstraction and precision – Text and pseudo-code 

tend to couple abstraction and precision.  Raising the level of 

abstraction is commonly achieved by (in text) leaving out details 

or (in pseudo-code) by stubbing out subroutines.  High-level 

prose is generally imprecise about its meaning, and stubbed-out 

pseudo-code is similarly imprecise except in the rare cases in 

which an omitted subroutine is well-defined at an abstract level 

(e.g., stable sort by case-insensitive Unicode primary key).  By 

contrast, formal syntax can be employed at any level of 

abstraction.  For instance, we at first specified our distributed 

clock by formally writing down the properties it achieved [13], 

using a few lines of TLA+.  Later, we went back and replaced this 

with a formal description of the messages exchanged between 

machines and the corresponding state updates.  At either level of 

abstraction, the specification was precise about its meaning. 

Explicit dependencies – When working with prose specification 

documents, it is not immediately obvious how changes to one part 

of the specification affect other parts.  When using a formal 

syntax, one cannot refer to a component of the design except by 

explicit reference to the symbol that defines it.  This allows the 

designer, when making specification changes, to grep for other 

definitions that should be inspected to ensure they remain 

compatible with the new definition. 

6.2 Refinement

Whereas formal syntax helps find errors during the design 

process, refinement is a technique that guides the design process. 

The technique focuses the process on which ideas are necessary 

and helps the designer know when the job is complete.  In the 

context of distributed systems, the refinement technique involves 

constructing three artifacts: a semantic spec, a distributed-systems 

spec, and a refinement. 

Semantic spec – The semantic specification describes the 

intended behavior of the system from the viewpoint of the systems 

users. Farsite logically functions as a centralized file server, so 

Farsite’s semantic spec defines the behavior of a centralized file 

server, namely the file-system operations open, close, read, write, 

create, delete, and move/rename.  To address the requirement of 

resisting Byzantine faults, the semantic spec also specifies how 

faults can manifest to the users.  A significant challenge was 

finding a semantic spec that was neither unrealistically strong nor 

uselessly weak. 

Distributed-system spec – The distributed-system specification 

describes how a set of machines and BFT groups interact: 

receiving file-system requests, sending messages, receiving 

messages, modifying local-machine state, and returning results of 

file-system requests.  The distributed-system spec can be regarded 

as the main product of the refinement process, insofar as it 

precisely describes the behavior of the constituent machines in the 

distributed system.  Turning a distributed-system spec into a 

working system is merely a matter of writing an implementation 

for the single-machine components of the system, which can be 

done without any further thought about the distributed-system 

aspects of the problem. 

Refinement – The refinement is a formal correspondence between 

the semantic spec and the distributed-system spec.  The semantic 

spec describes an abstract structure, and the refinement describes 

how the distributed, asynchronously updated structures spread out 

across the distributed system can be interpreted as the abstract 

structure of the semantic spec.  Constructing the refinement 

guides the construction of the distributed system.  When faced 

with a problem, we would brainstorm a possible solution in the 

distributed system and then ask, “How does this solution refine to 
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the semantic spec?” That simple question consistently led us to 

immediately understand which invariants we needed to maintain. 

No matter how knotty the distributed data structures in our system 

become, our refinement tells us how to interpret them.  In 

particular, a key concept in the distributed directory service is 

authority, which indicates which item of distributed state should 

be regarded as the value of a particular semantic datum.  The 

distributed system must guarantee that its messages and state 

updates always preserve the invariant that a single host is 

authoritative over any semantic datum, and furthermore that 

authority is transferred among hosts in a reasonable way.  In this 

context, “reasonable” also includes the concept of delegating 

authority in a way that restricts the influence of Byzantine faulty 

hosts in the distributed system. 

6.3 Anecdotal experience 

The value of this methodology is highlighted by our experience in 

developing the procedure for the move/rename operation.  

Although the rename operation is semantically straightforward, at 

the distributed-system level it involves up to four hosts interacting 

to perform an atomic operation.  Moreover, any subset of these 

machines may be Byzantine-faulty, and our requirement for 

restricting Byzantine faults forbids us from allowing the state of 

the non-faulty machines to become polluted.  As we developed a 

rename procedure, we recorded the distributed-system behavior in 

TLA+.  Once we had a formally precise description, we could 

reason through the behavior, and it turned out that our first 

rename procedure was flawed, so we started over with a different 

procedure.  We repeated this process 19 times, in several cases 

fundamentally changing the distributed-system state schema, until 

we achieved a distributed-system spec that refined to a reasonable 

semantic spec. 

If we had gone directly to an implementation without first writing 

a distributed-system spec, it would have been far more costly to 

make the necessary changes.  Furthermore, it would have been 

more difficult to understand the distributed-system aspects of the 

problem without getting mired in implementation details. 

7. LESSONS

Over the course of the Farsite project, we have learned many 

lessons, most of which we have presented in earlier papers [1, 15].  

Overall, however, two lessons stand out: First, in a real system, 

determinism is harder to achieve than you would expect.  Second, 

a system that first seemed to be addressing a disk problem turned 

out to be addressing a network problem. 

7.1 Determinism Is Harder Than Expected 

Running a service in a replicated state machine requires that the 

service be deterministic.  Theoretically, this sounds fairly simple, 

but in practice, we found that non-determinism creeps into code 

from many sources.  A striking anecdote illustrates the point: 

After much debugging effort, we once tracked down a replica-

divergence bug that turned out to be calls to the system quicksort 

function qsort producing different outputs from identical inputs.  

Because quicksort is not a stable sort, the function has freedom to 

produce different orderings when not all keys are unique.  At first 

we suspected that qsort does something like using rand() to select 

a pivot, thereby causing different invocations with the same inputs 

to behave differently; however, investigation revealed that this is 

not the case.  It turns out that in our test configuration, one 

machine in the RSM group was running Windows 2000, and 

another was running Windows XP.  The implementations of qsort 

in Win2K and WinXP differ in a way that can cause them to 

produce different results given identical inputs if the inputs have 

elements with equal keys.  Because the qsort routine is 

dynamically linked, the Farsite code picks up different versions of 

it on different machines. 

The main lesson from this is that code boundaries are not as clear 

as one might wish, and any call to any routine that is outside the 

controlled code is a potential entry point for non-determinism. 

7.2 A Network Problem, Not a Disk Problem 

A number of the Farsite team members had previously worked on 

Tiger [3], a scalable video file server built from a collection of 

personal computers and a network switch.  When we started that 

project, we thought that that hard issue would be getting the video 

data from the disks.  After designing and implementing Tiger, it 

turned out that once we had the initial idea of how to schedule 

disk accesses, the disks weren’t the problem.  Instead, managing 

the network in terms of overloads, failures and getting the 

protocols right consumed nearly all of our time and mental effort.  

That is, we concluded that the video server problem was more 

about the network than the disk. 

We had an analogous experience with Farsite.  In the beginning, 

we thought that the hardest issue would be finding enough disk 

space in order to make sufficient replicas to ensure reasonable file 

availability.  In fact, the first Farsite publication [4] was a 

feasibility study that considered this question, and concluded that 

sufficient disk space was available; a second early publication 

[11] addressed how to find duplicate files to coalesce to save 

space.  By the end of the project, it was clear that the hardest 

problems involved the directory service, lease protocol, and 

consistent distributed crash recovery.  That is, Farsite, like Tiger 

before it, really was more of a network problem than a disk/file 

system problem. 

As with many things, this seems obvious only in retrospect.  The 

difficulty in solving network problems is really a more 

complicated version of the local concurrency problem that we 

were trying to ameliorate by adopting the single threaded 

programming models described in §4.  We couldn’t adopt such a 

simple strategy across nodes because we needed the concurrency 

and we also had to worry about (possibly Byzantine) failures.  The 

design decision to treat even BFT groups as potentially malicious 

extended this problem into the directory service, and gave rise to 

much of the complexity there.  We were able to solve the file 

availability problem using simple statistical models and some 

assumptions about usage based on measurements of Microsoft 

machines.  The protocol design problem required TLA+ and years 

of careful thought. 

After twice making the same error about identifying where the 

difficulty in a system design lies, we hope that we and our readers 

can learn from where we went wrong and find new and more 

interesting mistakes to make in the future. 
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