Online AutoAdmin (Physical Design Tuning)

Nicolas Bruno
_ Microsoft Research
nicolasb@microsoft.com

ABSTRACT

Existing solutions for the automated physical design poble-
quire explicit invocations of tuning tools and criticallgplend on
DBAs gathering representative workloads manually. Indeision-
stration, we show an alternative approach to the physicsigde
problem. Specifically, we demonstrate a novel monitoringftg
DBMS component that we prototyped in Microsoft SQL Server
2005 as a server-side extension. This component is alwagso
continuously modifies the current physical design readtingary-
ing workload or data characteristics. Our solution impoess
overhead and takes into account storage constraints, aiptite-
ments, and the cost to create physical structures.

Categories and Subject Descriptors
H.2.2 [Physical Desigr: Access Methods

General Terms
Algorithms, Design

Keywords

Continuous tuning, Physical Design, Online algorithms

1. INTRODUCTION

Database applications have become increasingly compléx an
varied. Presently, most database vendors (e.g., [1, 4&}) au-
tomated tools to tune the physical design of a database, théth
objective of reducing the DBMS’ total cost of ownership. $ke
automated tools are very sophisticated and useful, blitlestive
several significant decisions to DBAs. Specifically, DBAsth¢o
continuously monitor and diagnose when to re-tune physeal
signs. Furthermore, to tune the database using these DBAs
need to explicitly gather representative workloads. Bn&lBAs
need to decide when to deploy recommendations.

The above tasks are difficult and in fact are becoming more-pro
lematic. Consider, as an increasingly common examplee larg
stallations that support multiple, intermittent databagplications
(e.g., some ISPs provide such backend service already)cttm-
mon that these hosted applications come and go, and usyhibjte
unexpected spikes in their loads. In such cases, the hasstey-
lation is best served if it can use its resources to accomtadtia
spikes. In terms of physical design, this entails perhaislibg

Copyright is held by the author/owner(s).
SIGMOD’07,June 11-14, 2007, Beijing, China.
ACM 978-1-59593-686-8/07/0006.

Surajit Chaudhuri

Microsoft Research
surajitc@microsoft.com

redundant structures for one application and subsequestisect-

ing resources to another application as the load patterngetsa
dynamically. As another example, some applications ekipi&i
riodic, sometimes unexpected changes indéBect/update Mix

in the workload. Consider, for instance, a bug-trackingeys

The most popular usage of such a database is querying/imgwsi
(select load), but the usage pattern completely changes on spe-
cific days when the test team finds and inserts large numbers of
bugs (pdate load), e.g., on a bug-bash day. If we gather a repre-
sentative workload over, say, a month, chances are thatdex is
globally useful for the bug database, as the gains in quarygsss-

ing are outweighed by the update costs during bug-bashdserio

It is very difficult to explicitly and statically model the wkload

in these scenarios, and equally difficult to decide when e tihe
database and deploy the resulting recommendations.

Since DBMSs support buildingnline indexeswhile allowing
query processing to continue, it is important to seek an evere
automated solution to the physical design problem. Thexeghanmw-
ever, new and significant challenges to address. Firsty auk
tomated solutions need to ladways-on continuously monitoring
changes in both the workload and the database state, anehgefin
the physical design as needed. Note that this requires slah s
tions to have low overhead. Additionally, in contrast toreat ap-
proaches, fully automated solutions must also balancedbeaf
transitioning between index configurations and the poaéien-
efits of such indexes for the future workload. In particulahjle
we would like to react quickly to changes in the workload cteay
too quickly can result in unwanted oscillations, in whicle game
indexes are continuously created and dropped. A fully aatmm
solution must “do no harm” for stable workloads, but reast fa
significant workload changes.

The online nature of our problem implies that we would lag be-
hind optimal offline solutions “that know the future”. Howay by
carefully reacting to changes, we ensure that we do notrsdiffe
proportionately although we do not know the future. Thuscae
bound the amount of loss that we incur. Our work was done as
part of the AutoAdmin project at Microsoft Research (seaiteat
http://research.microsoft.com/dmx/autoadmin/) and the tech-
nical details of our approach are explained in [3].

In Section 2 we present an architectural overview of ourtsmiy
which we prototyped in Microsoft SQL Server 2005. In Section
we provide additional details on the internal algorithmisiaily, in
Section 4 we give some examples that would be showcasedtas par
of the demonstration.

X) Asynchronous
Execution Engine Task Manager

Query Optimizer
Cost/Benefit Continuous
adjustment Tuner

! ! !

(Extended) Metadata Manager

DBMS

Client
graphical
interface

Figure 1: Continuous Tuning Architecture in a DBMS.

2. ARCHITECTURE

Figure 1 highlights the components in the database sera¢r th
were modified or added to support online physical desigmtuni
Specifically, we use an extended metadata manager thatoeddit
ally supports “candidate hypothetical indexes” which aoé ma-
terialized (and therefore do not help during normal quencpss-
ing), but are placeholders for tracking the benefit of aliéues.
Additionally, we added to the internal representation diixes (for
both real and candidate hypothetical indexes) a small sebwrf-
ters that are used to track the benefit of each alternativgally
when a new query is optimized, we piggyback on the optimirati
call and quickly identify a relevant set of candidate indexeat
could improve performancéndex analysisn the figure). For that
purpose, we usAND/OR request treeand local transformations
(see Section 3) and produce a compact set of updates to e ind
counters, to be performed every time the query is evaluzbedh-
sequently, during query execution, we leverage the pressiog
done during optimization and efficiently track the potentiene-
fits that we lose by not having the candidate indexes maitezihl
in addition to measuring the utility of existing indexe®$t/benefit
adjustmentn the figure). After each query (or after a variable num-
ber of query executions, if we need to throttle down the tgnin
process) we analyze the cost/benefit ratio and determin¢heshe
creating or dropping indexes would be benefictairtinuous tuner
in Figure 1). If a design change is beneficial, we send thexinde
creation or deletion request to an asynchronous task mamage
Microsoft SQL Server, which would process the. at a later time
based on system policies. Advanced DBAs can monitor therate
state of the continuous tuner by using a client application.

3. ALGORITHMIC DETAILS

We now briefly provide additional information on the intelrak
gorithms of our solutions (due to space constraints ourgmtesion
is very brief; see [3] for more details).

We gather information during optimizatioinflex analysisin
Figure 1) by instrumenting the optimizer and interceptipgiza-
tion rules that generarcess-path-requestSuch requests encode
the logical properties of any physical plan that is able tplament
the sub-tree rooted at the corresponding operator. Figste®&s
an example tagged execution plan and the correspondginypr
tree for the following query:

SELECT S.b FROM R,S WHERE R.x=S.y AND R.a=5 AND S.y=8
The requests generated during optimization allow us to nirake
ferences about execution plans for varying physical designd
do so without issuing additional optimization calls. Theads as

p2=2500 times

Hash
S. S.b}, 0.23:
Join {S.yin}, {S.b}, s, 2)

Rx=Sy (S b, 5]
= P3= - , 15-Yh
. (((?(;J:SI:OIO%(R.X)V \3 0.05[55,0?3

| Filter(R.a=5) | | Filter(S.b=8) |

O
(] Q=D
e] [eo]

Figure 2: Execution plan and AND/OR request tree.

| Scan(R) | | Scan(S) |

follows: if we produce any physical sub-plarthat implements a
given requesp, we canlocally replace withp the original physical
sub-plan associated withy and the resulting plan would be valid
and logically equivalent to the original one. We know thetats
the original sub-plan (it was obtained during regular optation)
and can calculate the cost of the newly generated alteenasing
p. Therefore, we can infer how much would the original exeauti
plan improve or degrade if we substituted the given subatrige
the logically equivalent physical plan usipgexploiting local re-
placement). Thus, after optimization we identify a set afdidate
indexes for the given query, and track the benefit that we lhyse
not having these materialized, as well as the utility of therent
existing indexes (we usf to denote these benefit/utility values).

A
AotB.

t
i n
Figure 3: Tracking benefit/utility values for indexes.

o

Our approach then is to track the aggregatedhlues as queries
are executed for every candidate index under considerétien
set of “candidate indexes” itself varies over time depegdin the
workload). Figure 3 shows two examples of aggregakedalues
over time for a given index. In the figure, we denote®yhe cost
of creating the corresponding index. Intuitively, if thegaggated
benefit of having a candidate index exceeds its creation oast
trigger an online creation of such index, since we gathenedigh
evidence that the index is useful. In contrast, if the benéfitav-
ing an index oscillates between some valNg and A + B, we
can confidently avoid creating the index, since the beneaf@sat
significant enough (in this way, we can also bound how much we
lag behind an optimal solution). By using this line of redagn
we can obtain a strategy that is 3-competitive (i.e., no ntlwae 3
times worse than the optimal strategy) for restricted stes43].
However, we extend this core technique with heuristics theltle
the following additional challenges:

Interactions. Consider indexe$;=(a, b, c) andI>=(a, b, c,d).

If we do not consider the inherent interaction betwéderand I,
we risk (i) underestimating\ values forl, by ignoring sub-optimal
—but better than existing— plans that usefor requests served op-
timally by I, (ii) overestimatingA values forl; after creating/,
becausd can be a better alternative than the original ong ifs
not present, and similarly (iii) underestimatidy values forI, if
1, is removed from the current configuration. Alsa,trees in the

AND/OR request tree must be handled carefully, since any execution such 38 executions, the benefitifis larger than its creation cost

plan can only take advantage of one of the sub-trees. Na@st
gies would overestimate the benefit of indexes belawodes.
Storage constraints. Additionally, if there is a storage con-
straint, we might not be able to create all the required iadexn
those situations, we need to (i) decide which indexes toterea
case of competing alternatives, (ii) decide whether to dromdex
1 from the current configuration even though it is somewhat use-
ful to free up space for better alternatives, and (iii) cdasiindex
merging [2] to obtain additional indexes that might bettade off
space and efficiency.

Reference [3] explains in detail the properties, challshgad
solutions mentioned above, which we omit due to space aintdr

4. THE DEMONSTRATION

In this demonstration, we showcase the integrated conimuo
tuning feature on a prototype built on top of Microsoft SQL&s
2005. We present scenarios that highlight the differenliehges
(discussed in earlier sections) and how we address those soe
lution. We will exploit the GUI client tool for this demonsittion.

The following examples are representative of tuning sesdiat
will be shown during the demonstration. Table 1 shows, faeva f
simple workloads, the online configuration schedules geaadrby
our solution, and its total execution time (for illustratipurposes,
we also manually calculated the optimal schedule and eteaiits
cost). We use the following notations: @&X(q)(represents:
executions of query, each one with cost, (ii) C(I) represents
the creation of indexX with coste, and (i) D(I) represents the
deletion of index/. The workloads contain the following queries:

q1 = SELECT a,b,c,id FROM R WHERE a<100
g2 = SELECT a,d,e,id FROM R WHERE a<100

and the schedules start with only primary indexes and censi:
following candidate indexes:
I1=R(id, a,b,c) I2=R(a,b,c,id)
I14=R(a,d,e,id) Is=R(a,b,c,d,e,id)

I3=R(id, a,d, ¢)

Workload Online Configuration Schedule Conline
44! 5E(q1)[0.57); C(I1)[1.33]5 31E(q1)[0.29]3 85.77
135MB | C(I2)[s.69]; 214E(q1)[0.00); 24E(q2)[0.57); | [Opt=62.92]

D(1I2); C(14)(s.96]5 226 E(g2)[0.09)
W2 | 4E(q1392)(0.57;0.575 C(I1)[1.33]; 180.01
135MB | 14E(q1;92)[0.20;0.57); D(11); C(I2)[8.96); [Opt=173.96
232E(q15 92)[0.09;0.57]
W2 4E(q1592)[0.57;0.57); C(I1)[1.33)5 79.71
138MB | 9E(q1592)[0.57;0.29; D(11); C(I5)[9.2); [Opt=69.21]
237E(q1; 92)[0.12;0.12]
We 4E(q1392) 057,057 C(11)[1.33); C(I3)[1.33)5| 75.16
150MB | 30E(q1;92)[0.29;0.209); C(I5)[9.2]; £(q1)[0.12)3| [OPt=56.86]
C(I2)11.215 E(a2)0.12); C(La) 1215
215E(q1; 92)[0.09;0.09]

Table 1: Configuration schedules for simple workloads.

Table 1 starts with workloadV1=250q1;250¢2 (i.e., 250 in-
stances ofy; followed by 250 instances af;). The total space
for the database i$35 MB, which is just enough for a single 4-
column index. We start executing five times at cosd.57. For this
query, bothl; andI; are useful {1 as a vertical partition for a scan
request, and; as a better overall alternative for a seek request).
Note also that the cost to creafe (1.33) is significantly smaller
than that ofl; (8.96) becausé; shares the same key columns with
the primary index and therefore no intermediate sort is s&arg.
After five executions ofy;, the benefit of creating; is larger than
its creation cost of .33, so we creatd;. Subsequent executions of
q1 cost only0.29, butg; can still be improved by indeX,. After

plus the residual benefit for the existifig so we dropl; and cre-
atel>. The remaining 207 executions @f cost only0.09. Right
after that, queryy, starts executing, and after 24 executions with
cost0.57, the benefit of index, (over tableS) is larger than its
creation cost plus the residual costBf so we swapls and I».
The remaining 226 instances @f are executed at co8t09.

The next three schedules in the table correspond to workload
Wa = 250[q1; q2] (i-e., 250 interleaved executions @f andgz).
While 135MB only allow one 4-column index to be created (i &.,
is too large),138MB allows any index (but only one) to be created,
and150MB allow multiple indexes to be created. Fl35MB, we
start executingq1; g2) until we createl; which helpsg;. Index
I, starts increasing its benefit with respectffcand at some point
replacesl;. From this point on, the schedule executgesat only
0.09, andg at the original cos0.57 (the relative benefits of in-
dexes forg, are roughly the same to the corresponding oneg:for
so the schedule does not change further and avoids osmikati
The overall cost is then 180.1. In contrast,1¥8MB storage is
available, the schedule starts similarly, but instead ainging/,
by I-, index merging producek; which serves both queries simul-
taneously. The remaining 237 executiong @f, g2) cost 0.11 for
each query, and the overall cost is reduced to just 79.71alliin
when 150/ B are available, botl; and Is are created initially,
and after creating the merged indéxwe are able to additionally
create optimal indexes for both andg» (at small cost, sincés
avoids intermediate sorts to credteand I4). The remaining exe-
cutions of(q1, g2) cost 0.09 for each query, and the overall cost is
still smaller at 75.36.

The demonstration will also present complex workloads H{suc
as Figure 4 that shows the cost of a typical schedule over a com
plex TPC-H workload with select and update queries). Thus, t
demonstration will highlight the key aspects of the onling@Ad-
min physical design tuning component showing how it adjtsts
changing workload patterns with low overhead while payituge
attention to important systems issues such oscillationiex inter-
actions, and storage bounds.

5000

4000 -

3000 -

2000 1

Estimated Cost

1000 A

0

1 ‘ 1‘1 ‘ 2‘1 ‘ 3‘1
Batch
Figure 4: Online schedule for a complex TPC-H workload.

5. REFERENCES

[1] S. Agrawal et al. Database Tuning Advisor for Microso®IS
Server 2005.

[2] N. Bruno and S. Chaudhuri. Physical design refinemeng Th
“Merge-Reduce” approach. In Proceedings of EDBT2006.

[3] N. Bruno and S. Chaudhuri. An online approach to physical
design tuning. Irin Proceedings of ICDE2007.

[4] B. Dageville et al. Automatic SQL Tuning in Oracle 10g.lin
Proceedings of VLDR004.

[5] D. Zilio et al. DB2 design advisor: Integrated automatic
physical database design.ImProceedings of VLDR004.

