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Abstract

A good image object detection algorithm is accurate, fast, and does not
require exact locations of objects in a training set. We can create such
an object detector by taking the architecture of the Viola-Jones detector
cascade and training it with a new variant of boosting that we call MIL-
Boost. MILBoost uses cost functions from the Multiple Instance Learn-
ing literature combined with the AnyBoost framework. We adapt the
feature selection criterion of MILBoost to optimize the performance of
the Viola-Jones cascade. Experiments show that the detection rate is up
to 1.6 times better using MILBoost. This increased detection rate shows
the advantage of simultaneously learning the locations and scales of the
objects in the training set along with the parameters of the classifier.

1 Introduction

When researchers use machine learning for object detection, they need to know the loca-
tion and size of the objects, in order to generate positive examples for the classification
algorithm. It is often extremely tedious to generate large training sets of objects, because
it is not easy to specify exactly where the objects are. For example, given a ZIP code of
handwritten digits, which pixel is the location of a “5” ? This sort of ambiguity leads to
training sets which themselves have high error rates, this limits the accuracy of any trained
classifier.

In this paper, we explicitly acknowledge that object recognition is innately a Multiple In-
stance Learning problem: we know that objects are located in regions of the image, but
we don’t know exactly where. In MIL, training examples are not singletons. Instead, they
come in “bags”, where all of the examples in a bag share a label [4]. A positive bag means
that at least one example in the bag is positive, while a negative bag means that all examples
in the bag are negative. In MIL, learning must simultaneously learn which examples in the
positive bags are positive, along with the parameters of the classifier.

We have combined MIL with the Viola-Jones method of object detection, which uses Ad-
aboost [11] to create a cascade of detectors. To do this, we created MILBoost, a new
method for folding MIL into the AnyBoost [9] framework. In addition, we show how early
stage in the detection cascade can be re-trained using information extracted from the final
MIL classifier.

We test this new form of MILBoost for detecting people in a teleconferencing application.



This is a much harder problem then face detection, since the participants do not look at the
camera (and sometimes away). The MIL framework is shown to produce classifiers with
much higher detection rates and fast computation times.

1.1 Structure of paper

We first review the previous work in two fields: previous related work in object detection
(Section 2.1) and in multiple instance learning (Section 2.2). We derive a new MIL variant
of boosting in Section 3, called MILBoost. MILBoost is used to train a detector in the
Viola-Jones framework in Section 4. We then adapt MILBoost to train an effective cascade
using a new criterion for selecting features in the early rounds of training (Section 5). The
paper concludes in Section 6 with experimental results on the problem of person detection
in a teleconferencing application. The MIL framework is shown to produce classifiers with
much higher detection rates and fast computation times.

2 Relationship to previous work

This paper lies at the intersection between the subfields of object detection and multiple in-
stance learning. Therefore, we discuss the relationship with previous work in each subfield
separately.

2.1 Previous work in image object detection

The task of object detection in images is quite daunting. Amongst the challenges are 1)
creating a system with high accuracy and low false detection rate, 2) restricting the system
to consume a reasonable amount of CPU time, and 3) creating a large training set that has
low labeling error.

Perona et. al [3, 5] and Schmid [12] have proposed constellation models: spatial models of
local image features. These models can be trained using unsegmented images in which the
object can appear at any location. Learning uses EM-like algorithms to iteratively localize
and refine discriminative image features. However, hitherto, the detection accuracy has not
be as good as the best methods.

Viola and Jones [13] created a system that exhaustively scans pose space for generic ob-
jects. This system is accurate, because it is trained using AdaBoost [11]. It is also very
efficient, because it uses a cascade of detectors and very simple image features. However,
the AdaBoost algorithm requires exact positions of objects to learn.

The closest work to this paper is Nowlan and Platt [10], which built on the work of Keeler,
et. al [7] (see below). In the Nowlan paper, a convolutional neural network was trained
to detect hands. The exact location and size of the hands is approximately truthed: the
neural network used MIL training to co-learn the object location and the parameters of the
classifier. The system is effective, but is not as fast as Viola and Jones, because the detector
is more complex and it does not use a cascade.

This paper builds on the accuracy and speed of Viola and Jones, by using the same ar-
chitecture. We attempt to gain the flexibility of the constellation models. Instead of an
EM-like algorithm, we use MIL to create our system, which does not require iteration.
Unlike Nowlan and Platt, we maintain a cascade of detectors for maximum speed.

2.2 Previous work in Multiple Instance Learning

The idea for multiple instance learning was originally proposed 1990 for handwritten digit
recognition by Keeler, et. al [7]. Keeler’s approach was called Integrated Segmentation



and Recognition (ISR). In that paper, the position of a digit in a ZIP code was considered
completely unknown. ISR simultaneously learned the positions of the digits and the param-
eters of a convolutional neural network recognizer. More details on ISR are given below
(Section 3.2).

Another relevant example of MIL is the Diverse Density approach of Maron [8]. Diverse
Density uses the Noisy OR generative model [6] to explain the bag labels. A gradient-
descent algorithm is used to find the best point in input space that explains the positive
bags. We also utilize the Noisy OR generative model in a version of our algorithm, below
(Section 3.1).

Finally, a number of researchers have modified the boosting algorithm to perform MIL. For
example, Andrews and Hofmann [1] have proposed modifying the inner loop of boosting
to use linear programming. This is not practically applicable to the object detection task,
which can have millions of examples (pixels) and thousands of bags.

Another approach is due to Auer and Ortner [2], which enforces a constraint that weak
classifiers must be either hyper-balls or hyper-rectangles in . This would exclude the
fast features used by Viola and Jones.

A third approach is that of Xu and Frank [14], which uses a generative model that the
probability of a bag being positive is the mean of the probabilities that the examples are
positive. We believe that this rule is unsuited for object detection, because only a small
subset of the examples in the bag are ever positive.

3 MIL and Boosting

We will present two new variants of AdaBoost which attempt to solve the MIL problem.
The derivation uses the AnyBoost framework of of Mason et al. which views boosting
as a gradient descent process [9]. The derivation builds on previous appropriate MIL cost
functions, namely ISR and Noisy OR. The Noisy OR derivation is simpler and a bit more
intuitive.

3.1 Noisy-OR Boost

Recall in boosting each example is classified by a linear combination of weak classifiers.
In MILBoost, examples are not individually labeled. Instead, they reside in bags. Thus,
an example is indexed with two indices: ¢, which indexes the bag, and j, which indexes
the example within the bag. The score of the example is y;; = C(z;;) and C(x;;) =
>, Aret (z45) a weighted sum of weak classifiers. The probability of an example is positive
is given by
1
1+ exp(—yi;)’

the standard logistic function. The probability that the bag is positive is a “noisy OR”
pi =1—-1] jei(l — pij) [6] [8]. Under this model the likelihood assigned to a set of
training bags is:

Dij

10 =[Ipt(=p)

where t; € {0, 1} is the label of bag i.

Following the AnyBoost approach, the weight on each example is given as the derivative
of the cost function with respect to a change in the score of the example. The derivative of
the log likelihood is:
0log L(C) t; — pi
—_— = ii = ———PDij- ]
yij i pi Pis M



Note, that the weights here are signed. The interpretation is straightforward; the sign de-
termines the example label. Each round of boosting is a search for a classifier which max-
imizes ), ; ¢(x;j)w;; where ¢(x;;) is the score assigned to the example by the weak clas-
sifier (for a binary classifier ¢(z;;) € {—1,+1}). The parameter ), is determined using a
line search to maximize log L(C' + Acy).

Examining the criteria (1) the weight on each example is the product of two quantities: the
bag weight Wh,,e = tp;lp and the instance weight Wiystance = pij- Observe that W}, for
a negative bag is always —1. Thus, the weight for a negative instance, p;;, is the same that
would result in a non-MIL AdaBoost framework (i.e. the negative examples are all equally
negative). The weight on the positive instances is more complex. As learning proceeds and
the probability of the bag approaches the target, the weight on the entire bag is reduced.
Within the bag, the examples are assigned a weight which is higher for examples with
higher scores. Intuitively the algorithm selects a subset of examples to assign a higher
positive weight, and these example dominate subsequent learning.

3.2 ISR Boost

The authors of the ISR paper may well have been aware of the Noisy OR criteria described
above. They chose instead to derive a different perhaps less probabilistic criteria. They do
this in part because the derivatives (and hence example weights) lead to a form of instance
competition.

Define x;; = exp(yij), Si = Zjeixij and p; = H_S—S Keeler et al. argue that x;;
can be interpreted as the likelihood that the object occurs at ij. The quantity S; can be
interpreted as a likelihood ratio that some (at least one) instance is positive, and finally p; is
the probability that some instance is positive. The example weights for the ISR framework
are:
dlog L(C) Xij
—2 0 — = (b — pi) =l — )
Iyij Y YN e xig

Examining the ISR criteria reveals two key properties. The first is the form of the exam-
ple weight which is explicitly competitive. The examples in the bag compete for weight,
since the weight is normalized by sum of the ;;’s. Though the experimental evidence is
weak, this rule perhaps leads to a very localized representation, where a single example is
labeled positive and the other examples are labeled negative. The second property is that
the negative examples also compete for weight. This turns out to be troublesome in the de-
tection framework since there are many, many more negative examples than positive. How
many negative bags should there be? In contrast, the Noisy OR criteria treats all negative
examples as independent negative examples.

4 Application of MIL Boost to Object Detection in Images

Each image is divided into a set of overlapping square windows that uniformly sample
the space of position and scale (typically there are between 10,000 and 100,000 windows
in a training image). Each window is used as an example for the purposes of training and
detection. Each training image is labeled to determine the position and scale of the object of
interest. For certain types of objects, such as frontal faces, it may be possible to accurately
determine the position and scale of the face. One possibility is to localize the eyes and then
to determine the single positive image window in which the eyes appear at a given relative
location and scale. Even for this type of object the effort in carefully labeling the images is
significant.

For many other types of objects (objects which may be visible from multiple poses, or



Figure 1: Two example images with people in a wide variety of poses. The algorithm will
attempt to detect all people in the images, including those that are looking away from the
camera.

Cleleglple e e el e e e e
el | Il el | el fel|| el | el Pl e i) B B R
CH ol el|led| el el || lel | loM| el | Fen | e

Figure 2: Some of the subwindows in one positive bag.

are highly varied, or are flexible) the “correct” geometric normalization is unclear. It is not
clear how to normalize images of people in a conference room, who may be standing, sitting
upright, reclining, looking toward, or looking away from the camera. Similar questions
arise for most other image classes such as cars, trees, or fruit.

Experiments in this paper are performed on a set of images from a teleconferencing appli-
cation. The images are acquired from a set of cameras near the center of the conference
room (see Figure 1). The practical challenge is to steer a synthetic virtual camera toward
the location of the speaker. The focus here is on person detection; determination of the
person who is speaking is beyond the scope of this paper.

In every training image each person is labeled by hand. The labeler is instructed to draw a
box around the head of the person. While this may seem like a reasonable geometric nor-
malization, it ignores one critical issue, context. At the available resolution (approximately
1000x 150 pixels) the head is often less than 10 pixels wide. At this resolution, even for
clear frontal faces, the best face detection algorithms frequently fail. There are simply too
few pixels on the face. The only way to detect the head is to include the surrounding image
context. It is difficult to determine the correct quantity of image context (Figure 2 shows
many possible normalizations).



If the body context is used to assist in detection, it is difficult to foresee the effect of body
pose. Some of the participants are facing right, others left, and still others are leaning
far forward/backward (while taking notes or reclining). The same context image is not be
appropriate for all situations.

Both of these issues can be addressed with the use of MIL. Each positive head is repre-
sented, during training, by a large number of related image windows (see Figure 2). The
MIL boosting algorithm is then used to simultaneously learn a detector and determine the
location and scale of the appropriate image context.

S MIL Boosting a Detection Cascade

In their work on face detection Viola and Jones train a cascade of classifiers, each designed
to achieve high detection rates and modest false positive rates. During detection almost
all of the computation is performed by the early stages in the cascade, perhaps 90% in the
first 10 features. Training the initial stages of the cascade is the key to a fast and effective
classifier.

Training and evaluating a detector in a MIL framework has a direct impact on cascade
construction, both on the features selected and the appropriate thresholds.

The result of the MIL boost learning process is not only an example classifier, but also
a set of weights on the examples. Those examples in positive bags which are assigned
high weight have also high score. The final classifier labels these examples positive. The
remaining examples in the positive bags are assigned a low weight and have a low score.
The final classifier often classifies these examples as negative (as they should be).

Since boosting is a greedy process, the initial weak classifiers do not have any knowledge
of the subsequent classifiers. As a result, the first classifiers selected have no knowledge
of the final weights assigned to the examples. The key to efficient processing, is that the
initial classifiers have a low false negative rate on the examples determined to be positive
by the final MIL classifier.

This suggests a simple scheme for retraining the initial classifiers. Train a complete MIL
boosted classifier and set the detection threshold to achieve the desired false positive and
false negative rates. Retrain the initial weak classifier so that it has a zero false negative
rate on the examples labeled positive by the full classifier. This results in a significant
increase in the number of examples which can be pruned by this classifier. The process can
be repeated, so that the second classifier is trained to yield a zero false negative rate on the
remaining examples.

6 Experimental Results

Experiments were performed using a set of 8 videos recorded in different conference rooms.
A collection of 1856 images were sampled from these videos. In all cases the detector was
trained on 7 video conferences and tested on the remaining video conference. There were
a total of 12364 visible people in these images. Each was labeled by drawing a rectangle
around the head of each person.

Learning is performed on a total of about 30 million subwindows in the 1856 images. In
addition to the monochrome images, two additional feature images are used. One measures
the difference from the running mean image (this is something like background subtraction)
and the other measures temporal variance over longer time scales. A set of 2654 rectangle
filters are used for training. In each round the optimal filter and threshold is selected. In
each experiment a total of 60 filters are learned.
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Figure 3: ROC comparison between various boosting rules.

Figure 4: One example from the testing dataset and overlaid results.

We compared classical AdaBoost with two variants of MIL boost: ISR and Noisy-OR.
For the MIL algorithms there is one bag for each labeled head, containing those positive
windows which overlap that head. Additionally there is one negative bag for each image.
After training, performance is evaluated on held out conference video (see Figure 3).

During training a set of positive windows are generated for each labeled example. All
windows whose width is between 0.67 times and 1.5 times the head width and whose
center is within 0.5 times the head width of the center of the head are labeled positive.
An exception is made for AdaBoost, which has a tighter definition on positive examples
(width between 0.83 and 1.2 times the head width and center within 0.2 times the head
width) and produces better performance than the looser criterion. All windows which do
not overlap with any head are considered negative. For each algorithm one experiment
uses the ground truth obtained by hand (which has small yet unavoidable errors). A second
experiment corrupts this ground truth further, moving each head by a uniform random shift
such that there is non-zero overlap with the true position. Note that conventional AdaBoost
is much worse when trained using corrupted ground truth. Interestingly, Adaboost is worse
than NorBoost using the “correct” ground truth, even with a tight definition of positive
examples. We conjecture that this is due to unavoidable ambiguity in the training and
testing data.

Overall the MIL detection results are practically useful. A typical example of detection
results are shown in Figure 4. Results shown are for the noisy OR algorithm. In order to
simplify the display, significantly overlapping detection windows are averaged into a single
window.

The scheme for retraining the initial classifier was evaluated on the noisy OR strong clas-
sifier trained above. Training a conventional cascade requires finding a small set of weak
classifiers that can achieve zero false negative rate (or almost zero) and a low false positive
rate. Using the first weak classifier yields a false positive rate of 39.7%. Including the first



four weak classifiers yields a false positive rate of 21.4%. After retraining the first weak
classifier alone yields a false positive rate of 11.7%. This improved rejection rate has the
effect of reducing computation time of the cascade by roughly a factor of three.

7 Conclusions

This paper combines the truthing flexibility of multiple instance learning with the high
accuracy of the boosted object detector of Viola and Jones. This was done by introducing
a new variant of boosting, called MILBoost. MILBoost combines examples into bags,
using combination functions such as ISR or Noisy OR. Maximum likelihood on the output
of these bag combination functions fit within the AnyBoost framework, which generates
boosting weights for each example.

We apply MILBoost to Viola-Jones face detection, where the standard AdaBoost works
very well. NorBoost improves the detection rate over standard AdaBoost (tight positive)
by nearly 15% (at a 10% false positive rate). Using MILBoost for object detection allows
the detector to flexibly assign labels to the training set, which reduces label noise and
improves performance.
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