MashupOS: Operating System Abstractions
for Client Mashups

Collin Jackson

collinj @s. stanford. edu

Jon Howell

howel | @n crosoft.com

Helen J. Wang

hel enw@ni crosoft.com

Xiaofeng Fan

xi aof f an@ri cr osof t. com

Abstract— Web browser support has evolved piecemeal webmail.com stocks.com

to balance the security and interoperability requirements e - ! [static N

of client-side script services. This evolution has led to an //’ 88‘, \ pages S~
inadequate security model that forces Web applications to ; / N

choose between security and interoperation. We draw an ! |

analogy between Web sites’ sharing of browser resources ! \ / :

-

and users’ sharing of operating system resources, and use \ — / \
this analogy as a guide to develop protection and commu-) | webmail stocks \
nication abstractions in MashupOS: a set of abstractions (L display |, display |
that isolate mutually-untrusting web services within the i ~ciient browser =77~ -
browser, while allowing safe forms of communication.
|. INTRODUCTION Fig. 1. JavaScript code running on a client browser is rejalty a

. . distributed component of the Web service that provided thieco
Web browsers are becoming the single stop for ev-

eryone’s computing needs including information access,
personal communications, office tasks, and e-commerce.
Today’s Web applications synthesize the world of data
and code, offering rich services through Web browseg@nnot interact. The abstraction for the lattessRIPT
and rivaling those of desktop PCs. Browsers hawghich allows third-party scripts to be included as library
evolved to be a multi-principal operating environmengode; the embedded cross-domain scripts enjoy full trust
where mutually distrusting Web sites (as principaldyom its includer and can access the includer’s data,
interact programmatically in a single page on the clietisplay, and access to back-end server resources. With
side, sharing the underlying browser resources. Consideese limited existing browser abstractions, Web pro-
a scenario (Figure 1) wherein an HTML file (possiblygrammers are forced to make tradeoffs between security
including scripts) sent fromaebmai | . com and an and functionality, and often times sacrifice security for
HTML file sent from st ocks. comrun on the client functionality. In the scenario above, a web program
browser. These HTML files are really delegates on beither segregates HTML content fromebmai | . com
half of webmai | . comandst ocks. com respectively, and st ocks. com into separate frames denying any
using resources on the client to improve the interactivigommunications or embed their scripts as libraries into
of the services. In this scenario, the sites are mutually containing page allowing intimate interactions. As
distrusting principals sharing the browser’s resourc&¢e can see, controlled interactions may be desired: If
(display, memory, CPU, network access). This resembltie st ocks. comserver offers a limited Web interface
the PC operating environment where mutually distrustirijat other servers such agbnai | . commay access,
users share host resources. then the browser should allow similar communication
However, unlike PCs that utilize multi-user operatingpetween the corresponding components running on the
systems for resource sharing, protection, and managéent. This controlled communication among otherwise
ment, today’s browsers do not employ any operatingolated client components is not attainable in today’s
system abstractions, but provide just a limited binafyrowsers.
trust model and protection abstractions suitable only In the MashupOS project, we aim to design and
for a single principal system: There is eitheo trust build a browser-based multi-principal operating system.
across principals through complete isolatiorfat trust In this position paper, we outline our initial explorations
through incorporating third party code as libraries. Then the proper abstractions needed for protection and
browser abstraction for the former EFRAME; frames communciations which to date have received only ad-hoc
enable interactive (script-enhanced) Web services to diand-aids and patches. By identifying an appropriate,
cupy neighboring display real estate, but the componerssong analogy to conventional operating system design,

MashupOS draws on decades of wisdom and experienmeguired, that communication occurs asynchronously
in managing isolation and communication among ur{*fasynchronous XML"), while the client-side code con-
trusted principals. While there is no way to show an opeimues to provide interactivity in the meantime.
architecture to be complete and correct, the MashupOSThe Document Object Model (DOM) is an interface
approach has a solid foundation. that allows scripts to read and modify HTML documents,
For the rest of the paper, Section Il identifies theven documents in other pages or frames. To ensure
limitations of the abstractions and security policies imthat web pages cannot circumvent firewalls or hijack
plemented in contemporary browsers. Section 11l sets ollte user's authenticated sessions, JavaScript documents
the goals of MashupOS. Section IV introduce primitivéoaded from one origin are prevented from getting or
abstractions which plainly enforce a security modedetting properties of a document from a different ori-
analogous to a multi-principal operating system, pr@in. Each browser windowsRAME, or IFRAME (inline
viding only spare communication primitives. Section \frame) is a separate document, and each document is
enhances those primitives with syntactic sugar, providiragsociated with an origin on the basis of URL. Two
familiar, simple communication without destroying theorigins are considered separate if they differ by scheme
security of the primitives. Section VI considers deploythttp or https), DNS name, or TCP port [12]. For
ment issues, and Section VIl relates MashupOS to othexample, frames fromhtt p: // amazon. conf and

proposals. Finally, we conclude in Section VIII. http://amazon. co. uk/ cannot access each other’s
resources because their DNS names differ.
Il. BACKGROUND The asynchronous XML communication of AJAX is

The security policy of current browsers is the resuficcomplished using XMLHttpRequest, which can com-
of a patchwork of decisions made by many indeperunicate only with the page’s origin server. For example,
dent companies and individuals, with a heavy emphagidrame fromht t p: / / anmazon. conf cannot issue an
on avoiding vulnerabilities in legacy sites, rather thaXMLHttpRequest toht t p: // amazon. co. uk/.
providing the best abstractions for the newest sites. 1 Remote Code Inclusion
motivate our proposal, we examine the security policies

L Web developers often wish to incorporate third-
of current browsers and the limitations that they place ; :) '
party code libraries. An example is housingmaps.com,
on Web mashups.

which uses the Google Maps code library to visualize
A. Same-Origin Policy Craigslist housing classified ads. Because JavaScript

Browsers use cookies as a way to identify and a thefiles generally do not have any user-specific or
waytol : UINELE hsitive information, browsers interpret files in

gza\f\?h?cr;:quuseeffsezsiéz?: t(t:)hoperate I;awi)i/ t?at dergel R format as public code libraries and allow them
g the page. A COOKIE IS a Small, 1o oyecuted across domains. The code runs

arbitrary piece of data chosen by the Web server and s
to the browser in an HTTP header when responding ngg‘ee p:lr\]/éleaiis?)fnJrr:gpspagin;r;crl]%delzg hltt'm For

a request. On subsequent requests, browsers use H may contain the markup <scri pt
headers to echo back cookies to the server that s N htt p: //googl e. cord maps. j s’ >

them [8]. </ script>, which allows maps.js to access

In order for cookies to be used as an amhenticaﬂ%usingmaps com’s HTML DOM objects, cookies and
mechanism and provide the illusion of an isolated sessi Dta through- XMLHttpRequest Howevénraps is

shown in F|gure 1, the brow;er must keep cookies Seclhnot access google.com’s resources since the

from other sites. Thus, cookies are sent only to the sam&ie in maps. | s is considered to have the origin

;gﬁcyfg]set them, a policy known as tBame-Origin housingmaps.com rather than google.com in this
' context.

B. AJAX The existence of remote code inclusion as an al-
v th . q ternative to the isolation of the Same-Origin Policy
Recently, theAJAX programming model has emergedy esents web developers with a dilemma: a site must

aIIong Weﬁ services to shift ri}nteractive user interfacgjiner completely distrust another site and segregaté itse
code from the web server to the browser. AJAX Stanclﬁrough the use of cross-domain frames, or a site can

for Asynchronous JavaScript and XML. Where convense another site's code as its own, offering full resource
tional web pages handle every click with a ro”nd't”polccess to the remote site.

to the server, AJAX uses client-side code (“JavaScript”)

to handle many user interactions, providing interacti?- Wb Mashups

ity not bounded by network and server performance. Web mashups compose data from more than one site,
Furthermore, when communication with the server iget the browser prevents such cross-domain communica-

tion. XMLHttpRequest cannot retrieve data from anothek web service can interoperate with the widget using
domain, even if the other domain desires it. an API to add contacts. Ideally, the service should not
Initially, mashup developers worked around these rie allowed arbitrary access to the widget, with which a
strictions using a proxy approach: a web portal likenalicious service might extract the user’s list of contacts
MSN.com may, in the back end, compose dozens of even feign a chat session. Absent better abstractions,
web services together into a single web page whi®OL chooses interoperability, and punts security to the
is displayed in the browser. Services from differentser with a “click OK” dialog box.
principals can be composed the same way; examples
include metacrawlers and news aggregators. This ap-
proach unfortunately makes several unnecessary roundsecure, interoperating client-side service compositions
trips, reducing performance, and the proxy can becordemand new browser abstractions with three properties.

a choke point, limiting scalability. . Cross-domain protection prevents code in one
An alternative to proxies is encoding public data in domain from compromising the confidentiality or

executable JavaScript format (JavaScript Object Nota- integrity of other domains. To prevent denial of

tion, or JSON [2]). UsingscRIPT tags, this data can service, domains should receive fair shares of com-

be passed from the provider to the integrator across modity resources such as CPU, network bandwidth,

domain boundaries, eliminating the need for proxies. As and disk space.

a possibly unintended side effect, this technique grants, Controlled cross-domain communicationallows

the integrator’s privileges to the data provider. a service from one domain to interoperate with a
service from another, enabling rich composition.

o Doing minimal violence to the existing Web
Mutually distrusting network servers communicate API eases adoption of the new abstractions, and

with one another using web service APIs, but the the mechanisms must offer acceptable backwards-

Same-Origin Policy offers no equivalent communication compatibility behavior.

among client-side components. As a result, web services

that wish to enjoy tight client-side coupling must aban- IV. PRIMITIVE ABSTRACTIONS

don entirely the isolation afforded by the policy, and Section IV-A identifies the resources MashupOS man-

instead compose scripts directly using therIPTtag. ages. The BRVICEINSTANCE of Section IV-B isolates

Scripts composed this way can communicate becausemihcipals from each others’ resources, and the abstrac-

the scripts are treated as belonging to the domain of ttiens of Section IV-C provide a restricted communication

enclosing document. Unfortunately, that communicatiomodel among BRVICEINSTANCES.

is completely unconstrained. Two examples of composi-

tions follow in which such trust is inappropriate. A. Resources
Web gadget aggregators such as Google Personalize®Reusable commodity resources, such as CPU, mem-

Homepage page [5] and Windows Live [9] aggregatery, and network bandwidth, need only be fairly shared

user-selected interactive content from disparate sourdesprevent misbehaving principals from denying service

into a single portal page. #adget includes both HTML to well-behaved principals.

and JavaScript, and is designed to be included into aUnique resources, however, require access control ab-

gadget aggregator page; it is the client-side of some wetractions to misbehaving principals from violating con-

service. fidentiality or integrity.Persistent storagdn the browser
Gadget aggregators are security-conscious; third-paity much simpler than conventional OS file systems;

gadgets are hosted on a separate domainieRdMEs therefore, rather than extend the OS analogy to share

are employed to isolate these gadgets from one anotipersistent state among principles, MashupOS maintains

and from the containing page. However, because thdbe isolated persistent storage model of today’s browsers.

IFRAMES cannot communicate, aggregators also suppaikewise, MashupOS offers no sharstemory between

inline gadgets, SCRIPTs inlined directly into the agprincipals, so ho memory access-control abstraction is

gregator page. Because inlining requires complete trusgcessary.

Google’s aggregator asks the user what to do: “Inline In MashupOS, thedisplay is an access-controlled

modules can ... give its author access to informatiaesource in the same sense that the X11 window server

including your Google cookies and preference settingmables mutually-distrusting clients to share access to a

for other modules. Click OK if you trust this module’scommon display resource.

author.” Likewise, network accessfrom client code is subject
AOL provides a chat widget, called Web AIM, de-to access controls that mimic those enforced on accesses

signed to be integrated into other web services’ displaysriginating at the principal’'s web server, following the

IIl. GOALS

E. Gadget Aggregators

intuition of Figure 1. Indeed, communication between Gadget Stocks Email Viewer

client components is treated as network communication, ~ |Ad8regater Contont

and subject to the same access controls. Pane

B. The Servicelnstance Isolation Primitive

We propose a primitive abstraction called BRSICE-
INSTANCE, analogous to an operating system process. A aggregator com
Servicelnst

new browser window is initially associated with a single
SERVICEINSTANCE, which contains the page’s Docu-
ment Object Model (DOM) structure and the ephemeral
state (variables) associated with the code on the page. ;
; ; ; ; webmail.com
The SERVICEINSTANCE is also assoc_la_ted WI'Fh a smgle_ Sorvivoinet
principal, defined as the Same-Origin Policy domain s
associated with the document loaded into the page.

Just as in today’s HTML: if a SRV'CElNS.TANCE Fig. 2. The diagram on top shows the subdivision of a display
uses ascCRIPT tag to incorporate a trusted library bysurface into regions. Dotted boxes on the below represeniSer-
reference, that library runs as the principal associat§fEINSTANCES ihat coriain the DOM elements and other private

ith the SERVICEINSTANCE. T rdl f the | tion ataassoc_la_tted with each dl_splay r_eglqn.The t\ma\SCEINs_TANCEs
wit e_ ' , regardliess o € location gpopyn adjoin by arFrIv object, highlighted by a bold line. Each
from which the script was fetched. The same effect cagRrvICEINSTANCE can only access its “half” of the&Rriv object.
be achieved if the SRVICEINSTANCE principal’s server The FRIV represents the subdivision of display space (shown by the

h th it d inli it into thee®vICEl bold boundary in the top diagram) and provides an explicita-caly
fetches the SCI‘Ip_ and niines 1t INto theERVICEIN- communication channel between thers/ICEINSTANCES.
STANCES HTML: in both cases, the ERVICEINSTANCE
is owned entirely by the principal that served the outer
HTML, and the inlined script is completely trusted to

run on behalf of that principal. DOM object is a “bottom-halfFRIV" object: the inner
We introduce a new HTML element<FRIV grpoyicelnsTANCE can read the size of the allocated re-
src="page2. htm "> that crosses the security iS0ion and populate it with DOM elements, but cannot see
lation of aFRAME with the layout and communications,q composite DOM elements above #tiv boundary.
benefits of apiv. The FRIV has three effects. First, it ¢\, can be used recursively: BRIV may contain
allocates a subregion of the outer display region. Secongsihereriv. For example, a gadget aggregator (in a
it creates a new B?VIC!ElNSTANCE_. Third, it populates FRAME) may contain a mail-reading gadget (irmiv),
the DOM of the subregion by loading the referens&C \\hich may recursively contain a content-viewing pane

document. _(in anotherrFRrIv).
The DOM that represents the content of the subregion

is isolated inside the new ERVICEINSTANCE Script C. Communication among SERVICEINSTANCES

code in the inner BRVICEINSTANCE cannot reach the TheFRIv is the DOM object that connects tw&Bvi-

DOM of the outer &RVICEINSTANCE by traversing CEINSTANCES: The outer 8RVICEINSTANCE delegates

pointers (parent pointers, callbacks, or anything elsejontrol over part of its display to the innee8vICEIN-

nor vice versa. Likewise, the ephemeral state of theraNce Each $RVICEINSTANCE is a represention on

scripts loaded into the inner ERVICEINSTANCE are the client of some web site; sites may reasonably wish

isolated: the inner BRVICEINSTANCE cannot hold a to communicate in some limited (mutually-distrusting)

reference to objects in the outeE®VICEINSTANCE, nor fashion between ERvICEINSTANCES. Therefore, the

vice versa. FRIV includes an explicit communication channel be-
The outer &RVICEINSTANCE (that created therIlv) tween the 8RVICEINSTANCES it joins.

and the inner BRVICEINSTANCE divide responsibility =~ The inner &RVICEINSTANCE can write messages

over the display resource. The outefRYICEINSTANCE into the bottom-halfFrRIv, and the outer SRVICE-

is responsible for all of its display other than the contentsiSTANCE can register a callback with the top-half

of the FRIV display region, and the innereBVICEIN- FRIV to receive such messages. The messages are data-

STANCE is responsible for the contents of tleriv. only, one-way messages, and therefore have semantics

The outer &RVICEINSTANCES DOM represents the equivalent to discrete network messages between the

delegated display region with a “top-haiRiv” object: servers that are responsible for thERSICEINSTANCE

the outer &RVICEINSTANCE can adjust the display areacontent. In particular, data-only messages mean that a

of the FRIV, but cannot see the composite DOM belovBERVICEINSTANCE cannot hang itself by giving away

that point. Likewise, the innerERRVICEINSTANCES root a pointer to its DOM or internal state. Our choice of

an asynchronous communication abstraction ensures tBatvelopers, however, pref@l Vs to FRAMES for two
SERVICEINSTANCES can communicate without failure-reasons. FirsDl Vs better negotiate display real estate to
coupling to one another; AJAX-style asynchronous RP&ccomodate documents of varying size. Second, commu-
is easy to build over asynchronous messages. nication between the gadget charged with implementing
The primitive syntax for explicit communicationa DIV and the containing document is as simple as
channels emphasize the simplicity of the channehethod invocation. In this section, we enhancerRev
in particular its equivalence to a networkto exhibit these preferred behaviors. These enhancements
channel: Each halfRIlv object contains an do not weaken the primitive model; indeed, it is possible
regi st er Recei veHandl er (handl er) method, to implement them as syntactic sugar over the primitive
which registers a JavaScript function to receive datmodel.
and asend(dat a) method, which sends data to the One advantage of using a DIV rather than a FRAME
handler on the other end of the channel. The receivier contain unknown content is that DIVs automatically
also learns the identity of the principal that sent theesize to fit their content, whereas FRAMEs force the
message. user to drag through the content with a scrollbar. A
The MashupOS implementation allows messages k@1v is rendered like a frame by the browser, to prevent
contain only value types (including compounds). Bethe inner gadget from using absolute positioning to
cause messages mawgt transmit a pointer to data in display elements outside th®Iv’'s boundary. However,
the sending BRVICEINSTANCE, they behave just as aby passing width and height messages between the outer
network message between the sites on behalf of whiahd inner documents, owRIV automatically resizes

the SERVICEINSTANCES run. itself to fit its content. The parent page can override
. i this behavior using stylesheets to specify a fixed or
D. Commodity Resource Isolation maximum size for the&Rriv, or by explicitly intercepting

Given the &RVICEINSTANCE isolation abstraction, the messages with its own handler. The page inside
we can apply conventional techniques to fairly sharde FRIV must activate the automatic resizing feature
commodity resources such as CPU, memory, and nexplicitly by calling theexport Si ze function; this
work bandwidth. This keeps a resource-hog from breakensent prevents an attacker web site from determining
ing other services. the number of bytes in a confidential document from

For pedagogy, we described eachRSICEINSTANCE another domain by measuring tRelVv's size.
as associated with exactly one display region. In prac- The sugaredrrIvV also provides the illusion of di-
tice, we expect to generalize theE/ICEINSTANCE rect communication via function calls; in the operating
to manage zero or multiple display regions, providingystems analogy, we provide an asynchronous remote
the analog of background processes and multi-windgevocedure call abstraction. This abstraction retains the

applications. familiar syntax of contemporary mashups.
o Suppose Alice hosts a mashup that uses third-
E. Null-Principal SERVICEINSTANCES party map software provided by Bob. Alice.com in-

We include as an optional enhancement the ability faludes Bob’s map software by renderingraiv that
a principal to create a ERVICEINSTANCE with a null points to Bob.com. In order to allow Alice to re-
principal. Such a BRVICEINSTANCE receives the usual center the map to a particular location, Bob de-
fair share of commodity resources, and may also drdimes a JavaScript methoslet Cent er (| ati t ude,
into its FRIV and communicate with its creator via itsl ongi t ude) and allows Alice to call it by using
FRIV. Because the BRVICEINSTANCE has no principal, the syntax par ent. export (set Center), where
it cannot make XMLHttpRequests; any JSONRequestarent is the bottom-halfriv at the root of Bob's
carry the null principal as their origin. Cookies, whichDOM. Alice can now call Bob’'set Cent er method by
are associated with principals, are unavailable to the nuithvoking expor t edMet hods. set Cent er () on the
principal SERVICEINSTANCE. The email gadget display top-half FRIV that adjoins to Bob’s SRVICEINSTANCE.
can use a null-principal ERVICEINSTANCE to render Alice can also export methods to Bob. For example,
untrusted email content fetched fromebnai |l . com Alice might want to be notified when the user clicks
without giving that content access to the principal'sn a point on the map. Alice can define the function
resources. onclick(latitude, |ongitude) and allow Bob
to call it by calling theexport (oncl i ck) method of
the top-halfFrIvV adjoining Bob’s &RVICEINSTANCE.
The FRIV primitive described in Section IV is like Bob can now call Alice’s onclick method by invoking
today’s cross-domain FRAME, plus commodity resourcear ent . expor t edMet hods. oncl i ck.
isolation and a message-based communication channelThe simple examples shown above do not involve

V. SYNTACTIC SUGAR ABSTRACTIONS

return values; we also provide a capability to makbehavior. To that end, we borrow a trick frommRAME:
asychronous (using an additional JavaScript callba€lriv-aware browsers shall ignore the contents eRav
argument) calls to functions with return values. We alsiag. Legacy browsers ignore the unsupponteay tag,
propose a synchronous interface, although synchroncrsd proceed to render its contents normally. Thus, a
RPC failure-couples the caller to the callee. web developer can place inside thelv tag a cross-
The FRIV tag is designed for web mashups wherdomain IFRAME, ensuring that the referenced gadget
the caller and callee only partially trust each other. Is safely displayed, regardless of browser support for
is important to note that this syntactic sugar does neRIv. Alternatively, the web developer may use t#rv
violate the data-only limitation of the communicatiorcontent to link to aFriv-enabled browser upgrade or
channel (Section IV-C). If the participants trust on@lugin.
another enough (arguably completely) to pass code orTo ensure that MashupOS web pages are
references to DOM objects, then an inliBERI PT tag considered valid XHTML, theFriv tag is part
suffices (in the operating systems analogy, the caller link§ a custom XML namespace until it is someday
to the third-party library directly). adopted as part of the HTML standard. Thus,
One exception to the data-only rule is that a commuaechnically a FRIV should be created with
nication endpoint itself may be passed as an argumeéhe slightly longer syntax <mashupos:friv
in a cross-&RVICEINSTANCE message; analogous insrc="page2. html’ xm ns: mashupos=
the OS world to passing a file descriptor through anhtt p://research. m crosoft. conl mashupos/’ >.
IPC channel. This feature enables a gadget aggregatotnstead of introducing a new tag, an alternate approach
to directly connect two of its siblings. We have yet tavould be to reuse an existing tag, such 18&AME,

solidify the details of this proposal. SCRIPT, or OBJECT. Internet Explorer and Opera adopted
this approach with thesecurity=restricted at-
V1. PROPOSEDIMPLEMENTATION tribute of IFRAME, which allows a containing page to

For a proposal like MashupOS to be feasible, it mugender a frame with JavaScript and other active content
be implementable. We plan for future work a referencdisabled. Unlike therriv tag, the security-restricted
implementation of the MashupOS abstractions. Here, WeRAME tag does not fail safely: When encountered

consider alternative implementation approaches. by a browser such as Firefox that is not aware of the
) security property, the active content is allowed to
A. Isolation execute.

Isolation of separaterrIVs, including commodity
resource allocation, can be provided natively in the
browser or a plugin, based on JavaScript type safety.Recently, a new wave of “web operating systems” [3]
Alternatively, isolation could be implemented using prote.g., YouOS [13]) have emerged. These sites present
cesses [10], virtual machines [1], or dynamic code trana- traditional desktop user interface, complete with a
formation. window manager. The applications run natively in

Code transformation offers an interesting alternalavaScript. All are hosted on the same domain as the
tive to the browser-upgrade deployment path. Browsemeb desktop, and thus have unlimited access to one
Shield [11] is a framework that dynamically rewritesanother. This lack of isolation, comparable to the 1995
an HTML-and-JavaScript page to obey a given policfPC desktop, requires the user to completely trust every
One Kkiller application of BrowserShield was to protecapplication that is run.
browser vulnerabilities by catching even dynamically- Our earlier work on Subspace [7] provided a cross-
generated exploit code. A BrowserShield implementatiafomain communication mechanism that is designed to
of MashupOS would enforce isolation by preventingun on current browsers without any additional plug-ins
code from from following references acrasgsiv bound- or client-side changes. Subspace uses the browser’s exist-
aries in the display DOM. Dynamic rewriting can incuiing docunent . domai n property to communicate with
significant performance overhead. Its advantage is thablated subdomains, which are in turn used to draw in
it can be deployed remotely, e.g. by a gadget aggregasaripts from other domains. However, Subspace requires
site, to enhance legacy browsers with the MashupGgnificant work on the part of the web developer to use

VII. RELATED WORK

abstractions. correctly, and does not provide the resource constraint
options of FRIV. We believe browsers should provide
B. Incremental Deployment built-in cross-domain interaction primitives.

Until all browsers support MashupOS, websites must Crockford recently proposed the JSONRequest [2]
handle users with legacy browsers that do not understacmmmunication mechanism for asynchronous cross-
the FRIV tag, by providing a safe, user-friendly fallbackdomain data retrieval from a remote server. The proposal

was motivated by scenarios where the cross-domaecurity foundation to replace today’s teeteritegfacto
SCRIPTtag was being used to execute code when onabstractions.

data was really required. The JSONRequest's usage is
similar to XMLHttpRequest, but it is not constrained
by the Same-Origin Policy. Lifting these same-origin[l]

restrictions is safe because cookies are not sent, because

the request includes a header indicating the source ¢
the request, and because the server’s reply must indicaf
the server is aware of the protocol and hence its security
implications. JSONRequest transmits data in the JSON
format, but its security applies equally to XML or other [4]
formats. A cross-domain JSONRequest is the client-
side equivalent to a cross-server TCP request, and thysg
JSONRequest complements MashupOS well. Alterna-
tively, one can simulate JSONRequest in MashupO
by creating aFrIvV that communicates with its home
domain and then passes the received data back to the
outer SERVICEINSTANCE. v

Crockford also identified the security limitations that[s]
affect today’s cross-domain mashups. In response, PIS]
proposed a new HTML tag, theoDULE tag, to partition
a page into a collection of modules [2]. A module groups
DOM elements and scripts into an isolated environmerit?]
socket-like communications are allowed between the in-
ner module and the outer module. To isolate the modute]
from the origin server, modules may not make network
requests. Thus, modules are equivalent to null-principgb
FRIVS.

Cross-document messages [4] are a proposed browagf

standard that would allow cross-domain frames to sen
string messages to each other on the client side. Cross-

document messages are thus similar to the messaging ca-

pabilities of full-principalFRIvs. They are implemented
in the Opera browser. We expect that with better data
type support, automatic layout capabilities, and other
syntactic sugar provided BRIV, wider deployment and
use of this messaging paradigm can be achieved.

VIIl. CONCLUDING REMARKS

Client mashups enable a new generation of user-
friendly and feature-rich web applications. While
mashups turn the browser into a multi-user system
with mutually distrusting domains as users, today’s
browsers offer web developers insufficient abstractions
for integrating content from different domains: either
cross-domain isolation with no communication or un-
controlled communication with no isolation. MashupOS
applies operating system principles to bridge this gap.
We introduce the BRVICEINSTANCE as the unit of
resource isolation, data-only message-based communica-
tion between 8RVICEINSTANCES, and theFrIv as the
abstraction of display sharing. Invoking well-understood
operating system principles promises to provide a stable

] C. Jackson, A. Bortz, D. Boneh, and J. Mitchell.

1 C. Jackson and H. Wang.

REFERENCES

R.S. Cox, J.G. Hansen, S.D. Gribble, and H.M. Levy.
Safety-Oriented Platform for Web Applications. Rroc. |IEEE
Symposium on Security and Privacy, 2006.

D. Crockford. JSON.htt p: // wwv. j son. org/ .

Big WebOS roundup - 10 online op-
erating systems reviewed. http://
franticindustries.con bl og/ 2006/ 12/ 21/

A

bi g- webos- r oundup- 10- onl i ne- oper ati ng- syst ens- r evi ewed/ .

Web Hypertext Application Technology Working Group. Ve
Applications 1.0, February 2007.htt p://ww. what wg.

or g/ specs/ web- apps/ current - wor k/ .

Google Inc. Google Gadgets API Developer Guidbt t p:

/I ww. googl e. cont api s/ gadget s/ f undanent al s.

htn .

Protegti
Browser State Against Web Privacy Attacks . Pnoc. WWWV,
2006.

Subspace: Secure Cross-Domain
Communication for Web Mashups. FProc. WWW, 2007.

D. Kristol and L. Montulli. HTTP State Management Mecha-
nism. |IETF RFC 2109, February 1997.
Windows Live Gadget Developer's Guide.
/1 m crosoftgadgets. con |ivesdk/ docs/
defaul t. htm

C. Reis, B. Bershad, S. Gribble, and H. Levy. Using psses

to improve the reliability of browserbased applicationsUlmder
submission.

C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Es-
meir. BrowserShield: Vulnerability-Driven Filtering of Dymic
HTML . In Proc. OSDI, November 2006.

J. Ruderman. JavaScript Security: Same
http://ww. nozill a.org/ projects/security/
conponent s/ sane-ori gin. htm .

YouOS. ht t p: / / www. youos. cont .

http:

Origin.

