
MashupOS: Operating System Abstractions
for Client Mashups

Jon Howell
howell@microsoft.com

Collin Jackson
collinj@cs.stanford.edu

Helen J. Wang
helenw@microsoft.com

Xiaofeng Fan
xiaoffan@microsoft.com

Abstract— Web browser support has evolved piecemeal
to balance the security and interoperability requirements
of client-side script services. This evolution has led to an
inadequate security model that forces Web applications to
choose between security and interoperation. We draw an
analogy between Web sites’ sharing of browser resources
and users’ sharing of operating system resources, and use
this analogy as a guide to develop protection and commu-
nication abstractions in MashupOS: a set of abstractions
that isolate mutually-untrusting web services within the
browser, while allowing safe forms of communication.

I. I NTRODUCTION

Web browsers are becoming the single stop for ev-
eryone’s computing needs including information access,
personal communications, office tasks, and e-commerce.
Today’s Web applications synthesize the world of data
and code, offering rich services through Web browsers
and rivaling those of desktop PCs. Browsers have
evolved to be a multi-principal operating environment
where mutually distrusting Web sites (as principals)
interact programmatically in a single page on the client
side, sharing the underlying browser resources. Consider
a scenario (Figure 1) wherein an HTML file (possibly
including scripts) sent fromwebmail.com and an
HTML file sent from stocks.com run on the client
browser. These HTML files are really delegates on be-
half of webmail.com andstocks.com, respectively,
using resources on the client to improve the interactivity
of the services. In this scenario, the sites are mutually
distrusting principals sharing the browser’s resources
(display, memory, CPU, network access). This resembles
the PC operating environment where mutually distrusting
users share host resources.

However, unlike PCs that utilize multi-user operating
systems for resource sharing, protection, and manage-
ment, today’s browsers do not employ any operating
system abstractions, but provide just a limited binary
trust model and protection abstractions suitable only
for a single principal system: There is eitherno trust
across principals through complete isolation orfull trust
through incorporating third party code as libraries. The
browser abstraction for the former isFRAME; frames
enable interactive (script-enhanced) Web services to oc-
cupy neighboring display real estate, but the components

stocks.com

static

pages

webmail.com

cgi

client browser

webmail

display

stocks

display

Fig. 1. JavaScript code running on a client browser is reallyjust a
distributed component of the Web service that provided the code.

cannot interact. The abstraction for the latter isSCRIPT

which allows third-party scripts to be included as library
code; the embedded cross-domain scripts enjoy full trust
from its includer and can access the includer’s data,
display, and access to back-end server resources. With
these limited existing browser abstractions, Web pro-
grammers are forced to make tradeoffs between security
and functionality, and often times sacrifice security for
functionality. In the scenario above, a web program
either segregates HTML content fromwebmail.com
and stocks.com into separate frames denying any
communications or embed their scripts as libraries into
a containing page allowing intimate interactions. As
we can see, controlled interactions may be desired: If
thestocks.com server offers a limited Web interface
that other servers such aswebmail.com may access,
then the browser should allow similar communication
between the corresponding components running on the
client. This controlled communication among otherwise
isolated client components is not attainable in today’s
browsers.

In the MashupOS project, we aim to design and
build a browser-based multi-principal operating system.
In this position paper, we outline our initial explorations
on the proper abstractions needed for protection and
communciations which to date have received only ad-hoc
band-aids and patches. By identifying an appropriate,
strong analogy to conventional operating system design,



MashupOS draws on decades of wisdom and experience
in managing isolation and communication among un-
trusted principals. While there is no way to show an open
architecture to be complete and correct, the MashupOS
approach has a solid foundation.

For the rest of the paper, Section II identifies the
limitations of the abstractions and security policies im-
plemented in contemporary browsers. Section III sets out
the goals of MashupOS. Section IV introduce primitive
abstractions which plainly enforce a security model
analogous to a multi-principal operating system, pro-
viding only spare communication primitives. Section V
enhances those primitives with syntactic sugar, providing
familiar, simple communication without destroying the
security of the primitives. Section VI considers deploy-
ment issues, and Section VII relates MashupOS to other
proposals. Finally, we conclude in Section VIII.

II. BACKGROUND

The security policy of current browsers is the result
of a patchwork of decisions made by many indepen-
dent companies and individuals, with a heavy emphasis
on avoiding vulnerabilities in legacy sites, rather than
providing the best abstractions for the newest sites. To
motivate our proposal, we examine the security policies
of current browsers and the limitations that they place
on Web mashups.

A. Same-Origin Policy

Browsers use cookies as a way to identify and authen-
ticate unique users, and to operate in a way that depends
on which user is viewing the page. A cookie is a small,
arbitrary piece of data chosen by the Web server and sent
to the browser in an HTTP header when responding to
a request. On subsequent requests, browsers use HTTP
headers to echo back cookies to the server that sent
them [8].

In order for cookies to be used as an authentication
mechanism and provide the illusion of an isolated session
shown in Figure 1, the browser must keep cookies secret
from other sites. Thus, cookies are sent only to the same
site that set them, a policy known as theSame-Origin
Policy [6].

B. AJAX

Recently, theAJAX programming model has emerged,
allowing web services to shift interactive user interface
code from the web server to the browser. AJAX stands
for Asynchronous JavaScript and XML. Where conven-
tional web pages handle every click with a round-trip
to the server, AJAX uses client-side code (“JavaScript”)
to handle many user interactions, providing interactiv-
ity not bounded by network and server performance.
Furthermore, when communication with the server is

required, that communication occurs asynchronously
(“asynchronous XML”), while the client-side code con-
tinues to provide interactivity in the meantime.

The Document Object Model (DOM) is an interface
that allows scripts to read and modify HTML documents,
even documents in other pages or frames. To ensure
that web pages cannot circumvent firewalls or hijack
the user’s authenticated sessions, JavaScript documents
loaded from one origin are prevented from getting or
setting properties of a document from a different ori-
gin. Each browser window,FRAME, or IFRAME (inline
frame) is a separate document, and each document is
associated with an origin on the basis of URL. Two
origins are considered separate if they differ by scheme
(http or https), DNS name, or TCP port [12]. For
example, frames fromhttp://amazon.com/ and
http://amazon.co.uk/ cannot access each other’s
resources because their DNS names differ.

The asynchronous XML communication of AJAX is
accomplished using XMLHttpRequest, which can com-
municate only with the page’s origin server. For example,
a frame fromhttp://amazon.com/ cannot issue an
XMLHttpRequest tohttp://amazon.co.uk/.

C. Remote Code Inclusion

Web developers often wish to incorporate third-
party code libraries. An example is housingmaps.com,
which uses the Google Maps code library to visualize
Craigslist housing classified ads. Because JavaScript
files generally do not have any user-specific or
sensitive information, browsers interpret files in
this format as public code libraries and allow them
to be executed across domains. The code runs
with the privileges of the page including it. For
example, the housingmaps.com/index.html
page may contain the markup <script
src=’http://google.com/maps.js’>

</script>, which allows maps.js to access
housingmaps.com’s HTML DOM objects, cookies and
data through XMLHttpRequest. However,maps.js
cannot access google.com’s resources since the
code in maps.js is considered to have the origin
housingmaps.com rather than google.com in this
context.

The existence of remote code inclusion as an al-
ternative to the isolation of the Same-Origin Policy
presents web developers with a dilemma: a site must
either completely distrust another site and segregate itself
through the use of cross-domain frames, or a site can
use another site’s code as its own, offering full resource
access to the remote site.

D. Web Mashups

Web mashups compose data from more than one site,
yet the browser prevents such cross-domain communica-



tion. XMLHttpRequest cannot retrieve data from another
domain, even if the other domain desires it.

Initially, mashup developers worked around these re-
strictions using a proxy approach: a web portal like
MSN.com may, in the back end, compose dozens of
web services together into a single web page which
is displayed in the browser. Services from different
principals can be composed the same way; examples
include metacrawlers and news aggregators. This ap-
proach unfortunately makes several unnecessary round
trips, reducing performance, and the proxy can become
a choke point, limiting scalability.

An alternative to proxies is encoding public data in
executable JavaScript format (JavaScript Object Nota-
tion, or JSON [2]). UsingSCRIPT tags, this data can
be passed from the provider to the integrator across
domain boundaries, eliminating the need for proxies. As
a possibly unintended side effect, this technique grants
the integrator’s privileges to the data provider.

E. Gadget Aggregators

Mutually distrusting network servers communicate
with one another using web service APIs, but the
Same-Origin Policy offers no equivalent communication
among client-side components. As a result, web services
that wish to enjoy tight client-side coupling must aban-
don entirely the isolation afforded by the policy, and
instead compose scripts directly using theSCRIPT tag.
Scripts composed this way can communicate because all
the scripts are treated as belonging to the domain of the
enclosing document. Unfortunately, that communication
is completely unconstrained. Two examples of composi-
tions follow in which such trust is inappropriate.

Web gadget aggregators such as Google Personalized
Homepage page [5] and Windows Live [9] aggregate
user-selected interactive content from disparate sources
into a single portal page. Agadget includes both HTML
and JavaScript, and is designed to be included into a
gadget aggregator page; it is the client-side of some web
service.

Gadget aggregators are security-conscious; third-party
gadgets are hosted on a separate domain andIFRAMEs
are employed to isolate these gadgets from one another
and from the containing page. However, because these
IFRAMEs cannot communicate, aggregators also support
inline gadgets, SCRIPTs inlined directly into the ag-
gregator page. Because inlining requires complete trust,
Google’s aggregator asks the user what to do: “Inline
modules can ... give its author access to information
including your Google cookies and preference settings
for other modules. Click OK if you trust this module’s
author.”

AOL provides a chat widget, called Web AIM, de-
signed to be integrated into other web services’ displays.

A web service can interoperate with the widget using
an API to add contacts. Ideally, the service should not
be allowed arbitrary access to the widget, with which a
malicious service might extract the user’s list of contacts
or even feign a chat session. Absent better abstractions,
AOL chooses interoperability, and punts security to the
user with a “click OK” dialog box.

III. G OALS

Secure, interoperating client-side service compositions
demand new browser abstractions with three properties.

• Cross-domain protection prevents code in one
domain from compromising the confidentiality or
integrity of other domains. To prevent denial of
service, domains should receive fair shares of com-
modity resources such as CPU, network bandwidth,
and disk space.

• Controlled cross-domain communicationallows
a service from one domain to interoperate with a
service from another, enabling rich composition.

• Doing minimal violence to the existing Web
API eases adoption of the new abstractions, and
the mechanisms must offer acceptable backwards-
compatibility behavior.

IV. PRIMITIVE ABSTRACTIONS

Section IV-A identifies the resources MashupOS man-
ages. The SERVICEINSTANCE of Section IV-B isolates
principals from each others’ resources, and the abstrac-
tions of Section IV-C provide a restricted communication
model among SERVICEINSTANCEs.

A. Resources

Reusable commodity resources, such as CPU, mem-
ory, and network bandwidth, need only be fairly shared
to prevent misbehaving principals from denying service
to well-behaved principals.

Unique resources, however, require access control ab-
stractions to misbehaving principals from violating con-
fidentiality or integrity.Persistent storagein the browser
is much simpler than conventional OS file systems;
therefore, rather than extend the OS analogy to share
persistent state among principles, MashupOS maintains
the isolated persistent storage model of today’s browsers.
Likewise, MashupOS offers no sharedmemory between
principals, so no memory access-control abstraction is
necessary.

In MashupOS, thedisplay is an access-controlled
resource in the same sense that the X11 window server
enables mutually-distrusting clients to share access to a
common display resource.

Likewise,network accessfrom client code is subject
to access controls that mimic those enforced on accesses
originating at the principal’s web server, following the



intuition of Figure 1. Indeed, communication between
client components is treated as network communication,
and subject to the same access controls.

B. The ServiceInstance Isolation Primitive

We propose a primitive abstraction called a SERVICE-
INSTANCE, analogous to an operating system process. A
new browser window is initially associated with a single
SERVICEINSTANCE, which contains the page’s Docu-
ment Object Model (DOM) structure and the ephemeral
state (variables) associated with the code on the page.
The SERVICEINSTANCE is also associated with a single
principal, defined as the Same-Origin Policy domain
associated with the document loaded into the page.

Just as in today’s HTML, if a SERVICEINSTANCE

uses aSCRIPT tag to incorporate a trusted library by
reference, that library runs as the principal associated
with the SERVICEINSTANCE, regardless of the location
from which the script was fetched. The same effect can
be achieved if the SERVICEINSTANCE principal’s server
fetches the script and inlines it into the SERVICEIN-
STANCE’s HTML: in both cases, the SERVICEINSTANCE

is owned entirely by the principal that served the outer
HTML, and the inlined script is completely trusted to
run on behalf of that principal.

We introduce a new HTML element<FRIV
src="page2.html"> that crosses the security iso-
lation of a FRAME with the layout and communications
benefits of aDIV . The FRIV has three effects. First, it
allocates a subregion of the outer display region. Second,
it creates a new SERVICEINSTANCE. Third, it populates
the DOM of the subregion by loading the referencedSRC

document.
The DOM that represents the content of the subregion

is isolated inside the new SERVICEINSTANCE. Script
code in the inner SERVICEINSTANCE cannot reach the
DOM of the outer SERVICEINSTANCE by traversing
pointers (parent pointers, callbacks, or anything else),
nor vice versa. Likewise, the ephemeral state of the
scripts loaded into the inner SERVICEINSTANCE are
isolated: the inner SERVICEINSTANCE cannot hold a
reference to objects in the outer SERVICEINSTANCE, nor
vice versa.

The outer SERVICEINSTANCE (that created theFRIV)
and the inner SERVICEINSTANCE divide responsibility
over the display resource. The outer SERVICEINSTANCE

is responsible for all of its display other than the contents
of the FRIV display region, and the inner SERVICEIN-
STANCE is responsible for the contents of theFRIV.
The outer SERVICEINSTANCE’s DOM represents the
delegated display region with a “top-halfFRIV” object:
the outer SERVICEINSTANCE can adjust the display area
of the FRIV, but cannot see the composite DOM below
that point. Likewise, the inner SERVICEINSTANCE’s root

Gadget

Aggregator
Stocks Email Viewer

Content

Pane

TABLE

FRIV

FRAME

TABLE

FORM

FRIV

FRIV

aggregator.com

ServiceInst

webmail.com

ServiceInst

Fig. 2. The diagram on top shows the subdivision of a display
surface into regions. Dotted boxes on the below represent the SER-
VICEINSTANCEs that contain the DOM elements and other private
data associated with each display region. The two SERVICEINSTANCEs
shown adjoin by aFRIV object, highlighted by a bold line. Each
SERVICEINSTANCE can only access its “half” of theFRIV object.
The FRIV represents the subdivision of display space (shown by the
bold boundary in the top diagram) and provides an explicit, data-only
communication channel between the SERVICEINSTANCEs.

DOM object is a “bottom-halfFRIV” object: the inner
SERVICEINSTANCE can read the size of the allocated re-
gion, and populate it with DOM elements, but cannot see
the composite DOM elements above theFRIV boundary.

FRIV can be used recursively: aFRIV may contain
anotherFRIV. For example, a gadget aggregator (in a
FRAME) may contain a mail-reading gadget (in aFRIV),
which may recursively contain a content-viewing pane
(in anotherFRIV).

C. Communication among SERVICEINSTANCEs

TheFRIV is the DOM object that connects two SERVI-
CEINSTANCEs: The outer SERVICEINSTANCE delegates
control over part of its display to the inner SERVICEIN-
STANCE. Each SERVICEINSTANCE is a represention on
the client of some web site; sites may reasonably wish
to communicate in some limited (mutually-distrusting)
fashion between SERVICEINSTANCEs. Therefore, the
FRIV includes an explicit communication channel be-
tween the SERVICEINSTANCEs it joins.

The inner SERVICEINSTANCE can write messages
into the bottom-half FRIV, and the outer SERVICE-
INSTANCE can register a callback with the top-half
FRIV to receive such messages. The messages are data-
only, one-way messages, and therefore have semantics
equivalent to discrete network messages between the
servers that are responsible for the SERVICEINSTANCE

content. In particular, data-only messages mean that a
SERVICEINSTANCE cannot hang itself by giving away
a pointer to its DOM or internal state. Our choice of



an asynchronous communication abstraction ensures that
SERVICEINSTANCEs can communicate without failure-
coupling to one another; AJAX-style asynchronous RPC
is easy to build over asynchronous messages.

The primitive syntax for explicit communication
channels emphasize the simplicity of the channel,
in particular its equivalence to a network
channel: Each half-FRIV object contains an
registerReceiveHandler(handler) method,
which registers a JavaScript function to receive data,
and asend(data) method, which sends data to the
handler on the other end of the channel. The receiver
also learns the identity of the principal that sent the
message.

The MashupOS implementation allows messages to
contain only value types (including compounds). Be-
cause messages maynot transmit a pointer to data in
the sending SERVICEINSTANCE, they behave just as a
network message between the sites on behalf of which
the SERVICEINSTANCEs run.

D. Commodity Resource Isolation

Given the SERVICEINSTANCE isolation abstraction,
we can apply conventional techniques to fairly share
commodity resources such as CPU, memory, and net-
work bandwidth. This keeps a resource-hog from break-
ing other services.

For pedagogy, we described each SERVICEINSTANCE

as associated with exactly one display region. In prac-
tice, we expect to generalize the SERVICEINSTANCE

to manage zero or multiple display regions, providing
the analog of background processes and multi-window
applications.

E. Null-Principal SERVICEINSTANCEs

We include as an optional enhancement the ability for
a principal to create a SERVICEINSTANCE with a null
principal. Such a SERVICEINSTANCE receives the usual
fair share of commodity resources, and may also draw
into its FRIV and communicate with its creator via its
FRIV. Because the SERVICEINSTANCE has no principal,
it cannot make XMLHttpRequests; any JSONRequests
carry the null principal as their origin. Cookies, which
are associated with principals, are unavailable to the null-
principal SERVICEINSTANCE. The email gadget display
can use a null-principal SERVICEINSTANCE to render
untrusted email content fetched fromwebmail.com
without giving that content access to the principal’s
resources.

V. SYNTACTIC SUGAR ABSTRACTIONS

The FRIV primitive described in Section IV is like
today’s cross-domain FRAME, plus commodity resource
isolation and a message-based communication channel.

Developers, however, preferDIVs to FRAMEs for two
reasons. First,DIVs better negotiate display real estate to
accomodate documents of varying size. Second, commu-
nication between the gadget charged with implementing
a DIV and the containing document is as simple as
method invocation. In this section, we enhance theFRIV

to exhibit these preferred behaviors. These enhancements
do not weaken the primitive model; indeed, it is possible
to implement them as syntactic sugar over the primitive
model.

One advantage of using a DIV rather than a FRAME
to contain unknown content is that DIVs automatically
resize to fit their content, whereas FRAMEs force the
user to drag through the content with a scrollbar. A
FRIV is rendered like a frame by the browser, to prevent
the inner gadget from using absolute positioning to
display elements outside theFRIV’s boundary. However,
by passing width and height messages between the outer
and inner documents, ourFRIV automatically resizes
itself to fit its content. The parent page can override
this behavior using stylesheets to specify a fixed or
maximum size for theFRIV, or by explicitly intercepting
the messages with its own handler. The page inside
the FRIV must activate the automatic resizing feature
explicitly by calling the exportSize function; this
consent prevents an attacker web site from determining
the number of bytes in a confidential document from
another domain by measuring theFRIV’s size.

The sugaredFRIV also provides the illusion of di-
rect communication via function calls; in the operating
systems analogy, we provide an asynchronous remote
procedure call abstraction. This abstraction retains the
familiar syntax of contemporary mashups.

Suppose Alice hosts a mashup that uses third-
party map software provided by Bob. Alice.com in-
cludes Bob’s map software by rendering aFRIV that
points to Bob.com. In order to allow Alice to re-
center the map to a particular location, Bob de-
fines a JavaScript methodsetCenter(latitude,
longitude) and allows Alice to call it by using
the syntax parent.export(setCenter), where
parent is the bottom-halfFRIV at the root of Bob’s
DOM. Alice can now call Bob’ssetCenter method by
invoking exportedMethods.setCenter() on the
top-half FRIV that adjoins to Bob’s SERVICEINSTANCE.

Alice can also export methods to Bob. For example,
Alice might want to be notified when the user clicks
on a point on the map. Alice can define the function
onclick(latitude, longitude) and allow Bob
to call it by calling theexport(onclick) method of
the top-halfFRIV adjoining Bob’s SERVICEINSTANCE.
Bob can now call Alice’s onclick method by invoking
parent.exportedMethods.onclick.

The simple examples shown above do not involve



return values; we also provide a capability to make
asychronous (using an additional JavaScript callback
argument) calls to functions with return values. We also
propose a synchronous interface, although synchronous
RPC failure-couples the caller to the callee.

The FRIV tag is designed for web mashups where
the caller and callee only partially trust each other. It
is important to note that this syntactic sugar does not
violate the data-only limitation of the communication
channel (Section IV-C). If the participants trust one
another enough (arguably completely) to pass code or
references to DOM objects, then an inlineSCRIPT tag
suffices (in the operating systems analogy, the caller links
to the third-party library directly).

One exception to the data-only rule is that a commu-
nication endpoint itself may be passed as an argument
in a cross-SERVICEINSTANCE message; analogous in
the OS world to passing a file descriptor through an
IPC channel. This feature enables a gadget aggregator
to directly connect two of its siblings. We have yet to
solidify the details of this proposal.

VI. PROPOSEDIMPLEMENTATION

For a proposal like MashupOS to be feasible, it must
be implementable. We plan for future work a reference
implementation of the MashupOS abstractions. Here, we
consider alternative implementation approaches.

A. Isolation

Isolation of separateFRIVs, including commodity
resource allocation, can be provided natively in the
browser or a plugin, based on JavaScript type safety.
Alternatively, isolation could be implemented using pro-
cesses [10], virtual machines [1], or dynamic code trans-
formation.

Code transformation offers an interesting alterna-
tive to the browser-upgrade deployment path. Browser-
Shield [11] is a framework that dynamically rewrites
an HTML-and-JavaScript page to obey a given policy.
One killer application of BrowserShield was to protect
browser vulnerabilities by catching even dynamically-
generated exploit code. A BrowserShield implementation
of MashupOS would enforce isolation by preventing
code from from following references acrossFRIV bound-
aries in the display DOM. Dynamic rewriting can incur
significant performance overhead. Its advantage is that
it can be deployed remotely, e.g. by a gadget aggregator
site, to enhance legacy browsers with the MashupOS
abstractions.

B. Incremental Deployment

Until all browsers support MashupOS, websites must
handle users with legacy browsers that do not understand
the FRIV tag, by providing a safe, user-friendly fallback

behavior. To that end, we borrow a trick fromIFRAME:
FRIV-aware browsers shall ignore the contents of aFRIV

tag. Legacy browsers ignore the unsupportedFRIV tag,
and proceed to render its contents normally. Thus, a
web developer can place inside theFRIV tag a cross-
domain IFRAME, ensuring that the referenced gadget
is safely displayed, regardless of browser support for
FRIV. Alternatively, the web developer may use theFRIV

content to link to aFRIV-enabled browser upgrade or
plugin.

To ensure that MashupOS web pages are
considered valid XHTML, the FRIV tag is part
of a custom XML namespace until it is someday
adopted as part of the HTML standard. Thus,
technically a FRIV should be created with
the slightly longer syntax <mashupos:friv
src=’page2.html’ xmlns:mashupos=
’http://research.microsoft.com/mashupos/’>.

Instead of introducing a new tag, an alternate approach
would be to reuse an existing tag, such asIFRAME,
SCRIPT, or OBJECT. Internet Explorer and Opera adopted
this approach with thesecurity=restricted at-
tribute of IFRAME, which allows a containing page to
render a frame with JavaScript and other active content
disabled. Unlike theFRIV tag, the security-restricted
IFRAME tag does not fail safely: When encountered
by a browser such as Firefox that is not aware of the
security property, the active content is allowed to
execute.

VII. R ELATED WORK

Recently, a new wave of “web operating systems” [3]
(e.g., YouOS [13]) have emerged. These sites present
a traditional desktop user interface, complete with a
window manager. The applications run natively in
JavaScript. All are hosted on the same domain as the
web desktop, and thus have unlimited access to one
another. This lack of isolation, comparable to the 1995
PC desktop, requires the user to completely trust every
application that is run.

Our earlier work on Subspace [7] provided a cross-
domain communication mechanism that is designed to
run on current browsers without any additional plug-ins
or client-side changes. Subspace uses the browser’s exist-
ing document.domain property to communicate with
isolated subdomains, which are in turn used to draw in
scripts from other domains. However, Subspace requires
significant work on the part of the web developer to use
correctly, and does not provide the resource constraint
options of FRIV. We believe browsers should provide
built-in cross-domain interaction primitives.

Crockford recently proposed the JSONRequest [2]
communication mechanism for asynchronous cross-
domain data retrieval from a remote server. The proposal



was motivated by scenarios where the cross-domain
SCRIPT tag was being used to execute code when only
data was really required. The JSONRequest’s usage is
similar to XMLHttpRequest, but it is not constrained
by the Same-Origin Policy. Lifting these same-origin
restrictions is safe because cookies are not sent, because
the request includes a header indicating the source of
the request, and because the server’s reply must indicate
the server is aware of the protocol and hence its security
implications. JSONRequest transmits data in the JSON
format, but its security applies equally to XML or other
formats. A cross-domain JSONRequest is the client-
side equivalent to a cross-server TCP request, and thus
JSONRequest complements MashupOS well. Alterna-
tively, one can simulate JSONRequest in MashupOS
by creating aFRIV that communicates with its home
domain and then passes the received data back to the
outer SERVICEINSTANCE.

Crockford also identified the security limitations that
affect today’s cross-domain mashups. In response, he
proposed a new HTML tag, theMODULE tag, to partition
a page into a collection of modules [2]. A module groups
DOM elements and scripts into an isolated environment;
socket-like communications are allowed between the in-
ner module and the outer module. To isolate the module
from the origin server, modules may not make network
requests. Thus, modules are equivalent to null-principal
FRIVs.

Cross-document messages [4] are a proposed browser
standard that would allow cross-domain frames to send
string messages to each other on the client side. Cross-
document messages are thus similar to the messaging ca-
pabilities of full-principalFRIVs. They are implemented
in the Opera browser. We expect that with better data
type support, automatic layout capabilities, and other
syntactic sugar provided byFRIV, wider deployment and
use of this messaging paradigm can be achieved.

VIII. C ONCLUDING REMARKS

Client mashups enable a new generation of user-
friendly and feature-rich web applications. While
mashups turn the browser into a multi-user system
with mutually distrusting domains as users, today’s
browsers offer web developers insufficient abstractions
for integrating content from different domains: either
cross-domain isolation with no communication or un-
controlled communication with no isolation. MashupOS
applies operating system principles to bridge this gap.
We introduce the SERVICEINSTANCE as the unit of
resource isolation, data-only message-based communica-
tion between SERVICEINSTANCEs, and theFRIV as the
abstraction of display sharing. Invoking well-understood
operating system principles promises to provide a stable

security foundation to replace today’s teeteringde facto
abstractions.

REFERENCES

[1] R.S. Cox, J.G. Hansen, S.D. Gribble, and H.M. Levy. A
Safety-Oriented Platform for Web Applications. InProc. IEEE
Symposium on Security and Privacy, 2006.

[2] D. Crockford. JSON.http://www.json.org/.
[3] Big WebOS roundup - 10 online op-

erating systems reviewed. http://
franticindustries.com/blog/2006/12/21/
big-webos-roundup-10-online-operating-systems-reviewed/.

[4] Web Hypertext Application Technology Working Group. Web
Applications 1.0, February 2007.http://www.whatwg.
org/specs/web-apps/current-work/.

[5] Google Inc. Google Gadgets API Developer Guide.http:
//www.google.com/apis/gadgets/fundamentals.
html.

[6] C. Jackson, A. Bortz, D. Boneh, and J. Mitchell. Protecting
Browser State Against Web Privacy Attacks . InProc. WWW,
2006.

[7] C. Jackson and H. Wang. Subspace: Secure Cross-Domain
Communication for Web Mashups. InProc. WWW, 2007.

[8] D. Kristol and L. Montulli. HTTP State Management Mecha-
nism. IETF RFC 2109, February 1997.

[9] Windows Live Gadget Developer’s Guide. http:
//microsoftgadgets.com/livesdk/docs/
default.htm.

[10] C. Reis, B. Bershad, S. Gribble, and H. Levy. Using processes
to improve the reliability of browserbased applications. InUnder
submission.

[11] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Es-
meir. BrowserShield: Vulnerability-Driven Filtering of Dynamic
HTML . In Proc. OSDI, November 2006.

[12] J. Ruderman. JavaScript Security: Same Origin.
http://www.mozilla.org/projects/security/
components/same-origin.html.

[13] YouOS. http://www.youos.com/.


