Inverse Texture Synthesis

Li-Yi Weil Jianwei Han?* Kun Zhou!

IMicrosoft Research Asia

inverse synthesis

original control map
8902 x 1

original texture
8902 x 11

Hujun Bao?

2State Key Lab of CAD&CG, Zhejiang University

1

Baining Guo'! Heung-Yeung Shum

m
<
1282 x 11 | &
e}
m
3
-
1282 x1 |£
texture target control from original from compaction
compaction 14776 sec 1719 sec

Figure 1: Inverse texture synthesis. Given a large globally-varying texture with an auxiliary control map (patina sequence from [Lu et al. 2007] in this case),
our algorithm automatically computes a small texture compaction that best summarizes the original, including both texture and control. This small texture
compaction can be used to reconstruct the original texture from its original control map, or to re-synthesize a new texture under a user-supplied control map.
Due to the reduced data size, re-synthesis from our compaction is much faster than from the original without compromising image quality (right two images).
In this example we use [Kwatra et al. 2005] for forward synthesis, but other algorithms can also be used since our compactions are just ordinary images.

Abstract

The quality and speed of most texture synthesis algorithms depend
on a 2D input sample that is small and contains enough texture vari-
ations. However, little research exists on how to acquire such a
sample. For homogeneous patterns this can be achieved via man-
ual cropping, but no adequate solution exists for inhomogeneous or
globally varying textures, i.e. patterns that are local but not station-
ary, such as rusting over an iron statue with appearance conditioned
on varying moisture levels.

We present inverse texture synthesis to address this issue. Our in-
verse synthesis runs in the opposite direction with respect to tra-
ditional forward synthesis: given a large globally varying texture,
our algorithm automatically produces a small texture compaction
that best summarizes the original. This small compaction can be
used to reconstruct the original texture or to re-synthesize new tex-
tures under user-supplied controls. More important, our technique
allows real-time synthesis of globally varying textures on a GPU,
where the texture memory is usually too small for large textures.
We propose an optimization framework for inverse texture synthe-
sis, ensuring that each input region is properly encoded in the output
compaction. Our optimization process also automatically computes
orientation fields for anisotropic textures containing both low- and
high-frequency regions, a situation difficult to handle via existing
techniques.

Keywords: texture synthesis, texture mapping, GPU techniques

*This research was conducted during Jianwei Han’s internship at MSRA.

1 Introduction

Recent years have witnessed significant progress of example-based
texture synthesis algorithms. Most of these techniques rely on the
assumption that the input texture be homogeneous, i.e. local and
stationary in the Markov-Random-Field definition [Efros and Le-
ung 1999; Wei and Levoy 2000]. However, not all textures are ho-
mogeneous, as natural patterns often exhibit global variations con-
ditioned on environment factors such as iron rusting following the
moisture level over a statue. We term such textures that are local but
not stationary globally varying textures, and the environment fac-
tors that determine the global texture distribution the control map.
Examples of control map include the context information [Lu et al.
2007], the spatial-varying parameters [Gu et al. 2006], and the de-
gree map [Wang et al. 2006]. With the advance of data capturing
technologies as well achievable synthesis effects, globally varying
textures are becoming more and more important [Wang et al. 2006;
Gu et al. 2006; Lu et al. 2007].

One major problem for globally varying textures is their data size,
as they need to cover sufficiently large surface area for capturing
global variation. For example, a drying-cloth BRDF texture from
[Gu et al. 2006] can be as large as 512 (width) x 512 (height) x 33
(time) with storage size 288 MB and a crackling-paint color texture
from [Lu et al. 2007] can be 1226 x 978 x 50 with storage size
35 MB. Such large textures can cause problems for storage, com-
putation, and transmission. These problems can be alleviated if we
could find a small texture sample from which the original texture
can be represented. This small sample can be easily obtained via
manual cropping for homogeneous textures. Unfortunately, manual
cropping does not work for globally varying textures as no small
window can cover all relevant information. An example is demon-
strated in Figure 2.

We present a new technique termed inverse texture synthesis to
address this issue. Our inverse synthesis runs in the opposite di-
rection with respect to traditional texture synthesis: given a large
globally-varying texture with an associated control map, our algo-
rithm automatically computes a small texture compaction that en-
codes both the texture details and the control map of the original

manual
cropping

compaction

original

Figure 2: Comparison of cropping and our technique. Note that due to the
globally varying nature of the original, it is impossible to perform a manual
cropping that captures the major characteristics of the original texture (no
matter where you put the window). Our method, in contrast, encodes the
major features of the original into a small compaction via inverse synthesis.

(Figure 1). This small texture compaction can be used to recon-
struct the original texture from its original control map (Figure 8)
or to re-synthesize new textures under a user-supplied control map
(Figure 11). Our technique is inspired by the pioneering work of
epitome [Jojic et al. 2003] (and follow-ups such as jigsaw [Kannan
et al. 2007]) and in terms of representation our compaction is just a
variation of epitome.' However, so far these techniques have yet to
provide satisfactory quality for graphics applications. We present a
different algorithm that targets only textures and is thus less general
than [Jojic et al. 2003] but produces better results for textures; see
Figure 3 and Section 2&3 for more details.

More importantly, our small compaction allows real-time synthe-
sis of globally varying textures on a GPU, where the texture mem-
ory is usually too small for large textures. Furthermore, in con-
trast to previous GPU techniques designed primarily for homoge-
neous input textures (e.g. [Lefebvre and Hoppe 2005; Lefebvre
and Hoppe 2006]), our technique allows interactive user painting
of globally varying textures, combining the generality of example-
based texture synthesis as well as the controllability and flexibility
of WYSIWYG-style user painting [Hanrahan and Haeberli 1990;
Ashikhmin 2001; Hertzmann et al. 2001; Ritter et al. 2006].

We propose an optimization framework for inverse texture synthe-
sis. Optimization has been utilized for forward texture synthesis as
in [Kwatra et al. 2005] which casts the neighborhood search process
in [Efros and Leung 1999; Wei and Levoy 2000] as optimizing an
energy function. We employ optimization for a completely different
purpose: to ensure that each neighborhood of the input texture has
a presence in the output compaction. We achieve this by minimiz-
ing an inverse energy function that measures the similarity between
each input neighborhood and its best match from the output com-
paction.

Optimization with the inverse energy function is a major technical
challenge. Since our similarity measurement is performed in the
reverse direction with respect to traditional texture synthesis, exist-
ing acceleration techniques such as tree-structure [Wei and Levoy
2000; Kwatra et al. 2005] are not applicable as they are designed for
static images, whereas our compaction changes dynamically along
with the optimization process. We address this issue by proposing
a novel optimization solver that pre-processes the input neighbor-
hoods into a small number of clusters [Wei and Levoy 2000] and
performs measurement only for the center of each cluster. Mea-
surements for the rest of input neighborhoods are then conducted
through their cluster centers in constant time, thanks to the transi-
tive property of neighborhood similarity,

Another non-trivial issue is dealing with anisotropic textures with
non-uniform orientations. A good orientation field not only yields

ISince epitome may refer either to the representation or the original al-
gorithm [Jojic et al. 2003], we use the term compaction to avoid confusion.

compaction with higher quality/size ratio but also provides bet-
ter user control for orienting synthesized textures. One possible
method to compute this orientation field is via manual specification
at a few key locations followed by interpolation (e.g. [Turk 2001]),
but this can be tedious and inaccurate. Another common approach
is to rely on high frequency details (e.g. [Perona and Malik 1990;
Ziou and Tabbone 1998; Paris et al. 2004]), but this is not applica-
ble to low frequency regions. Our energy minimization framework
automatically computes this orientation field, as a good orientation
field usually yields lower energy value. As our approach utilizes
spatial neighborhoods as the only metric, it works well for textures
with both low and high frequency regions.

2 Previous Work

Forward texture synthesis has made significant progress recently,
with applications ranging from surface texturing [Turk 2001; Wei
and Levoy 2001], animation [Bargteil et al. 2006; Kwatra et al.
2007], image editing [Efros and Freeman 2001; Drori et al. 2003;
Fang and Hart 2004; Liu et al. 2004], and time varying phenomena
[Wang et al. 2006; Gu et al. 2006; Lu et al. 2007]. The core al-
gorithms of these techniques can be classified as being either local
[Efros and Leung 1999; Wei and Levoy 2000; Kwatra et al. 2005] or
global [Heeger and Bergen 1995; Portilla and Simoncelli 2000; Qin
and Yang 2005] depending on the texture statistics/characteristics
used. Both categories of forward synthesis techniques cannot be
directly used for our inverse synthesis, as local techniques might
not retain all the original features (e.g. Figure 6), whereas a global
technique often has problem retaining local texture details.

Despite their success, most existing forward synthesis algorithms
have limited pattern variation and computation speed as they have
been primarily concerned with synthesizing homogeneous textures
on a CPU. The speed issue has been addressed by parallel GPU
texture synthesis [Lefebvre and Hoppe 2005; Lefebvre and Hoppe
2006] which runs much faster than CPU-based algorithms. A fur-
ther advantage of GPU synthesis is reduced storage; this is very
important for real-time applications as a commodity GPU often has
limited texture memory. However, no GPU algorithms so far could
support globally-varying synthesis as demonstrated in [Wang et al.
2006; Gu et al. 2006; Lu et al. 2007].

The pattern variation issue has been addressed by recent advances
in globally varying texture synthesis. These methods either use sta-
tionary inputs and establish artificial correspondence for synthesis
[Matusik et al. 2005; Zhang et al. 2003] or synthesize directly from
captured patterns along with control maps [Wang et al. 2006; Gu
et al. 2006; Lu et al. 2007]. Although the former method could pro-
duce interesting morphing or transition patterns, they often lack the
ground truth which can be provided by the later approach. How-
ever, a disadvantage of captured globally varying textures is their
large size, causing memory and speed problems for synthesis. This
is particularly harmful for GPU performance.

We address both the quality and speed issues by our inverse tex-
ture synthesis framework as well as an accompanying GPU forward
synthesis algorithm that is applicable to globally varying textures.

One possible alternative to reduce texture size is texture analysis,
extracting a set of parameters characterizing a given texture [Heeger
and Bergen 1995; Portilla and Simoncelli 2000; Qin and Yang
2005]. Such a set of parameters, if small enough, could serve as the
ultimate compaction. However, so far these techniques have been
designed for stationary, but not globally varying, textures. An-
other possibility is to summarize a texture into a set of textons (e.g.
[Popat and Picard 1997; Leung and Malik 2001]) and use that for
synthesis. However, we prefer to use a compacted image form since
it is more general (i.e. can feed as input to any forward texture
synthesis algorithm). This is particularly important for GPU im-

For each group of images, the original is shown on the left, the result by
epitome [Jojic et al. 2003] on upper right, the result by seam carving [Avi-
dan and Shamir 2007] on middle right, and our result on lower right. The
epitome results are produced with parameters yielding the best quality. Note
that epitome can produce either blur (right case) or discontinuity (left case).
The seam carving results are produced with the e energy function as rec-
ommended in [Avidan and Shamir 2007]. They tend to be noisy.

histogram our

matching compaction

original

Figure 4: Comparison of histogram matching and our technique. His-
togram matching as utilized in [Kopf et al. 2007] can preserve color his-
tograms but not structures with similar colors. Our method preserves both.

plementations such as [Lefebvre and Hoppe 2005; Lefebvre and
Hoppe 2006] where an image input is required.

[Jojic et al. 2003; Kannan et al. 2007] summarize local patch prop-
erties of a given image into an epitome or jigsaw, a process that has
significantly inspired our research. However, these techniques use
patches to summarize general images, which is different from our
method of using neighborhoods for texture images. Consequently,
their results are often not good enough for reconstruction as shown
in Figure 3 and [Kannan et al. 2007](Figure 3). Furthermore, since
these techniques possess no equivalent notions for global variance
and control maps, there is no direct applicability for re-synthesis.
(Their reconstruction is achieved by simply recording the explicit
patch mappings between the original and the epitome/jigsaw.) We
provide a more detailed discussion in Section 3 after introducing
the main ideas of our algorithm. As a concurrent work, [Wang et al.
2008] factors repeated image content via epitome. This technique
is targeted for compression whereas ours for synthesis.

Our technique is also related to seam carving [Avidan and Shamir
2007] for content-aware image resizing. But seam carving is op-
timized for preserving general image saliency, not textures which
may contain non-salient features. Consequently compactions com-
puted by seam carving tend to be noisy. [Kopf et al. 2007] pre-
serves global statistics by integrating histogram matching [Heeger
and Bergen 1995] with optimization [Kwatra et al. 2005], but this
works only for color but not general structure information. Our
technique preserves general neighborhood information (including
both color and structure). See Figure 4 for comparison.

3 Overview

We cast our inverse synthesis process as an optimization problem.
Specifically, given an original texture X, our goal is to calculate
a small texture compaction Z with user-specified size, minimizing

0.8

0.6

0 L L N
0 50 100 150
compaction size

L
200 250

Figure 5: Energy function plot. The horizontal axis is compaction size
(in pixels), whereas the vertical axis is energy value normalized with the
maximum possible value.

the following energy function:

D(x;z;w) =

2
[Xp(Wp) — 7,

(Wp)
+ Xq(Wq) — 2° (1)

1
| X7 2
peXT
o
77 2|
qezt
where z/x represents the sample values for Z/X, w is the orienta-
tion field for X, g/p runs through a subset ZT/ X" of Z/X, Xp/z,
indicates the spatial neighborhood around p/q, w,/w, the local ori-
entations at p/q from which x,/x, is sampled from, z,/x, is the
most similar neighborhood in Z/X with respect to X,,/z,, and « is
a user tunable weighting. In our experiments, we have found that
a = 0.01 works well for most textures we have tried.

The energy function value varies depending on the compaction size;
as expected, the larger the size of the compaction, the lower the er-
ror and therefore the energy value. An example is illustrated in
Figure 5. The compaction size can either be picked by the user
according to her specific application needs, or automatically deter-
mined by our simple heuristic as discussed in Section 5.

As shown in Equation 1 the energy function consists of two terms.
Although having similar forms, they serve completely different pur-
poses. We illustrate the necessity of both terms in Figure 6.

The first term measures the local similarity for a set of samples in X
with respect to Z. By calculating an Z that minimizes this energy
term, we attempt to ensure that for every input neighborhood x,,,
we could find a corresponding compaction neighborhood z,, that
is similar to x,. We name the first term the inverse term due to
its inverse synthesis nature. Without this inverse term, the result-
ing compaction might miss important features from the original, as
shown in Figure 6.

The second term measures the local similarity for a set of samples
in Z with respect to X. It is similar to the energy function in [Kwa-
tra et al. 2005] for forward synthesis. The reason for incorporating
this forward term is that Z computed from the inverse term alone
may contain problems for re-synthesis. For example, it might hap-
pen that all the original sample neighborhoods {x,, } map to a corner
of Z, causing garbage in other regions. {x,} may also map to dis-
joint regions of Z causing discontinuity across region boundaries.
Both problems cannot be detected by the inverse term but can be
eliminated by the forward term. See Figure 6 for examples.

Using this energy function framework, the methods by epitome [Jo-
jic et al. 2003] and jigsaw [Kannan et al. 2007] can be related to
our technique as follows. First, their framework does not have an
explicit forward energy term. Second, they optimize for patches
instead of neighborhoods as in our approach. Due to these two
reasons, epitome and jigsaw can produce blur and discontinuity ar-
tifacts (Figure 3) similar to the ones produced by our solver with
only inverse energy term (Figure 6). In Figure 3, we have strived

both i-only both i-only both
Figure 6: Why we need both forward and inverse terms in our energy func-
tion. With only the forward term the compaction will not provide sufficient
coverage of the original (left case). With only the inverse term the com-
paction may contain garbage (middle case) or discontinuity (right case). All
compactions are drawn in larger scale than the originals for clarity.

f-only

to optimize the parameters for epitome to produce the best results.
But in general we have found it difficult to achieve our results due
to the nature of epitome which uses a blend kernel to control the
reconstruction: when the kernel is too large, the epitome tends to
be too blurry. (This blur problem is also described in [Kannan et al.
2007].) When the kernel is too small, the epitome may contain
holes or discontinuities.

If X is defined over a 3D surface rather than a 2D grid, our algo-
rithm samples x,, via local flattening as in [Wei and Levoy 2001].
As a result, our methodology does not require global or even large
scale parameterization for surface textures, and can therefore pro-
duce a 2D compaction with little distortion.

For an anisotropic texture with non-uniform orientation our algo-
rithm also computes the orientation field w automatically as part
of the optimization process. We have observed that a w that re-
sults in lower energy values usually yields compaction with higher
quality/size ratio. For isotropic textures we leave w as a constant;
i.e. aregular grid for 2D textures and a smooth orientation field for
surface textures [Turk 2001].

Since our output compactions are just ordinary images, they can be
fed directly into any texture synthesis algorithm for re-synthesis.
For homogeneous patterns all we need is the texture information.
However, for globally varying textures, a control map is also re-
quired for user-controllable synthesis. The precise semantics and
usage of the control map depend on the specific algorithms; some
examples include the user specifications in [Hertzmann et al. 2001;
Ashikhmin 2001], context information in [Lu et al. 2007], the
spatially-varying parameters in [Gu et al. 2006], and the degree map
in [Wang et al. 2006]. All such control maps are naturally handled
by our algorithm, as we treat each pixel as a generic vector that may
contain color, control, or any other auxiliary information.

4 Solver for Inverse Texture Synthesis

Our inverse texture synthesis is achieved by solving Equation 1. In
Section 4.1, we first describe a straightforward solver. Although our
basic solver is capable of achieving good quality for forward syn-
thesis, it has both speed and quality issues for our inverse synthesis.
We address these issues in Section 4.2 with our improved solver.
For easy reference we have summarized our solver in Table 1.

Note that similar to previous texture synthesis work, our algorithm
is multi-resolution and computes the output compaction from lower
to higher resolutions. Since we apply identical algorithms for each
resolution, below we only describe algorithms for computing one
resolution.

Inverse Texture Synthesis
z) — random neighborhood in Z V p € X'
Xg «— random neighborhood in X V q € Z*
w® « init from [Paris et al. 2004] and/or manual touch
for iteration m = 0:M // for w
for resolution £ = O:L
if{ <L w « downsample from w at L
if (>0 z+« upsample from z at /-1
for iteration n = O:N
2"t argmin, ®(x;z; w) // z E-step
foreach p € X7
2t — argminzp X, (Wp) — z,|* /] inverse M-step
foreach q € Z1
xp argminxq Ix,(Wq) — z,|* // forward M-step
ifz)' =z Vpe X'
z— "1
if £ ==L // highest resolution
w'tl — argminy, ®(x;z;w) // w E-step

if it == w"
W o— wn+1
return

end if

end if
end if
end for
end for
end for

Table 1: Pseudocode of our algorithm. The energy function @ is defined
in Equation 1. Solving for w is only necessary for anisotropic textures with
non-uniform orientation. Note that ® never increases at each E and M steps
of our solver.

4.1 Basic Solver

Our basic solver is inspired by texture optimization [Kwatra et al.
2005], but since our energy function contains both forward and in-
verse terms we have to provide a different solver. Details are as
follows.

The core part of the solver is marked as E-steps and M-steps in Ta-
ble 1. (Note: our solver is not exactly expectation-maximization
(EM), but we follow the usage of E/M-steps as in [Kwatra et al.
2005] for clarity.) At E-steps, we solve for z/w to minimize the
energy function (covering both energy terms simultaneously). At
M-steps, we search for each neighborhood x,,/ z, on X/Z the most
similar neighborhood z,/x, on the Z/X. The output of one
step feeds as input to the other, and we iterate this process several
times until convergence or a pre-determined number of iterations is
reached.

The original optimization solver [Kwatra et al. 2005] utilized tree
search for the M-step and least square for the z E-step. Unfortu-
nately, both incur problems for our inverse synthesis. For the M-
steps, we have found that tree search is too slow for large input
textures. In addition, tree (or any other similar pre-processed ac-
celeration data structures) is not applicable to the inverse M-step
since the output Z is constantly changing. For the z E-step, least
square solver could cause excessive blur as pointed out by [Han
et al. 2006]. Furthermore, previous methods have no correspon-
dence for the w E-step which involves finding optimal local orien-
tations. We address these issues via our improved solver below.

4.2 Improved Solver

Our goal is to provide a solver that incurs no blur in the z E-step and
consumes constant time per pixel search for both the forward and

~

1 |:

|

{

€.) :

N (
aba
J A

W/

’

.’\r
<'2

o

Figure 8: Reconstruction of the original from our compaction. Within each group of images, the original and control are on the left, the reconstruction is
on the right, and our compaction (including both texture and control) is in the middle. Each reconstruction is computed from the compaction according to
an original control map (with quarter resolution of the color) serving as constraints in [Kwatra et al. 2005]. From top to bottom: banana from [Wang et al.
2006] (original 720 x 540, compaction 642), paint peeling from [Lu et al. 2007] (original 615 x 488, compaction 1282). In both cases the control map was
originally in quarter resolution of the color texture but was up-sampled before feeding into our inverse synthesis algorithm. Note that our reconstruction results

remain faithful to the original even with coarser control maps.

X input Z compaction

Figure 7: Illustrating of our improved solver. Here, we use a toy case with
only four k-coherence neighbors as exemplified in pixels {1, 2, 3, 4} around
0 in the compaction. The sources of these four pixels are marked with the
same numbers in the input. z E-step: the value of 0 is chosen from {5, 6,
7, 8} as determined by 0’s neighbors {1, 2, 3, 4}. Forward M-step: the
best match for 0 is also chosen from {5, 6, 7, 8}. Inverse M-step: B is a
cluster center where A belongs to. So B first finds the best match C through
exhaustive search, and the best match for A is determined through B.

inverse M-steps. Our method is inspired by k-coherence [Tong et al.
2002] and clustering [Wei and Levoy 2000]; details are described
below.

Preprocess During preprocess, we compute a k-coherence
similarity-set s(p) for each input pixel p, where s(p) contains a list
of other pixels with neighborhoods similar to p. The size of the
similarity-set, K, is a user-controllable parameter that determines
the overall speed/quality. s(p) will be utilized for our z E-step and
forward M-step as detailed below. We also perform a clustering of
the input neighborhoods via TSVQ [Wei and Levoy 2000] and col-
lect the cluster centers into a set X .. For each input pixel p, we find
a subset ¢(p) of X, with most similar neighborhood to p. X. and
c(p) will be utilized for the inverse M-step as detailed below.

We also initialize w using [Paris et al. 2004] and/or limited manual
specifications. Even though these methods might not yield good
orientations at every input pixel location, they provide better initial

basic solver improved solver

¢ [2E[fM [iM [all [zE [M [iM [al
banana | 4 73 70 147 7 4 3 14
peeling | 11 | 922 | 704 | 1637 | 47 | 48 | 167 | 263
rust 2 22 23 47 2 3 2 7
crack 5 135 | 200 | 340 16 17 17 50

Table 2: Timing information comparing our basic and improved solvers.
The top 2 cases are shown in Figure 8 and the bottom 2 in Figure 11. All
timing numbers are in units of seconds and are decomposed into z E-step,
forward M-step, and inverse M-step. All measurements are performed on a
PC with an Intel Xeon Dual-core 3.73GHz CPU and a 4GB RAM.

conditions to help our subsequent optimizations.

z E-step To address the blur issue, we adopt a discrete solver as
inspired by [Han et al. 2006]. Instead of least square, we only al-
low direct copy of sample values from input X to compaction Z.
During the copy operation, we not only copy the color plus con-
trol information, but also the source location of each copied pixel.
Specifically, to compute z" ! in E-step, each one of its values z(q)
at pixel q is determined independently from each other. For each q,
we first construct its k-coherence candidate set k(q) by taking the
union of similarity sets {s(g;)} from q’s spatial neighbors {g; } (plus
proper shifting as detailed in [Tong et al. 2002]). z(q) for the next
iteration is then chosen from k(q) as the one that most reduces the
energy function. Since now each z(q) is copied direct from some
input pixel, we avoid the blur issue in least square.

Forward M-step Since pixels are directly copied in the z E-step,
we can retain the input location information to conduct k-coherence
search in forward M-step. Specifically, for each output neighbor-
hood z, at pixel q, we determine its best match x,, from the input as
the one in k(q) (constructed in the same method as in z E-step) that
is most similar to z,. Since this is a constant time operation, it is

much faster than tree search, a logarithmic operation as described
in [Kwatra et al. 2005].

Unfortunately, this k-coherence acceleration cannot be applied to
the inverse M-step, as the compaction Z is constantly changing.
We address this issue below.

Inverse M-step At inverse M-step, we need to determine, for
each input neighborhood x,,, the best match z,, at compaction Z.
One method is to perform an exhaustive search through Z for each
X, but this can be expensive if Z is sufficiently large. Unfortu-
nately, as Z is constantly changing, this search cannot be accel-
erated via traditional methods that require preprocessing (such as
kd-tree or TSVQ). Furthermore, even if Z is small enough to allow
exhaustive search, repeat this process for all input neighborhoods is
still computationally expensive due to the large input size.

We provide a new acceleration that can address both issues of a
constantly changing output and a large input. The basic idea is as
follows. Instead of search through Z for each x,, in X, we perform
direct search for only a subset X, of X. For each p not in X, in-
stead of direct search, we find its best match in Z indirectly through
a set of intermediaries in X.. In this scheme, we achieve speedup
by performing direct search for only a subset X, of X, and guar-
antee quality via the transitive property of neighborhood similarity.
Details are as follows.

X, construction Intuitively, X. should contain candidates that
best represent the input neighborhoods. We achieve this by
clustering the input neighborhoods via TSVQ [Wei and Levoy
2000], and construct X as the set of cluster centers. A minor
difference between [Wei and Levoy 2000] and our approach
is that we define the cluster centers via median, not average.
This is to ensure good search results through Z. During run
time, at the beginning of each inverse M-step, we perform an
full search for each member of X..

Indirect search For each p not in X, we first find a subset ¢(p) of
X with most similar neighborhood to p. This is done only
once as a pre-process. During run-time, after a full search is
performed for X., we only search the possible output loca-
tions of ¢(p) to find the best match for x,,. Note that this is a
constant time operation since ¢(p) has a fixed size.

We can trade off quality/speed of this search algorithm by tuning
its parameters, including the sizes of X. and ¢(p). Note that when
X. ~ X, our method would reduce to full search. In our exper-
iments, we choose the size of X, to be roughly equivalent to the
compaction size Z, with the rational being that Z should contain a
good representation of input cluster centers. In our experiments, we
have found this heuristic effective, and we usually set ¢(p) = 1. To
further facilitate varying sizes of Z, we use TSVQ to build a tree
[Wei and Levoy 2000] and construct X, via tree cut to achieve the
optimal rate/distortion ratio [Gersho and Gray 1991]. In this sce-
nario, the TVSQ tree is built only once for each input and can be
repeatedly utilized for varying Z size.

w E-step Our w E-step refines the initial orientation field as part
of our optimization process. As shown in Table 1, our solver up-
dates the orientation field w only at the highest pyramid resolution
after z stabilizes. There are two reasons for this. First, unlike z
which starts with a totally random initialization, w starts with a rea-
sonably good initial condition as described in the preprocess step.
Consequently, our solver only needs to refine w instead of comput-
ing it from scratch. Second, empirically we have found that up-
dating w only at the highest resolution after z stabilizes yields best
results.

We now describe how we actually perform this refinement. A naive
approach is to repeatedly rotate each w;, and resample x,,(w;) until

argminy, ®(x;z;w) is found, but this is not only computationally
expensive but also prone to produce disoriented results. Instead, we
compute w,, iteratively and within each iteration we only consider
orientations within an interval [0-A6, O+A#), where 0 is initialized
as the average of p’s spatial neighbors and updated as best orienta-
tion of w,, computed at the end of iteration, and A# is initialized as
90 degrees and halved at the end of each iteration. Within each iter-
ation we sample 36 uniformly spaced samples from [6-Af, §+A6),
find out the three orientations yielding minimum energy function,
and choose the one that is closest to 6. (Note that we do this instead
of simply choosing the best one to avoid disoriented orientation
fields; i.e. we introduce a sense of “regularization term” into our
computation.) We perform three iterations per p. After w is up-
dated for the entire input, we conduct a bilateral filtering similar to
[Paris et al. 2004] for final smoothing.

Since input neighborhoods are resampled according to w, after w
is changed at the end of each w E-step all our acceleration data
structures such as X, ¢(p) and s(p) will be out of date. Although
it is possible to incrementally update these data structures, in our
current implementation we simply forgo all these accelerations and
use a brute force optimization.

5 Results and Discussion

Quality and speed The first thing we need to verify is quality
and speed of our approach. Quality-wise, our algorithm achieves
high data size reduction while allows faithful reconstruction of the
original, as shown in Figure 8. In addition to reconstruction of orig-
inal textures, our algorithm can also be used to re-synthesize novel
textures under user-supplied controls as demonstrated in Figure 11.
As shown, re-synthesis from our compaction preserves visual qual-
ity while runs much faster than re-synthesis from the original. Note
that our algorithm does not require a detailed control map for all
textures (e.g. the control map is much coarser than the paint crack
pattern in Figure 11). Also, even when the control map is in the
same resolution as the color texture, our algorithm still provides
significant data size reduction for time sequence textures such as
those in [Lu et al. 2007]. Regarding inverse synthesis speed, our
improved solver (Section 4.2) is more efficient than our basic solver
(Section 4.1), as demonstrated in Table 2.

Limitations For globally varying textures, we have found that
our algorithm works well when the original control map is reason-
ably correlated with the original texture pattern. If not, we might
not be able to accurately recover the original from our compaction;
an example is shown in Figure 9. Also, our algorithm cannot guar-
antee to compress all textures well. If a texture has little redundancy
to begin with, our algorithm will not be able to produce a signifi-
cantly smaller compaction without sacrificing re-synthesis quality.
An example is shown for the paint crack texture in Figure 11 where
re-synthesis from our compaction has a more accentuated appear-
ance than re-synthesis from the original. The quality can be im-
proved by using larger compactions.

Control map For source textures from [Gu et al. 2006] and [Lu
et al. 2007], we use the original control maps (i.e. spatially varying
parameters in [Gu et al. 2006] and context information in [Lu et al.
2007]) provided by the corresponding authors.” For the rest, we
compute the control maps via the method described in [Wang et al.
2006].

2The only exception is the peeling texture in Figure 8 where the original
control map is problematic as demonstrated in Figure 9. Consequently we
compute a better control map via [Wang et al. 2006].

reconstruction

original texture

ol

compaction

! M“ ’ ‘A’“

original control map
Figure 9: A failure case. The paint peeling texture and its original control
map are both from [Lu et al. 2007]. Due to the low correlation between
the actual texture pattern and the control map, our technique is unable to
reconstruct the original texture at all.

Parameters One of the key parameters of our inverse synthesis
algorithm is the compaction size. In Figure 5, we plot the energy
function value with respect to compaction size for a typical texture.
Notice two things here. First, the energy function decreases with
the increase of compaction size, as expected. Second, a good
choice of compaction size lies somewhere around the knee point of
the energy curve. However, determining the final compaction size
by the aforementioned approach is time consuming as we need to
plot the entire curve. In our experiments, we have been employing
the following heuristic that estimates the optimal compaction size
M (in pixel®) from the number of input clusters N (computed by
TSVQ as described in Section 4.2) via the following formula: M =
0.25 x N. We build the tree with an error bound ¢ = 0.05 x
maximum neighborhood distance. We have found that this heuristic
works well in practice.

Real-time GPU synthesis We have attempted two methods
for real-time globally varying texture synthesis on a GPU. Our first
method is an extension of image analogies [Hertzmann et al. 2001]
for GPU synthesis [Lefebvre and Hoppe 2005]. Specifically, in the
jargon of [Hertzmann et al. 2001], we treat the original control map
as the unfiltered input, the original texture as filtered input, the out-
put control map as the unfiltered target, and the output texture as
the filtered target to be computed, and then perform all the synthe-
sis computations on a GPU via [Lefebvre and Hoppe 2005] where
we encode the control map as additional channels beyond the color
texture. (The control map channels are read-only and not modified
during synthesis.) In the second method, we utilize the discrete op-
timization in [Han et al. 2006] by encoding the control map as a
constraint in the energy function. Since [Han et al. 2006] essen-
tially replaces the least squares solver in [Kwatra et al. 2005] with
a k-coherence solver, it can be efficiently implemented on GPU.
In our experiments we have found that the second approach yields
slightly better quality but the first approach is much faster. Conse-
quently, we adopt the first approach for GPU synthesis of globally
varying textures.

Our algorithm allows real-time, user controllable synthesis of glob-
ally varying patterns as shown in Figure 10. Rendering from our
compaction produces similar visual quality as from the original. In

Figure 10: GPU synthesis for globally varying textures. Top: cheese mold.
Bottom: dirt accumulation. (Both from [Lu et al. 2007].) The left column
shows the original textures (cheese: 1214 x 1212, dirt: 271 x 481) while
the right columns show two frames of GPU renderings with user control
maps for aging effects. Our compactions have size 1282 and the synthe-
sized textures have size 5122. The synthesis speeds are 3.0/3.5 fps from the

originals and 6/7 fps from our compactions. All frame rates are measured
on a NVIDIA Quadro FX 4500 chip.

addition, due to reduced GPU memory access and consumption,
rendering from our compaction is more efficient.

Orientation field Figure 12 demonstrates our computation of
orientation fields as well the impact on output compactions. As
shown, orientation fields generated by our approach are better than
those by edge-based techniques [Paris et al. 2004], which is less
effective in low frequency regions, and manual specification (fol-
lowed by interpolation), which is tedious and inaccurate. Further-
more, the quality of the orientation field has a direct impact on in-
verse synthesis quality. As shown in the figure, a good orientation
field usually produces compactions with higher quality given a fixed
compaction size.

6 Conclusions and Future Work

We present inverse texture synthesis to compute a small texture
compaction from a large globally varying input texture. The small
compaction can be used to reconstruct the original texture via the
original control map or to re-synthesize novel textures under user-
supplied controls. Due to the reduced size, it is more economic to
store, transmit, and synthesize from our texture compaction than
from the original. Our reduced compaction is particularly benefi-
cial for GPU applications and we further propose a technique for
real-time GPU synthesis of globally varying textures.

For future work, our inverse texture synthesis can be directly ex-
tended to the following applications. Instead of a single image, we
could generate our compaction over a set of Wang tiles [Cohen et al.
2003]; all we need to is to properly handle boundary conditions
across matching tile edges. Our methodology ought to produce a
better tile set than previous methods. We can also apply our al-
gorithm to spatiotemporal textures such as smoke and water waves
and we expect this to yield even more data size reduction than 2D
images. Another possibility is texture editing [Brooks and Dodg-
son 2002] as operations performed on our small compaction can be
automatically propagated over a large original image. We are also
interested in extending our work for texture analysis and classifica-
tion. Finally, inverse texture synthesis could be utilized to compress
texture regions in general images. Since current image compression
techniques have not fully taken advantage of the spatial repetition
nature of textures, we expect our technique to yield better quality to
size ratio than previous methods.

Acknowledgements We would like to thank Jian Sun for advising
on orientation field methods, Frank Yu, Bennett Wilburn, and Eric Stoll-
nitz for video dubbing, Dwight Daniels for help on writing, Yale Univer-
sity, Columbia University, Jiaping Wang + Xin Tong, and mayang.com for
globally-varying textures, and reviewers for their valuable suggestions. Hu-
jun Bao was partially supported by the NSF of China (No. 60633070) and
the 973 Program of China (No. 2002CB312102).

References

ASHIKHMIN, M. 2001. Synthesizing natural textures. In Sympo-
sium on Interactive 3D graphics, 217-226.

AVIDAN, S., AND SHAMIR, A. 2007. Seam carving for content-
aware image resizing. In SIGGRAPH papers, 10.

BARGTEIL, A. W., SIN, F., MICHAELS, J. E., GOKTEKIN, T. G.,
AND O’BRIEN, J. F. 2006. A texture synthesis method for liquid
animations. In Symposium on Computer animation, 345-351.

BROOKS, S., AND DODGSON, N. 2002. Self-similarity based
texture editing. In SIGGRAPH papers, 653-656.

CABRAL, B., AND LEEDOM, L. C. 1993. Imaging vector fields
using line integral convolution. In SIGGRAPH papers, 263-270.

COHEN, M. F., SHADE, J., HILLER, S., AND DEUSSEN, O. 2003.
Wang tiles for image and texture generation. In SIGGRAPH pa-
pers, 287-294.

DRrori, I., COHEN-OR, D., AND YESHURUN, H. 2003.
Fragment-based image completion. In SIGGRAPH papers, 303—
312.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting for
texture synthesis and transfer. In SIGGRAPH papers, 341-346.

EFROS, A. A., AND LEUNG, T. K. 1999. Texture synthesis by
non-parametric sampling. In /ICCV 99, 1033.

FANG, H., AND HART, J. C. 2004. Textureshop: texture synthesis
as a photograph editing tool. In SSIGGRAPH papers, 354-359.

compaction
2562 x 9

compaction

from original
9924 sec

from compaction
6946 sec

output control

from original
84555 sec
Figure 11: Resynthesis timing and quality comparison. Notice that synthesis from our compaction retains visual quality of synthesis from original, but runs
much faster. In the rust case (from [Lu et al. 2007]) we use multiple frames, while in the paint crack case (also from [Lu et al. 2007]) we use only one frame.
The synthesis algorithm we used is [Kwatra et al. 2005].

from compaction
1131 sec

output control

GERSHO, A., AND GRAY, R. M. 1991. Vector quantization and
signal compression. Kluwer Academic Publishers.

Gu, J., Tu, C.-1., RAMAMOORTHI, R., BELHUMEUR, P., MA-
TUSIK, W., AND NAYAR, S. 2006. Time-varying surface ap-
pearance: acquisition, modeling and rendering. In SIGGRAPH
papers, 162-771.

HAN, J., ZHOU, K., WEI, L.-Y., GONG, M., BAO, H., ZHANG,
X., AND GUO, B. 2006. Fast example-based surface texture
synthesis via discrete optimization. Vis. Comput. 22,9, 918-925.

HANRAHAN, P., AND HAEBERLI, P. 1990. Direct wysiwyg paint-
ing and texturing on 3d shapes. In SIGGRAPH papers, 215-223.

HEEGER, D. J., AND BERGEN, J. R. 1995. Pyramid-based texture
analysis/synthesis. In SSIGGRAPH papers, 229-238.

HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B.,
AND SALESIN, D. H. 2001. Image analogies. In SIGGRAPH
papers, 327-340.

Joiic, N., FREY, B. J., AND KANNAN, A. 2003. Epitomic analy-
sis of appearance and shape. In ICCV ’03, 34.

KANNAN, A., WINN, J., AND ROTHER, C. 2007. Clustering ap-
pearance and shape by learning jigsaws. In Advances in Neural
Information Processing Systems 19.

KorF, J., Fu, C.-W., COHEN-OR, D., DEUSSEN, O., LISCHIN-
SKI, D., AND WONG, T.-T. 2007. Solid texture synthesis from
2d exemplars. In SIGGRAPH papers, 2.

KWATRA, V., ESsA, 1., BOBICK, A., AND KWATRA, N. 2005.
Texture optimization for example-based synthesis. In SIG-
GRAPH papers, 795-802.

KWATRA, V., ADALSTEINSSON, D., Kim, T., KWATRA, N.,
CARLSON, M., AND LIN, M. 2007. Texturing fluids. [EEE
Trans. Visualization and Computer Graphics 13, 5, 939-952.

LEFEBVRE, S., AND HOPPE, H. 2005. Parallel controllable texture
synthesis. In SIGGRAPH papers, 777-786.

=

(d)

Figure 12: Computing orientation fields from anisotropic textures. Within each row are (a) original texture with uniform x-y orientation, (b) orientation field
from [Paris et al. 2004], (c) orientation field via manual specification followed by interpolation, (d) orientation field by our method with initialization from (c),
(e,f,g,h) compactions from (a,b,c,d). The top two cases are synthetic (from [Lefebvre and Hoppe 2006]) while the bottom case is real (VisTex Frabic.0004).
The orientation fields are visualized via line integral convolution [Cabral and Leedom 1993].

LEFEBVRE, S., AND HOPPE, H. 2006. Appearance-space texture
synthesis. In SIGGRAPH papers, 541-548.

LEUNG, T., AND MALIK, J. 2001. Representing and recogniz-
ing the visual appearance of materials using three-dimensional
textons. Int. J. Comput. Vision 43, 1, 29-44.

Liu, Y., LIN, W.-C., AND HAYS, J. 2004. Near-regular texture
analysis and manipulation. In SIGGRAPH papers, 368-376.

Lu, J., GEORGHIADES, A. S., GLASER, A., WU, H., WEI,
L.-Y., Guo, B., DORSEY, J., AND RUSHMEIER, H. 2007.
Context-aware textures. ACM Trans. Graph. 26, 1, 3.

MATUSIK, W., ZWICKER, M., AND DURAND, F. 2005. Tex-
ture design using a simplicial complex of morphable textures. In
SIGGRAPH papers, 7187-794.

PARIS, S., BRICENO, H. M., AND SILLION, F. X. 2004. Capture
of hair geometry from multiple images. In SIGGRAPH papers,
712-719.

PERONA, P., AND MALIK, J. 1990. Detecting and localizing edges
composed of steps, peaks and roofs. In ICCV ’90, 52-57.

PoprAT, K., AND PICARD, R. W. 1997. Cluster based probability
model and its application to image and texture processing. [EEE
Trans. Image Processing 6, 2, 268-284.

PORTILLA, J., AND SIMONCELLI, E. P. 2000. A parametric tex-
ture model based on joint statistics of complex wavelet coeffi-
cients. Int. J. Comput. Vision 40, 1, 49-70.

QIN, X., AND YANG, Y.-H. 2005. Basic gray level aura matrices:
Theory and its application to texture synthesis. In ICCV 05,
128-135.

RITTER, L., LI, W., CURLESS, B., AGRAWALA, M., AND
SALESIN, D. 2006. Painting with texture. In Eurographics
Symposium on Rendering, 371-376.

TONG, X., ZHANG, J., Liu, L., WANG, X., GUo, B., AND
SHUM, H.-Y. 2002. Synthesis of bidirectional texture functions
on arbitrary surfaces. In SIGGRAPH papers, 665-672.

TURK, G. 2001. Texture synthesis on surfaces. In SIGGRAPH
papers, 347-354.

WANG, J., TONG, X., LIN, S., PAN, M., WANG, C., Bao, H.,
Guo, B., AND SHUM, H.-Y. 2006. Appearance manifolds for
modeling time-variant appearance of materials. In SIGGRAPH
papers, 7154-761.

WANG, H., WEXLER, Y., OFEK, E., AND HoPPE, H. 2008.
Factoring repeated content within and among images. In SIG-
GRAPH papers.

WEIL, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis using
tree-structured vector quantization. In SIGGRAPH papers, 479—
488.

WEI, L.-Y., AND LEVOY, M. 2001. Texture synthesis over arbi-
trary manifold surfaces. In SIGGRAPH papers, 355-360.

ZHANG, J., ZHou, K., VELHO, L., GUO, B., AND SHUM, H.-
Y. 2003. Synthesis of progressively-variant textures on arbitrary
surfaces. In SIGGRAPH papers, 295-302.

Ziou, D., AND TABBONE, S. 1998. Edge detection techniques -
an overview. International Journal of Pattern Recognition and
Image Analysis 8, 537-559.

Supplementary Materials

The following pages are additional images and do not constitute as an official part of the final paper.

S 4 < - o
from epitome from our compaction from epitome from our compaction

Figure 13: Resynthesis results from epitome and from our compaction. Notice the blur and discontinuity artifacts in the results produced from epitome. See
Figure 3 for the source images.

e B B B
S R i Bt
-

;‘"

compaction

tH

compaction

| J‘i ff
i

!
i

Brodatz D95 re-synthesis VisTex Fabric.0014 re-synthesis
Figure 14: Inverse synthesis and re-synthesis for stationary textures. Even though our algorithm is designed primarily for globally varying textures, it can
also be applied to stationary textures. Note that re-synthesis results from our compactions often look more homogeneous than the original. This indicates that
even textures considered stationary are rarely perfectly so. The originals and reconstructions have sizes 3202 and the compactions have sizes 642.

Figure 15: Additional examples for Figure 12

paint crack original (color and control) 799 x 546 output control

paint crack compaction (color and control) 5122 output control

paint crack compaction (color and control) 2562 output control

paint crack compaction (color and control) 1282 output control from compaction

Figure 16: Resynthesis with different compaction size. Note that the larger the size of the compaction, the better the resynthesis result.

compaction

cheese original (0010 and control) 1214 x 1212 X 6 1282 x 6 output control synthesis result

Compaction ‘ .

dirt original (color and control) 271 x 481 x 5 1282 x 5 output control synthesis result

Figure 17: Control maps for Figure 10. For the output synthesis results we only show one time frame, even though the textures are time-varying. See our
video for run-time demo of time-varying effects.

compaction
1282 x 5
black iron original (color and control) 1027 x 1071 x 5 output control from original from compaction
5894 sec 1199 sec
Clz,y)
compaction output

wood original with ¢(0) and) frames 4202 1282 control from original 3198 sec from compaction 88 sec
g

Figure 18: Additional examples for Figure 11.

Figure 19: Banana reconstruction with different control map resolutions. From left to right: original texture, original control map, compaction and compaction
control map, reconstructed texture and blurred original (produced by downsampling the original followed by upsampling). The original control maps are in
successively lower resolutions from top to bottom. Note that even with excessively low-resolution control maps, our algorithm still produces results with
crispier texture details than the blurred original.

Figure 20: Paint-peeling reconstruction with different control map resolutions. See caption for Figure 19.

