
Making P2P Accountable without Losing Privacy

Mira Belenkiy, Melissa Chase, C. Chris Erway, John Jannotti,
Alptekin Küpçü, Anna Lysyanskaya, Eric Rachlin

Department of Computer Science, Brown University
Providence, RI, USA

{mira,mchase,cce,jj,kupcu,anna,eerac}@cs.brown.edu

ABSTRACT
Peer-to-peer systems have been proposed for a wide vari-
ety of applications, including file-sharing, web caching, dis-
tributed computation, cooperative backup, and onion rout-
ing. An important motivation for such systems is self-scaling.
That is, increased participation increases the capacity of the
system. Unfortunately, this property is at risk from selfish
participants. The decentralized nature of peer-to-peer sys-
tems makes accounting difficult. We show that e-cash can be
a practical solution to the desire for accountability in peer-
to-peer systems while maintaining their ability to self-scale.
No less important, e-cash is a natural fit for peer-to-peer sys-
tems that attempt to provide (or preserve) privacy for their
participants. We show that e-cash can be used to provide
accountability without compromising the existing privacy
goals of a peer-to-peer system.

We show how e-cash can be practically applied to a file
sharing application. Our approach includes a set of novel
cryptographic protocols that mitigate the computational and
communication costs of anonymous e-cash transactions, and
system design choices that further reduce overhead and dis-
tribute load. We conclude that provably secure, anonymous,
and scalable peer-to-peer systems are within reach.

Categories and Subject Descriptors: E.3 [Data]: Data
Encryption; C.2.2 [Computer Systems Organization]:
Computer-Communication Networks—Network Protocols

General Terms: Algorithms, Design, Economics, Security

1. INTRODUCTION
Peer-to-peer systems leverage the cooperative exchange

of resources between peers to provide useful services, but
lack strong mechanisms to enforce this cooperative behav-
ior. Their decentralized nature provides many advantages,
including fault-tolerance and scalability, yet seems to pre-
clude simple enforcement mechanisms such as quotas and
strong reputations.

Measurement studies and theoretical analyses have shown

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’07, October 29, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-883-1/07/0010 ...$5.00.

selfish behavior common among users of peer-to-peer file-
sharing systems, and effective for obtaining an unfair share
of resources [1, 29, 35, 34]. The most popular file-sharing
system, BitTorrent, employs a“tit-for-tat”mechanism aimed
at encouraging fairness, but a recent study has suggested
that BitTorrent’s effectiveness is due largely to the altruistic
behavior of a small number of high-bandwidth nodes [42]
rather than fair contributions from all participants. Most
nodes leave the system as soon as they finish downloading;
only the most altruistic continue to donate upload capacity.

BitTorrent’s apparent dependence on a small percentage
of altruistic nodes indicates that it may not exhibit the fault-
tolerance and scalability that one would expect when con-
sidering the protocol in the abstract. If a small number of
altruistic users change their habits or fail, BitTorrent’s effec-
tiveness would be at risk. Worse, in other peer-to-peer con-
texts such as distributed backup, altruism is less likely since
non-renewable resources such as disk space are exchanged. A
repeat of BitTorrent’s success in these applications appears
unlikely without techniques to eliminate selfish behavior and
reliance on altruism.

We would like to build systems that provide fungible ben-
efits to cooperative nodes, rewarding those that continue to
provide service with credit towards future service. These
credits and debits eliminate free-riders by forcing every user
to contribute as much as he receives from the system. Eq-
uitable exchange would make the system significantly more
robust, as it would no longer be dependent on the contri-
butions of altruistic users. These credits should be secure,
anonymous, and fungible. Further, the complete system
should continue to self-scale.

In this paper, we focus on how a BitTorrent-like file-
sharing system might use endorsed e-cash, because the dy-
namics of BitTorrent are better understood than less popu-
lar peer-to-peer systems. However, we believe that e-cash is
more widely applicable, and outline how to apply endorsed
e-cash to applications such as distributed lookup, computa-
tion, storage, and onion routing.

Our contribution is an accountability mechanism for file-
sharing applications. Our mechanism is provably secure,
reasonably efficient in terms of computational and network
overhead, avoids centralized knowledge of client behavior,
and provides fungible benefits so that contributions can be
recouped without requiring pair-wise exchanges. We be-
lieve that this currency can be used to provide practical
robustness and accountability in peer-to-peer systems with-
out compromising privacy.

This paper is organized as follows. We begin with a re-

31

view of fairness and incentives in BitTorrent in Section 2.
We review the requirements on our currency and introduce
endorsed e-cash in Section 3. The application of our ac-
counting mechanism to BitTorrent-like systems is described
in 4. Our novel protocols for buying and bartering data
are presented in Section 5. In Section 6 we evaluate the
performance costs of our privacy goals, and describe prac-
tical measures to mitigate them, providing simulations to
measure their effectiveness. We discuss economic issues in-
troduced by our currency-based design in Section 7. Other
possible applications of e-cash to distributed systems are
described in Section 8. We provide an overview of related
work in reputation and currency-based resource allocation
in Section 9. Finally, we conclude in Section 10.

2. BACKGROUND
To motivate our call for better accountability in peer-to-

peer systems, we consider the popular file distribution sys-
tem BitTorrent [15].

BitTorrent. A BitTorrent download begins with a meta-
data file, or torrent, listing the name and size of the file(s)
for distribution, the hash value of each data block (typically
sized 64KB–2MB) needed to assemble the file(s), and the
address of a tracker assigned to manage the swarm of par-
ticipants. A node enters the network by announcing itself to
the centralized tracker server. The tracker’s reply provides
the Internet addresses of a random subset of active nodes.

Using this list, a node makes neighbors by attempting to
directly connect to other nodes. Upon connecting, neighbors
start to exchange block-availability advertisements and issue
block requests, using a local “rarest-first” heuristic designed
to improve data availability. Nodes typically maintain many
neighbor connections, but at each round upload requested
blocks only to a handful of unchoked neighbors, selecting
those that have recently provided the fastest rate of service.
The rest are choked until the next round, typically ten sec-
onds later, when they will be re-evaluated for reciprocation.

Incentives. BitTorrent relies on a tit-for-tat bandwidth
reciprocity mechanism whereby cooperative nodes are re-
warded for uploading by their neighbors, who unchoke them.
Thus nodes are encouraged to upload to their neighbors,
since doing so offers the possibility of faster download rates.
However, there are still opportunities for selfishness [42, 34]
and free-riding [29, 35]. In search of ever-better neighbors,
nodes select two at random for optimistic unchoking every
three rounds; this also helps to bootstrap new users, who
may not have enough data to reciprocate. Once a down-
load is complete, nodes receive no benefit from participating,
and most depart [42]; nodes that persist become altruistic
seeders. By providing unaccounted service, both optimistic
unchoking and seeding may potentially enable free-riding.

The tracker has limited ability to perform resource ac-
counting: when nodes periodically re-announce themselves
(e.g., to check for new nodes), they report the total amount
of data uploaded and downloaded for the torrent so far.
Online communities have emerged around registration-only
trackers that enforce sharing ratios by totaling user activ-
ity across multiple torrents, leading to increased seeding ac-
tivity [3]. However, the basis for these ratios comes from
self-reported client data and can be trivially forged [35, 25].

Fairness and performance. Studies have found the tit-
for-tat choking mechanism highly effective in discouraging

free-riding, encouraging the clustering of similar-bandwidth
peers, and fully utilizing participants’ uplink bandwidth.

Legout et al. [32] highlight these properties through ex-
periments on PlanetLab, limiting each node’s maximum up-
load rate to define different classes of participation. Their
measurements show that, in a “flash crowd” scenario with
a fast seed, nodes are more likely to exchange data with
neighbors of their own class, forming similar-bandwidth clus-
ters. This follows from the intuition that, to a faster node,
a slower neighbor’s unchokes are less useful, so are less often
reciprocated. As a result, higher-class participants are re-
warded with faster downloads. The simulation-based study
of Bharambe et al. [6] also finds the choking mechanism ef-
fective in fully utilizing upload bandwidth.

However, both studies also provide evidence that high up-
link utilization (and the resultant fast average download
times) comes at the expense of fairness: fast nodes typi-
cally contribute much more data than they upload. In [6]
the authors find that in heterogeneous settings, some high-
bandwidth nodes upload more than seven times more data
than they download. The experiments of [32] also observe
similar unfairness, and show it is exacerbated as cluster-
ing breaks down in the presence of a slow seed. Piatek et
al. [42] observe and model unfairness as altruism—their term
for any data uploaded in excess of that downloaded—which
they exploit with a selfish client implementation.

Unfairness can be partially explained by the slow search
process nodes undertake when looking for better neighbors,
with optimistic unchokes occurring only once every 30 sec-
onds. Converging on a set of similar-bandwidth peers in a
large, high-churn torrent may take a long time (or forever),
and along the way many high-capacity nodes provide un-
metered service to slower neighbors [42]. In response, [6]
considers modifying the tracker, allowing it to induce clus-
tering by matching similar-bandwidth nodes. The authors
report that reducing bandwidth-mismatched pairings leads
to improvements in both uplink utilization and fairness.

This has led some researchers to design alternate choking
mechanisms that provide stronger fairness to participants.
A strict block-level tit-for-tat choking policy, bounding the
number of excess blocks transferred to a neighbor without
reciprocation, is considered as a replacement for the default
rate-based policy in [6]. It is shown to reduce unfairness
at the expense of lower average upload utilization, slowing
overall performance (though its performance fares better in
conjunction with a bandwidth-matching tracker, or at high
node degree). Fan et al. [20] present an analytical model
characterizing the design space of rate assignment strate-
gies in BitTorrent-like systems, demonstrating a fundamen-
tal trade-off between optimal performance and fairness.

We aim to provide strong fairness with e-cash, incentiviz-
ing user contributions with fungible credits redeemable for
future service. This approach offers benefits beyond even
an optimally fair local barter policy: currency fungibility
allows nodes to participate fairly without the constraint of
mutual coincidences required by bartering. However, requir-
ing strict data volume fairness may fundamentally change
BitTorrent’s performance. Free-riders accustomed to un-
metered service from altruistic nodes would instead be re-
quired to contribute at least as many resources as they use.
Though a currency-based approach would clearly eliminate
free-riding (by requiring nodes to contribute enough service
to maintain financial solvency), it may impact performance

32

by limiting the amount of altruism available for slow nodes.
This may lead some to ask why strong accounting, or even
fairness, is desirable.

We argue that fairness is essential to providing scalable
incentives for greater participation. Dependence on a benef-
icent minority makes a system more vulnerable to failure and
performance less predictable. Fair incentives are especially
important in systems like BitTorrent, where users can select
their level of contribution. Presented with a system that
does not provide service in proportion to one’s contribution,
a user will rationally prefer to provide less service, rather
than waste resources for diminishing gains. Further, users
may wish to avoid a system perceived as unable to prevent
“selfish” or free-riding activity; the availability of software
for this purpose [42, 35, 25] reinforces this view. In contrast,
strict fairness is simple to understand and leverages the con-
tributions of all users, not just the fastest and kindest. We
believe that a system based on this idea—that all nodes con-
tribute at least what resources they use—provides incentives
inherently more scalable than one that allows free-riding.

3. OVERVIEW OF E-CASH
We need to choose an appropriate currency to incentivize

peer-to-peer systems. The currency must be fungible: a
user must be able to be paid for service and spend this pay-
ment for service from any other user. The payment proto-
col should ensure a fair exchange of money for the content:
either the seller gets paid and the user gets the content,
or neither of them gets anything. Users should be able to
spend the currency anonymously : there should be no way
to link an e-coin to the user that spent it, even if the bank
colludes with all sellers. The currency must also be unforge-
able: users should not be able to forge money (or at least be
caught and punished when they try). Finally, we want our
currency to be efficiently implementable.

3.1 E-cash
One currency that satisfies all our requirements is e-cash

[12, 13], which offers the following properties:

Anonymity. E-cash ensures that it is impossible to trace
an e-coin to the user who spent it, even when the bank
colludes with all the sellers. It is not even possible to tell
if two different e-coins were spent by the same user. The
only exception is if a user tries to double-spend an e-coin. In
this case, the bank can learn the identity of a cheater (and
in some cases even trace all e-coins the dishonest user ever
spent), and punish him accordingly.

Unforgeability. A dishonest user might try to spend the
same e-coin more than once. The simplest solution to this
problem is to use on-line e-cash: the seller consults the bank
during every transaction to ensure the promised e-coin is
new. However, this approach places a heavy burden on the
bank and compromises the privacy of the user (if a fair ex-
change fails, new e-coins can be linked to old ones), and thus
is not preferable.

In off-line e-cash, a buyer and seller perform a transac-
tion without consulting the bank. At some later point, the
seller can deposit all of the coins he has received. The bank
will then check whether any of these coins have been spent
before. If a user spends the same e-coin more than once,
the bank can use the forged e-coin to identify the user. We
must note that, at this point, the user has already carried

out multiple transactions and obtained more content than
to which he is entitled. It is up to the system to devise a
punishment sufficient to deter forgery.

The bank can limit the ability of dishonest users to forge
e-coins indefinitely, by publishing an Authorization List of
users who are permitted to spend money off-line. The list
would in reality be condensed to single value, called an ac-
cumulator [8]. Users can prove that they are in the accu-
mulator without revealing their identities. As long as sellers
receive frequent updates to the Authorization List, a user
would not be able to double-spend many times. If a user
double-spends, the bank can simply remove him from the ac-
cumulator and punish him (e.g., by banishing his account).

Fair exchange. To be useful in our system, the e-cash
scheme must enable users to perform a fair exchange of e-
coins for digital content. All fair exchange protocols require
a trusted third party (TTP) that is responsible for resolving
disputes. In our system, we refer to the TTP as the arbiter,
to emphasize its potential difference from the bank. In an
optimistic fair exchange protocol, the arbiter is only involved
when one party cheats. There has been extensive prior work
on fair exchange, however none of the existing protocols is
sufficient for our application.

We need to provide a protocol for exchanging an e-coin
for a file. Jakobson [28] and Reiter, Wang, and Wright [43]
provide protocols for exchanging e-coins for data. However,
with both the user loses his e-coin if the exchange fails.
Asokan, Shoup and Waidner [4] provide a protocol which
allows a user to reuse his e-coin after a failed exchange, but
unlinkability is no longer guaranteed for the reused coin.
Furthermore, all of the above work requires that e-coins be
withdrawn one by one from the bank.

The best solution to date is Camenisch et al.’s endorsed
ecash [9], which allows users to withdraw and store many
coins at once, and to respend coins after failed exchanges
with the guarantee that these coins will still be unlinkable.
However, this protocol has the disadvantage that in case of
a conflict, the arbiter must download and verify an entire
file. We modify this protocol so that the arbiter only has to
examine a short proof provided by one of the parties.

As generating e-coins is somewhat expensive, we also wish
to provide a more efficient protocol for bartering files. There
is no existing protocol that addresses this situation. Bao,
Deng, and Mao [5] provide protocols for fair exchange of
signatures, but not of other forms of data. Asokan et al. [4]
provide a protocol for fair exchange of data, but they as-
sume that there is an online verifier who verifies each block
of an encrypted file and provides a signature on that file.
We provide an efficient protocol which allows two users to
exchange files given only that both know the correct hashes
on those files. See section 5 for more details.

3.2 Endorsed e-cash
In endorsed e-cash, a central bank maintains an account

for each user. Users can withdraw a wallet of multiple e-
coins from the bank in one efficient operation. Users can
spend their e-coins anonymously by performing an efficient
fair exchange of e-coins for digital content. However, users
must deposit e-coins they have earned back into their bank
accounts before spending them again.

An endorsed e-cash transaction proceeds as follows: to
spend an e-coin, the buyer chooses a random value, called
the endorsement, and uses it to encrypt the e-coin to get

33

coin′. The buyer gives the seller coin′, but retains the
endorsement. The seller verifies that (1) coin′ is a valid
unendorsed e-coin and (2) the buyer knows an endorsement
that will decrypt the e-coin. Once the seller is satisfied, the
buyer and seller perform a fair exchange of the endorsement
for the content. It is possible to simultaneously exchange
several e-coins for multiple goods and services. If a fair ex-
change fails, the buyer re-encrypts the e-coin with a new
randomly chosen endorsement′. The new coin′′ cannot be
linked to the original coin, the previous coin′, or the user,
unless the coin is double-spent.

Fair exchange. Endorsed e-cash allows us to perform an
efficient optimistic fair exchange on e-coins, which is the
unique feature of endorsed e-cash. We used endorsed e-cash
to create two new fair exchange protocols, for buying and
exchanging files, that place a significantly smaller load on
the arbiter than prior work. To ensure fairness, the arbiter
needs to (1) download the unendorsed e-coin (this requires it
to download just one integer) and (2) verify that the seller’s
supplied content is correct. In the case of the buy protocol,
the arbiter randomly tests parts of the file to verify correct-
ness. In the case of the barter protocol, the aggrieved party
supplies the arbiter with a short proof that a segment of the
file is corrupted. The details of our new, efficient fair ex-
change protocol using endorsed e-cash is given in Section 5.

Enforceable contracts. Each endorsed e-coin is explicitly
associated with a contract. Only the owner of the e-coin
can create the contract. The buyer gives the contract to
the seller along with the encrypted coin′. The seller can
either accept the terms of the contract and initiate the fair
exchange protocol, or reject the contract and simply ter-
minate. Endorsed e-cash [9] primarily use the contract to
provide some necessary randomness for the e-coin. In this
work, we explore how to use this contract to explicitly en-
sure fairness, via the arbiter. Our two new fair exchange
protocols in Section 5 use specially structured contracts to
allow peers to buy and exchange files. In Section 8, we ex-
plore how to use contracts to enforce fairness in distributed
look-up, distributed storage, and distributed computation.

4. CURRENCY-BASED DESIGN
We now describe a peer-to-peer content distribution sys-

tem that uses e-cash to provide strong accountability. We
draw inspiration from BitTorrent, but strengthen its loose
barter accounting with two new protocols allowing a node
to buy and barter encrypted data blocks from its neighbors.
These protocols, detailed in Section 5, enable these trans-
actions through the fair exchange of decryption keys for e-
coins, or for other decryption keys.

4.1 Participants
Bank and arbiter. Our design requires the existence of
two trusted entities: a bank, which provides secure resource
accounting, and an arbiter, which ensures the fair exchange
of e-cash for data. These nodes are trusted to be fair, but
otherwise are not trusted with private information, and may
operate separately.

The bank maintains each user’s bank account, handling
and validating deposits and withdrawals. The centrally-
administered bank is also responsible for administering mon-
etary policy, which we discuss in Section 7. For our applica-
tion, a user’s accumulated savings represents the amount of

data uploaded in excess of that downloaded; it also bounds
the maximum number of simultaneous buying and barter-
ing transactions a user may undertake. Like the tracker, the
bank cannot link activity between peers. The application of
unlinkable currency makes BitTorrent’s design—while not
originally privacy-preserving—no less private by e-cash.

The arbiter protects the fair exchange of keys for e-coins
by resolving aborted transactions in cases of node failure or
intentional misbehavior. (We expect the prospect of future
exchanges, especially in a system like BitTorrent that prizes
high-bandwidth neighbors so highly, to be a strong incen-
tive against the latter.) The arbiter seems well-suited for
distribution: distributing it would require only the system’s
escrow key and a put/get database, similar to the design the
email postage system DQE [48].

The introduction of these two centralized entities, required
by our goals of secure accountability, may seem to contradict
the fully decentralized nature of some peer-to-peer systems.
But it fits our goal of enhancing the scalability of these sys-
tems with proper accounting. We note that previous work
on incentives and accountability in P2P systems have also
relied on centralized entities, whether by providing a cen-
tral reputation service [7] or employing trusted agent(s) to
punish misbehavior [33, 39]. BitTorrent also uses a trusted,
centralized tracker to coordinate peer activity. These sys-
tems reinforce the view that the value of P2P design is in
its scalability, not necessarily in its decentralized nature.

Users. Each user must establish an account with the bank
before she can withdraw and deposit e-cash. Rather than
provide new users with a starting balance, we look to so-
cial networks: new users are invited by friends with existing
accounts, who transfer some e-cash from their own bank ac-
count to the invitee’s account. This technique limits the
utility of Sybil attacks [19]; we discuss bootstrapping new
users further in Section 7.

Our protocols require users to deposit each earned coin
before it can be re-spent, presenting a potential performance
bottleneck. The computational requirements necessary for
our cryptographic protocols may weigh heavily on both users
and the bank; we describe practical approaches to lessening
this burden in Section 6.

4.2 Interactions
Obtaining blocks. Suppose Alice requests a block from
Bob. Bob encrypts the block using a randomly chosen key,
and sends the ciphertext to Alice. Alice responds with an
unendorsed e-coin and a contract describing the file she
wants. Having spent bandwidth on transferring the cipher-
text, both parties now have an incentive to perform an op-
timistic fair exchange of the decryption key for the e-coin’s
endorsement. If Alice tries to avoid paying Bob, then Bob
can give his key to the arbiter and prove that it decrypts
the ciphertext correctly, as specified by the contract. The
arbiter would endorse the e-coin for Bob. If Bob fails to
give Alice a proper key, then neither Alice nor the arbiter
will endorse the e-coin.

Alice and Bob may also barter blocks when mutual co-
incidence exists, e.g., when each has received the other’s
encrypted blocks. To begin, they exchange unendorsed e-
coins, along with the coins’ endorsements encrypted under
escrow. They can now perform fair exchange for decryp-
tion keys indefinitely, with the escrowed coin as collateral.
Details on both protocols are provided in Section 5.

34

These two protocols are designed to correspond with the
unbalanced and balanced exchanges used in a system like
BitTorrent. We envision their use as follows: instead of
relying on altruism, nodes buy blocks at the outset, and later
switch to bartering once they have acquired enough data to
participate fully in the torrent. We describe in Section 6 how
the performance benefits of bartering over buying provide
sharing incentives. After completing, nodes may continue to
sell blocks to earn credit for concurrent or future torrents.

Key to the suitability of our protocols for this use is how
our design decouples data transfer from accounting : nodes
download encrypted blocks and pay for decryption keys later.
This allows us to accommodate the “optimistic”behavior in-
herent in BitTorrent’s choking protocol, since a node may
optimistically send neighbors encrypted blocks and reason-
ably expect to be paid for their keys later. A pair of nodes
might delay reckoning debts some number of rounds in or-
der to wait for reciprocation and bartering opportunities, or
to improve performance by paying for multiple keys with
higher-denomination coins. Section 6 examines this further.

5. BUYING AND BARTERING PROTOCOLS
In this section, we present two new cryptographic proto-

cols. In Section 5.1, we create a new fair exchange protocol
that lets Alice buy a block of a file from Bob. In Section 5.2,
we create a new fair exchange protocol that lets Alice and
Bob trade two blocks: we call this process bartering. In
both protocols, when users are honest, the arbiter will never
be involved. If something goes wrong, the aggrieved party
will ask the arbiter to resolve the dispute. In the barter
protocol, this process is straightforward; in the buy proto-
col, conflict-resolution is more involved and we describe it
in Section 5.3.

We minimize the amount of work the arbiter performs
so that a few malicious users cannot overload it. Our buy
protocol improves on the e-coin fair exchange protocols in
Camenisch et al. [9] and Asokan et al. [4] because the arbiter
never has to download the entire block (nor the encryption
of it). Instead, the arbiter uses the VerifyKey protocol in Sec-
tion 5.3 to randomly test the correctness of the block. Our
barter protocol also improves on the Asokan et al. [4] digi-
tal content exchange protocol, which requires some trusted
party to verify that each block is correct and to sign the
encryption of each block together with the commitment to
the encryption key. Our protocol only assumes that both
parties know the desired hash of each block; thus no trusted
signer is required. The barter protocol assumes that Alice
and Bob maintain a continuous relationship; as a result, Al-
ice and Bob only have to create one e-coin each to initiate a
relationship, and can reuse the e-coins indefinitely.

Our protocol requires a symmetric block cipher: we write
EncK(block) to denote encrypting block with key K;
DecK(ctext) means decrypting ctext using key K. We as-
sume that a block is large enough to be divided into chunks
and EncK(block) encrypts each chunk separately. We also
use verifiable escrow [10]: EscrowArbiter(data, contract) this
encrypts data under the public-key of the arbiter. The de-
cryption key to the escrow is a combination of the arbiter’s
secret-key and the contract ; this lets the arbiter ensure he
decrypts the escrow only when the terms of the contract have
been fulfilled. Anybody who knows the arbiter’s public-key
and the contract can verify that the escrow is valid. Finally,
we write Commit(data) to denote a commitment that can

only be opened to data. In practice, these would be imple-
mented as Pedersen commitments [41].

We use Merkle hash trees [38] to create short descriptions
of a block (or ciphertext). We write MHash(block) to denote
a Merkle hash of block . A person who knows the entire
file can publish (chunk , proof , MHash(block)) to prove that
chunk is in (or is not in) block ; proof is short, efficiently
calculated, and includes the position of the chunk in the
block. (We require a collision-resistant hash function h.)

5.1 How to buy a file
We present our protocol that lets Alice buy a file block

from Bob. Before the start of the protocol, Alice acquires
bhash = MHash(block) from a trusted authority (i.e. tracker).
Alice and Bob will agree on a timeout by when Bob must
provide Alice with the block. The protocol works as follows:

1. Bob chooses a random key K and sends ctext =
EncK(block) to Alice.

2. Alice constructs an endorsed e-coin (coin ′, endorsement).
Alice calculates chash = MHash(ctext), chooses a ran-
dom value r and calculates the exchange ID v = h(r).
Alice sets contract = (bhash, chash, timeout , coin ′, v).
She escrows the endorsement under the arbiter’s public-
key: escrow = EscrowArbiter(endorsement , contract).
Alice sends Bob (coin ′, contract , escrow).

3. Bob verifies that (coin ′, contract , escrow) is formed cor-
rectly. If he is satisfied, he establishes a secure connec-
tion to Alice using standard techniques and sends the
key K. Otherwise, Bob terminates.

4. If Alice receives a K that lets her decrypt ctext cor-
rectly before timeout , she responds with endorsement .
Otherwise, Alice waits until timeout and then calls
AliceResolve(r) on the arbiter, as in Algorithm 5.1.

5. If Bob does not receive a correct endorsement before
timeout , he calls BobResolve(K, escrow , contract) on
the arbiter, as in Algorithm 5.2.

We sketch why our protocol ensures a fair exchange. Sup-
pose Alice wants to avoid paying. If Bob calls BobResolve
before timeout , he is guaranteed to be paid, as long as the
unendorsed e-coin is valid (recall that Alice cannot abort the
protocol before timeout). If the unendorsed e-coin is invalid
(either badly formed coin ′ or incorrect contract), Bob would
not accept it and terminate in step 4 without giving Alice
the key K.

Suppose Bob wants to avoid giving Alice a correct key. If
he calls BobResolve after timeout he will not get paid. If he
calls BobResolve before timeout , due to the contract associ-
ated with the escrow , he can only get paid if he deposits the
correct key K. Alice can then retrieve K at her convenience.

5.2 How to barter
We present a new protocol that lets Alice and Bob perform

a fair exchange of two files. The exchange proceeds in two
phases. First, Alice and Bob give each other an unendorsed
e-coin and an escrow of the endorsement. This establishes
a collateral that an aggrieved party can collect if something
goes wrong. In the second phase, Alice and Bob perform a
fair exchange of the file. If the exchange fails, the wronged
party can ask the arbiter to endorse the e-coin. As long as
Alice and Bob are honest, they can continue in a bartering
relationship indefinitely using the same e-coin as collateral.

Suppose Alice has blockA and she wants blockB which is
owned by Bob. They both get hashA = MHash(blockA),

35

hashB = MHash(blockB) from a trusted authority (i.e. the
tracker). They perform the exchange as follows:

1. Alice chooses a new signing key (skA, pkA) and gives
pkA to Bob. Bob does the same, responding with pkB.

2. Alice creates an endorsed e-coin (coin ′
A, endorsement)

and calculates escrowA = EscrowArbiter(endorsement ,
contract), where the contract states that the arbiter
can endorse coin ′ for anyone who presents some contract ′

that is (1) signed by pkA and (2) whose terms are
fulfilled. Alice gives (coin ′

A, escrowA) to Bob, who
performs the corresponding operation and gives Alice
(coin ′

B , escrowB).
3. Alice calculates a ciphertext ctextA and a commit-

ment to the decryption key K′
A = Commit(KA). Al-

ice gives (ctextA, K′
A) to Bob. Bob similarly computes

(ctextB , K′
B) and gives it to Alice.

4. Alice and Bob both compute contract ′ = (pkArbiter, pkA,
K′

A, MHash(ctextA), hashA, pkB, K′
B , MHash(ctextB),

hashB). This contract states that to collect collateral,
one of two conditions must be met: (1) the owner of
pkB can prove that the opening of K′

A does not de-
crypt a ciphertext corresponding to MHash(ctextA) to
a plaintext corresponding to hashA, or (2) the owner
of pkA can prove that the opening of K′

B does not
decrypt a ciphertext corresponding to MHash(ctextB)
to a plaintext corresponding to hashB . This can be
proved using standard techniques from Merkle hashes.

5. Alice gives Bob her signature on contract ′ and Bob
gives Alice his signature on contract ′.

6. Alice and Bob execute a fair exchange protocol where
Alice gets KB (the opening of K′

B) and Bob gets KA

(the opening of K′
A). This can be done using Asokan

et al. fair exchange [4].
7. If KB does not decrypt ctextB correctly, Alice goes to

the arbiter with the signed contract ′, escrowB , KB , a
proof showing that ctextB did not decrypt correctly,
and a proof that she knows the secret key correspond-
ing to pkA. The arbiter would give Alice the endorse-
ment to Bob’s e-coin and his signature on the e-coin.
Alice can bring the endorsed e-coin to the bank and
deposit it in her account. Bob would do the same if
KA is incorrect.

Note: Showing that ctextB does not decrypt correctly
can be done efficiently. Alice gives the arbiter the signed
contract ′, KB , and a chunk that does not decrypt correctly.
The arbiter can check that KB is the promised opening of
K′

B . Then the arbiter can test if (1) chunk is in ctextB , (2)
MHash(ctextB) is in chashB and (3) DecKB (chunk) is not
in hashB .

Steps 1 and 2 of the protocol only have to be done once
to establish a bartering relationship between Alice and Bob.
Subsequently, Alice and Bob can perform steps 3–7 to ex-
change a block. The bartering protocol has more efficient
conflict resolution. If Bob cheats Alice, Alice can show the
arbiter which chunk decrypted incorrectly. As a result, (1)
conflict resolution is more efficient and (2) a cheating Bob is
caught with overwhelming probability. Finally, we note that,
bartering two files is more efficient for the users than exe-
cuting two purchase protocols; this is because the Asokan et
al [4] fair exchange only has to be performed once instead of
twice (per block). This is true even if Alice and Bob decide
to preserve anonymity by using new signing keys and e-coins
each time they exchange files.

Algorithm 5.1: AliceResolve, run by the arbiter

Input: Exchange ID r (ensures only Alice can resolve)
v ← h(r);
if < v, K > ∈ DB then

send K to Alice.
end

Algorithm 5.2: BobResolve, run by the arbiter

Input: key K, escrow , and contract { bhash, chash,
timeout , coin ′, v }) (all sent by Bob)

if currentT ime < timeout then
endorsement ← Decrypt(escrow);
if endorsement not valid for coin ′ then

return error.
end
Run VerifyKey with Bob for K, using (bhash, chash)
from the contract. // ensures Alice sent them
if K verifies then

add < v, K > to DB .
send endorsement to Bob.

else
return error.

end

end

The main security challenge is to ensure that Alice cannot
deposit the e-coin she put up for collateral (and that Bob
cannot deposit his collateral e-coin). We have to make an
assumption about the endorsed e-cash deposit protocol: the
bank can verify the contract associated with an endorsed
e-coin. Specifically, the bank will have to verify that the ar-
biter signed the e-coin (the arbiter’s signing key is included
in the contract, so the bank does not have to know the ar-
biter’s identity in advance). As a result, to deposit the e-
coin under contract ′, Alice has to get the arbiter’s signature.
Alice cannot enforce clause (1) of the contract because she
does not know Bob’s secret key. Alice can enforce clause (2)
only if Bob cheats, in which case she is entitled to get her
e-coin back. The only other option Alice has is to deposit
her e-coin under a new contract. If Alice does this, and Bob
later deposits the endorsed e-coin under the old contract,
the bank will see that Alice double-spent an e-coin. Due to
the construction of endorsed e-cash, if the same e-coin is de-
posited under two different contracts, the bank can trace the
owner of the e-coin. Thus Alice cannot deposit her own col-
lateral e-coin unless Bob cheats. The same argument shows
that Bob also cannot deposit his own collateral e-coin unless
Alice cheats.

5.3 How to resolve disputes
We give a protocol that lets a seller prove to the arbiter

that he provided the buyer with the correct ciphertext and
decryption key.

Recall that when Bob calls BobResolve in Algorithm 5.2,
he has to prove to the arbiter that he has provided it with
the correct key. Specifically, he has to show that K decrypts
ctext = c0||c1|| . . . ||cn to block = b0||b1|| . . . ||bn, where ctext
is in chash and block is in bhash. Bob and the arbiter execute
VerifyKey, as shown in Algorithm 5.3.

Algorithm VerifyKey will detect if chunk ci does not de-
crypt correctly. We call such a chunk corrupted. If Bob cor-

36

Algorithm 5.3: VerifyKey

Arbiter’s Input: Two Merkle hashes bhash and
chash, key K

Bob’s Input: Ciphertext c0|| . . . ||cn), key K
Step 1: Arbiter’s challenge

The arbiter sends Bob a set of indices I.
Step 2: Bob’s response

Bob replies with (ci, cproof i, bproof i) for every i ∈ I,
where cproof i proves that ci is the Merkle tree
corresponding to chash and bproof i proves that
bi = DecK(ci) is in the Merkle tree corresponding to
bhash.

Step 3: Verification

The arbiter accepts the key if Bob responds with
valid (ci, cproof i, bproof i) for every i ∈ I, and rejects
otherwise.

rupts an nth fraction of the chunks, and the arbiter verifies
k chunks, then the arbiter will catch Bob with probability
1− (1− n)k. Suppose Bob corrupts 10% of the chunks. To
catch Bob with 90% probability, the arbiter needs to check
22 chunks; to catch Bob with 80% probability, the arbiter
needs to check 16 chunks. This approach might not deter a
malicious Bob who just wants to perform a denial of service
attack. However, a selfish Bob who wants to try to get paid
for a bad file block would be deterred. This is good enough
for our purposes.

6. EVALUATION
The requirements of anonymity and security that we have

placed on our currency and associated protocols impose com-
putational and communication overheads. This section de-
scribes these overheads, and explains how they can be miti-
gated by careful system design.

Cost of privacy. Our design assumes that users value the
privacy of their interactions in peer-to-peer systems, and
would thus prefer not to use an accounting system that
might record an audit trail of all user transactions. We
assessed the cost of this privacy by comparing our proto-
col with a simpler contract fair exchange, as in [4]. There,
the contract specifies that the buyer pays an e-coin to the
seller for a block, indicated by hash value. Provided a con-
tract, the bank validates it and transfers the noted amount
to the seller’s account. This scheme provides less privacy
than BitTorrent, granting the bank complete knowledge of
all transactions.

We compared only the buyer-seller part of our protocol
to this simple contract fair exchange scheme. We conducted
tests on a Pentium M 1.6 GHz CPU with 1 GB of RAM,
using our Java implementation of our protocols. Our pro-
tocol requires about 12.5 KB of data exchange (per block,
which can be as big as 2 MB in BitTorrent protocol), and
takes about 2.5 seconds for the buyer and 1.5 seconds for the
seller. The contract fair exchange protocol requires about
4 KB of data exchange, and takes about 1 second for the
buyer and less than 0.5 seconds for the seller. Thus, the
cost of our system is roughly two times more than in simple
centralized accounting system.

We also measured operations involving the bank. The
withdrawal of a wallet of e-coins took 1.2 seconds and 1.7 KB
of data, independent of the withdrawal amount (number of

coins). Unfortunately, to guarantee our currency’s unlinka-
bility, users cannot deposit multiple e-coins in one operation,
and so for each e-coin, the bank must perform the verifica-
tion equivalent to the seller’s job in the buy protocol.

Scaling by bartering. Our currency system requires the
bank to perform expensive verification for each e-coin pre-
sented for deposit, performing roughly as much work as the
seller in the buy protocol. This high transactional overhead
implies that a distributed, load-balanced bank service would
be required to meet the demands of a large system. A mixed
hardware-software approach [16] also offers a way to accel-
erate each bank node’s performance.

We should also consider reducing the number of buy-sell
exchanges (and thus deposits) performed in the system. One
may begin by selecting a large block size, lowering the num-
ber of transactions required, to the detriment of fine-grained
accounting. This provides a guideline for uses in other ap-
plications: using e-cash to account for a very large number
of small transactions may not yet be practical.

Our barter protocol, described in Section 5.2, sidesteps
this potential bottle-neck by avoiding the bank altogether.
Bartering requires expensive computation only for the first
exchange, when both parties create escrow coins.Successive
bartering between the same two parties involve only key
exchanges, not heavy computation: the bank becomes in-
volved only in the case of a dispute, when one of the par-
ties may deposit the other’s escrow coin. As discussed in
Section 2, BitTorrent’s choking mechanism and clustering
behavior suggests bartering would be fairly common, and
made even more so with a block-level tit-for-tat policy [6] or
a choking policy designed for fairness [46].

Of course, bartering may only be used when a pair of
participants have mutually desirable content. We evaluate
the likelihood of these exchanges using the discrete event
simulator from [6]. We attempted to replicate the hetero-
geneous “flash crowd” scenario from their published results,
using 1000 nodes split evenly between cable (6 Mbps down;
3 Mbps up), DSL (1.5 Mbps down; 400 Kbps up) and slow
DSL (784 Kbps down; 128 Kbps up). The participating
nodes exchanged a 400-block file with the help of a 6Mbps
seed node.

The simulator provides a complete log of node interac-
tions; we analyzed logs generated from both the default
choking policy and the block-level tit-for-tat (TFT) policy.
For each piece received, we searched through nearby events,
looking for a reciprocating piece in the opposite direction. If
blocks were exchanged in both directions during a short win-
dow, we assume that the peers involved could have bartered
for the blocks in question.

We present the results of our simulations in Figure 1,
charting the fraction of blocks found eligible for barter (out
of a total of 400,000 possible transactions) as we increase
the barter window length. Each line represents a simulation
run using a different choking policy. We find that with a
30-second barter window (three rounds, the length of an op-
timistic unchoke), the block-level TFT and default policies
reveal roughly equivalent opportunities for bartering, at a
little more than half of all transactions. With longer barter
windows, the fairer block-level TFT policy produces more
opportunities, but not as many as with the quick bandwidth
estimation (QBE) scheme [6]. The authors designed QBE to
obviate the need for optimistic unchoking (a major source of
unfairness), by simulating the effect of instantaneous, accu-

37

0

0.25

0.5

0.75

1
Fr

ac
ti

on
of

bl
oc

ks
fo

r
ba

rt
er

Fr
ac

ti
on

of
bl

oc
ks

fo
r

ba
rt

er

0 60 120 180 240 300

Barter window size (seconds)Barter window size (seconds)

QBE
Block TFT
Default BT

Figure 1: Bartering opportunities for different
barter windows. Choking policies designed for fair-
ness and clustering produce more opportunities for
bartering.

rate bandwidth probes between nodes. This allows nodes to
immediately begin unchoking their fastest neighbors, with-
out need for the trial-and-error method of tit-for-tat.

These simulation results indicate that more than half of
peer transactions between BitTorrent nodes involve recip-
rocation soon after. Finding more bartering opportunities
requires modified choking policies designed for fairness and
clustering; interestingly, the currency overhead aligns greater
fairness, through barter, with reduced computational bur-
den. However, achieving these results in practice may be
more difficult: we do not simulate node churn, failure, nor do
we attempt to integrate currency budgets or debt-reckoning
at certain intervals into the choking policy. We leave this
for future work.

Batched transactions. Bank deposits may also be re-
duced by grouping transactions over time: the bank may
issue different coin denominations (i.e., $1, $2, $4, etc.),
which can be used to pay for multiple blocks at once. The
bank must publish different keys corresponding to each coin
denomination, so that they may be withdrawn and recog-
nized by all users. A buyer could then negotiate a contract
to pay for n decryption keys with log(n) coins. We expect
peers may use larger coins once a long-standing relationship
has been established (so that in case of a dispute, not many
resources would have been wasted), thereby decreasing load
on themselves and the bank.

We note that these techniques may apply to other cur-
rency systems as well, regardless of the underlying imple-
mentation. For example, Karma [47] builds a currency atop
a distributed hash table (DHT); as a result, its karma-for-file
exchange protocol requires many DHT lookups. Here, the
overhead is defined by network latency, rather than com-
putation, but this overhead may nevertheless be similarly
reduced by bartering and batching.

7. ECONOMIC ISSUES
In a monetized P2P network selfish peers serve as agents

in a virtual economy. Peers that behave correctly not only
earn money, but add value to the network. As peers join,
the economy grows, requiring the creation and distribution
of currency. The bank must implement a monetary policy
and peers must navigate the marketplace. In this section we
consider some simple solutions to these problems.

Entering the network. Users in a monetized file sharing
network make money by sharing the files they acquire. This
presents a bootstrapping problem: new users must obtain
the resources (either e-cash or files) required to obtain files.

If the bank simply gives new users e-cash, the network
becomes highly vulnerable to Sybil attacks [19]. Users will
join repeatedly and e-coins will become worthless. A more
reasonable option is to give away blocks from a randomly
selected file. Unfortunately this places significant demand
on the bank’s bandwidth, and requires that the bank obtain
a steady stream of desirable (and legal) content.

To avoid incentivizing Sybil attacks, we provide new users
with neither coins nor files. Instead we assume an existing
social network capable of distributing files and e-coins. It is
in a P2P network’s interest to admit productive users. We
expect existing users to give (or lend) e-coins and files to
trusted friends.

If a potential user cannot obtain resources through friends,
they can also obtain e-coins using some real world resource.
The bank may either sell e-coins for real money, or facilitate
an auction between new and existing users. Alternatively,
users can be given coins when they perform a bandwidth in-
tensive task (for example, users look up webpages and com-
pute hashes, which the bank then crosschecks). If the payoff
of this task is small compared to the payoff of sharing files,
users will not waste bandwidth to join multiple times.

Creation of money. In any monetized P2P network, there
is a time and cost associated with each transaction. The
bank must provide enough e-cash to satisfy the network’s de-
mand for simultaneous transactions. If the bank produces
too few e-coins, the network cannot operate near full ca-
pacity, and if the bank produces too many e-coins inflation
potentially leads to a monetary crash [30].

One proposed heuristic for currency creation is to grow
the number of e-coins linearly with the number of users [47].
This heuristic ignores the fact that certain users add more
value to a network than others. Furthermore, it does not
address how new e-coins should be distributed. Simply pay-
ing users interest on their bank balances is problematic since
it allows wealthy users to continually earn money without
participating.

A simple, yet robust approach to wealth distribution is for
the bank itself to participate in the network. The bank can
inject new e-coins when making purchases, or destroy exist-
ing e-coins after making sales. To determine when currency
should be created or destroyed the bank can monitor the
rate at which files are bought and sold, as well as the rate
at which e-coins are withdrawn and deposited. If currency
becomes sparse, purchase requests will slow. If currency is
overly abundant, purchase requests will increase but finding
sellers will become difficult. In either case withdrawal and
deposit rates with slow.

A more analytic approach to currency regulation is pur-
sued in [30]. Using a restricted economic model, the authors
demonstrate that bank balances (e.g. knowledge of wealth
distribution) can predict how much currency can be added
to a monetized P2P network without resulting in a crash.
The model also allows the authors to bound the impact of
altruistic behavior and money hoarding. Though their ap-
proach is promising, their results assume that all users have
equal file-sharing resources (i.e. bandwidth, files to share).
The authors believe that more realistic assumptions do not
fundamentally change their results.

38

Variable vs. fixed pricing. In our protocol, the price of
a BitTorrent block is fixed at one e-coin. This minimizes
the overhead associated with purchasing files, but requires
the value of an e-coin to remain relatively constant; it also
assumes that all content is priced the same per block. A
protocol with variable prices permits sellers to correct for
inflation and deflation. It also allows buyers to pay more
for faster delivery of high-priority blocks (this would be use-
ful for streaming). To enable variable pricing, the bank can
produce multiple denominations of e-coins. If multiple coins
are involved in a transaction, however, the overhead asso-
ciated with depositing these coins grows linearly. Further-
more, client behavior becomes much more complex, since
prices must be intelligently negotiated.

Our approach also provides incentives for the BitTorrent’s
“rarest first” heuristic. Even with fixed pricing, the rare
blocks are more likely to be sold. Participants have an in-
centive to buy rare blocks first, making them more common,
and helping to solve the problem of blockage at the end.

8. OTHER APPLICATIONS
We believe e-cash can be securely and anonymously ap-

plied to many other distributed peer-to-peer systems. This
section gives some insights on how to make use of e-cash
to incentivize such applications. Even though the technical
details are missing, the ideas are worth investigating.

Distributed lookup. In BitTorrent, users contact a cen-
tralized tracker for a list of neighbors who are likely to have
the file. We want to remove any central trust points (ex-
cept possibly the bank). We need the system to be efficient:
lookup queries should not flood the whole network. We want
to introduce incentives to encourage peers to help other users
find files and to discourage unnecessary lookup queries.

One approach is to pay each node along the query path;
the interaction between search depth and query price has
been studied in random-tree networks [31]. In a fully in-
centivized DHT, payments would insure an efficient lookup
structure and honest responses to queries. Suppose Alice
wants to find some file (or a peer responsible for tracking the
file). She asks Bob, the closest peer she knows to the file, for
the next hop. Alice pays for this information using endorsed
e-cash only if the next hop node is at least half-way closer
to the file than Bob (which can be checked using hashes),
as specified in the contract. Then Alice would contact the
next node and repeat the process. Alice pays all peers that
help her find the file, encouraging peers to cooperate, and
discouraging fake lookups.

Distributed storage. A distributed storage system allows
a user to backup her data on another peer’s machine. Sup-
pose Alice wants to backup her data, and this will be done
on Bob’s machine. If Alice pays Bob upfront, then Bob has
no incentive to store the data, he already got the money.
However, if Alice pays him upon retrieval, then if she de-
cides she no longer needs the data, she would never pay and
Bob would have wasted his resources storing her data.

We propose that Alice pays Bob upfront, but Bob gives
her a warranty check in return (via a fair exchange protocol)
that contains a Merkle hash of the data (for the arbiter
to easily verify without downloading the whole data), an
unendorsed e-coin, and an escrow of the endorsement. If Bob
ever loses or corrupts the data, the arbiter would decrypt
the escrow and pay Alice for her damage. The bank can

ensure that Bob always maintains a balance large enough to
cover his liability. When Alice gets her data, the check is
invalidated.

Distributed computation. In current distributed com-
puting projects, like Rosetta@Home [44], people voluntarily
donate their excess CPU cycles to perform computation-
heavy tasks. We can transform this one-way system into
a mutually beneficial computing cluster. Users can accept
outside jobs when their CPU is not fully loaded, and pay
other users to perform some computations when they need
more resources.

Suppose Alice wants some computation-heavy task to be
done (although I/O-heavy tasks may also be considered).
We propose that using e-cash can provide an incentive for
other uses to not only contribute in this computation but
also perform it correctly. For some problems, such as graph
coloring (in NP), verifying the correctness of the answer is
easy, and so can be a part of the contract. In optimization
problems, the contract may specify that the best answer
within a deadline will be paid (the most), and again the
verification is easy. Unfortunately, this is not true for some
other types of problems.

Onion routing. In onion routing (i.e. anonymous remail-
ing) [11, 23, 18], participants route their messages through
randomly chosen intermediate peers to disguise the origin
and destination of messages. Each router only knows about
the next hop, and so the real sender and receiver is hidden.
Selfish peers might want to use the system to send and re-
ceive messages, but refuse to route other peers’ packets. As
an incentive, a router gets paid only if it passes a message to
the next router in chain, by using threshold endorsed e-cash
as explained by Camenisch et al. [9]. For a router to get
paid, it needs to collaborate with both the previous and the
next hops.

9. RELATED WORK
This paper is not the first to propose currency-based ap-

proaches to resource allocation in distributed systems. Pre-
vious work has seen currencies used to allocate resources
in grids [27] and sensor networks [14], pay for distributed
storage [26], and optimize queries in distributed databases
[45]. Game-theoretic analyses of peer-to-peer currency sys-
tems and associated equilibria are detailed in [24, 22, 30].
Mojo Nation [49] used a currency for incentives that was not
provably secure or privacy-preserving. Karma [47] describes
a currency built atop a DHT, which places the responsi-
bility of maintaining each node’s bank account and process-
ing transactions with a“bank-set”of randomly-chosen nodes
from the DHT. This decentralization makes it difficult to
effectively manage the currency (see Section 7), requiring
O(N2) messages. Though these systems provide useful ex-
amples of currency-based design, they do not address issues
of privacy and security that we consider essential.

Local and centralized reputation systems have also been
used to provide incentives in peer-to-peer systems [50, 37].
Some even quantify local reputation values in terms of non-
fungible credit [40] or currency [2], extending the barter
economy by identifying chains of indebted nodes that can be
used for transitive exchanges. However, reputation schemes
are less effective when discredited pseudonyms can be easily
shed, limiting their applicability in peer-to-peer and privacy-
enhancing systems [17, 36]. Friedman and Resnick [21] show

39

that in this environment, participants must distrust new
users until they have earned enough reputation, leading to
inefficiency. Our currency can be thought of as providing
fungible reputation independent of identity-based observa-
tions, which in our view seems better suited than reputa-
tion alone for systems with high churn, or those that use
pseudonymous or anonymous identities.

10. CONCLUSION
We have described a practical application of e-cash to the

problem of free-loading in peer-to-peer systems. Our design
emphasizes provable security without sacrificing anonymity,
and fungible, rather than pair-wise, credit for contributions.
We have shown that the resulting system remains scalable
due to careful protocol and system design. We look forward
to applying these ideas to other peer-to-peer systems.

11. ACKNOWLEDGEMENTS
This work is supported by NSF CyberTrust grant 0627553.

12. REFERENCES
[1] E. Adar and B. A. Huberman. Free riding on gnutella. First

Monday, 5(10), 2000.

[2] K. G. Anagnostakis and M. B. Greenwald. Exchange-based
incentive mechanisms for peer-to-peer file sharing. In ICDCS
’04, 2004.

[3] N. Andrade, M. Mowbray, A. Lima, G. Wagner, and
M. Ripeanu. Influences on cooperation in bittorrent
communities. In P2PECON ’05, 2005.

[4] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair
exchange of digital signatures. IEEE Journal on Selected
Areas in Communications, 18(4):591–610, Apr. 2000.

[5] F. Bao, R. Deng, and W. Mao. Efficient and practical fair
exchange protocols with off-line ttp. In IEEE Symposium on
Security and Privacy, May 1998.

[6] A. R. Bharambe, C. Herley, and V. N. Padmanabhan.
Analyzing and improving a bittorrent network’s performance
mechanisms. In Proc. IEEE INFOCOM, Mar. 2006.

[7] A. Blanc, Y.-K. Liu, and A. Vahdat. Designing incentives for
peer-to-peer routing. In Proc. IEEE INFOCOM, Mar. 2005.

[8] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and
application to efficient revocation of anonymous credentials. In
CRYPTO 2002, Aug. 2002.

[9] J. Camenisch, A. Lysyanskaya, and M. Meyerovich. Endorsed
e-cash. In IEEE Symposium on Security and Privacy, 2007.

[10] J. Camenisch and V. Shoup. Practical verifiable encryption
and decryption of discrete logarithms. In CRYPTO 2003.

[11] D. Chaum. Untraceable electronic mail, return addresses, and
digital pseudonyms. Communications of the ACM,
24(2):84–88, February 1981.

[12] D. Chaum. Blind signatures for untraceable payments. In
Advances in Cryptology — CRYPTO ’82, pages 199–203.
Plenum Press, 1983.

[13] D. Chaum. Blind signature systems. In Advances in
Cryptology — CRYPTO ’83, page 153. Plenum Press, 1984.

[14] B. N. Chun, P. Buonadonna, A. AuYoung, C. Ng, D. C.
Parkes, J. Shneidman, A. C. Snoeren, and A. Vahdat. Mirage:
A microeconomic resource allocation system for sensornet
testbeds. In Proc. of the 2nd IEEE Workshop on Embedded
Networked Sensors, 2005.

[15] B. Cohen. Incentives build robustness in bittorrent. In Proc.
2nd IPTPS, Berkeley, CA, Feb. 2003.

[16] A. Daly and W. Marnane. Efficient architectures for
implementing montgomery modular multiplication and rsa
modular exponentiation on reconfigurable logic. In FPGA ’02.

[17] R. Dingledine, N. Mathewson, and P. Syverson. Reputation in
p2p anonymity systems. In P2PECON ’03, June 2003.

[18] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. In Proc. of the 13th USENIX
Security Symposium, August 2004.

[19] J. Douceur. The sybil attack. In Proc. 1st IPTPS, Mar. 2002.

[20] B. Fan, D.-M. Chiu, and J. C. S. Lui. The delicate tradeoffs in
bittorrent-like file sharing protocol design. In ICNP ’06, 2006.

[21] E. Friedman and P. Resnick. The social cost of cheap
pseudonyms. Journal of Economics and Management
Strategy, 10(2):173–199, 2001.

[22] E. J. Friedman, J. Y. Halpern, and I. Kash. Efficiency and
nash equilibria in a scrip system for p2p networks. In Proc. of
the 7th ACM conference on Electronic commerce, 2006.

[23] D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Onion
routing for anonymous and private internet connections.
Communications of the ACM, 42(2):84–88, February 1999.

[24] P. Golle, K. Leyton-Brown, and I. Mironov. Incentives for
sharing in peer-to-peer networks. In Proc. of the 3rd ACM
Conference on Electronic Commerce, 2001.

[25] GreedyTorrent. http://www.greedytorrent.com/.

[26] J. Ioannidis, S. Ioannidis, A. D. Keromytis, and V. Prevelakis.
Fileteller: Paying and getting paid for file storage. In
Financial Cryptography, 6th International Conference, 2002.

[27] D. Irwin, J. Chase, L. Grit, and A. Yumerefendi.
Self-recharging virtual currency. In P2PECON ’05, Aug. 2005.

[28] M. Jakobsson. Ripping coins for a fair exchange. In
EUROCRYPT ’95, 1995.

[29] S. Jun and M. Ahamad. Incentives in bittorrent induce free
riding. In P2PECON ’05, Aug. 2005.

[30] I. Kash, E. J. Friedman, and J. Y. Halpern. Efficiency and
nash equilibria in a scrip system for p2p networks. In Proc. of
the 8th ACM conference on Electronic commerce, 2007.

[31] J. Kleinberg and P. Raghavan. Query incentive networks. In
FOCS ’05: Proc. of the 46th Annual IEEE Symposium on
Foundations of Computer Science, 2005.

[32] A. Legout, N. Liogkas, E. Kohler, and L. Zhang. Clustering
and sharing incentives in bittorrent systems. In Proc. of ACM
SIGMETRICS’07, June 2007.

[33] H. Li, A. Clement, E. Wong, J. Napper, I. Roy, L. Alvisi, and
M. Dahlin. BAR gossip. In Proc. of the 7th OSDI, Nov. 2006.

[34] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang. Exploiting
bittorrent for fun (but not profit). In Proc. 5th IPTPS, 2006.

[35] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free
Riding in BitTorrent is Cheap. In Proc. 5th Workshop on Hot
Topics in Networking (HotNets-V), Nov. 2006.

[36] S. Marti and H. Garcia-Molina. Identity crisis: Anonymity vs.
reputation in p2p systems. In P2P ’03, 2003.

[37] S. Marti and H. Garcia-Molina. Taxonomy of trust:
Categorizing p2p reputation systems. Computer Networks,
50(4):472–484, 2006.

[38] R. Merkle. A digital signature based on a conventional
encryption function. In CRYPTO ’87, pages 269–278, 1987.

[39] N. Michalakis, R. Soulé, and R. Grimm. Ensuring content
integrity for untrusted peer-to-peer content distribution
networks. In Proc. 4th USENIX/ACM NSDI, Apr. 2007.

[40] A. Nandi, T.-W. J. Ngan, A. Singh, P. Druschel, and D. S.
Wallach. Scrivener: Providing incentives in cooperative content
distribution systems. In Middleware 2005, Nov. 2005.

[41] T. P. Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In CRYPTO ’91.

[42] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and
A. Venkataramani. Do incentives build robustness in
bittorrent? In Proc. 4th USENIX/ACM NSDI, Apr. 2007.

[43] M. Reiter, X. Want, and M. Wright. Building reliable mix
networks with fair exchange. In Applied Cryptography and
Network Security: Third International Conference, 2005.

[44] Rosetta@Home. http://boinc.bakerlab.org/rosetta/.

[45] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah,
J. Sidell, C. Staelin, and A. Yu. Mariposa: A wide-area
distributed database system. VLDB Journal: Very Large
Data Bases, 5(1):48–63, 1996.

[46] R. Thommes and M. Coates. Bittorrent fairness: analysis and
improvements. In WITSP ’05, December 2005.

[47] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. Karma:
A secure economic framework for p2p resource sharing. In
P2PECON ’03, 2003.

[48] M. Walfish, J. Zamfirescu, H. Balakrishnan, D. Karger, and
S. Shenker. Distributed quota enforcement for spam control. In
Proc. 3rd USENIX/ACM NSDI, May 2006.

[49] B. Wilcox-O’Hearn. Experiences deploying a large-scale
emergent network. In Proc. 1st IPTPS, Mar. 2002.

[50] B. Zhu and S. Jajodia. Building trust in peer-to-peer systems:
a review. International Journal of Security and Networks,
1(1/2):103–112, 2006.

40

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

