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Abstract

The answer to a tog-query is anorderedset of tuples, where the ordering is based on how closely
each tuple matches the query. In the context of middlewastesys, new algorithms to answer tép-
queries have been recently proposed. Among these, thehididealgorithm, orTA, is the most well
known instance due to its simplicity and memory requirersehf is based on an early-termination
condition and can evaluate tdpgueries without examining all the tuples. This tbpguery model
is prevalent over middleware systems, but also over plaiatiomal data. In this work we analyze
the challenges that must be addressed to ad@@pto a relational database system. We show that,
depending on the available indexes, many alterndiAvstrategies can be used to answer a given query.
Choosing the best alternative requires a cost model thalbeaeamlessly integrated with that of current
optimizers. In this work we address these challenges andumtran extensive experimental evaluation
of the resulting techniques by characterizing which sdesaran take advantage ®f\-like algorithms

to answer topk queries in relational database systems.

Index Terms

H.2.4 [Database Management]: Systems—Query processaigti@hal databases; H.3.3 [Informa-

tion Storage and Retrieval]: Information Search and Redtfie-Retrieval models; Search process.

I. INTRODUCTION

The answer to @op-k queryis anorderedset of tuples, where the ordering is based on how
closely tuples match the given query. Thus, the answer tgd tquery does not include all
tuples that “match” the query, but instead only the bestuch tuples. Consider for instance a
multimedia system with an attribute- that contains information about the color histogram of
each picture, and another attribui® with information about shapes. To obtain a few pictures
that feature red circles, we might ask a top-10 query withaaisg function that combines (e.qg.,
using a weighted average) the redness score of each pipnnéded by R¢), with its “circle”
score (provided byRs). Other applications that rely on this model are informatretrieval
systems [1], data broadcast scheduling [2], and restasedattion systems [3].

One way to evaluate a top-query is to process all candidate tuples in the databasa)lated
their scores, and return thietuples that score the highest (we called thscan-base@pproach
since it requires to sequentially examine all tuples in tagblase). In some scenarios, however,

we can evaluate top-queries more efficiently.
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Reference [4] introduced the Threshold Algorithm, 1@, for processing tog- queries in the
context of middleware systemsA middleware system in [4] consists of autonomous data
sources that provide access to attribufes . .., c,,} of all objects in the system. Such sources
can be explored usingorted acces$in which attribute values are returned in descending order
for a given attribute scoring function) anmdndom accesgin which the value of an object’s
attribute is obtained by providing the object’s identifiek)top-k query in such scenario is given
by a monotonic functiorf’ (e.g., min or average) that aggregates the individuabaitiei scores.

In a middleware system, we cannot efficiently combine thermftion about an object that
is scattered across data sources.rdoonstructan object from its identifier, we need to issue
several random accesses to the data sources (typicallyaodem access per attribute), which is
expensive. For that reason, scan-based algorithms arenreftieient alternative in middleware
systems. The distinguishing characteristicléfis the use of an early-termination condition that
allows returning the top- elementswithout examining the values of all tuples in the system.
At the same timeTA requires a bounded amount of memory to operate (indeperadethie
data size and distribution) and is straightforward to impdat. TA was shown to bénstance
optimal among all algorithms that use random and sorted accessitagsip].

In recent years, there has been an increasing amount ofrcbs@ag., [5], [6], [7], [8]) that
focused on answering tap-queries in the context of relational database managemstersg,
or RDBMS (we explain these previous efforts in the next sejtiThese recent advances pose
the intriguing question of whethdrA, which was designed specifically for middleware systems,
is suitable for a RDBMS. On one hand, the early terminationdd@on, memory guarantees,
and overall simplicity ofTA are very appealing. On the other hand, teeonstruction problem
of scan-based algorithms is not that severe in a RDBMS. Ih f&e can centralize all the
information about an object in a table or materialized vievitsat each row contains all attributes
of the object being represented. Therefore, we do not neesstee expensive random access
probes to retrieve missing attribute values as it is the caseiddleware systems. In this work
we critically examine whefmA-like algorithms are a good alternative in a RDBMS, and when

they fail to provide any benefit.

Alternative algorithms, such as NRA or CA [4], require in twerst case as much memory as the data size itself, and rely

on complex bookkeeping which make implementations nosatri
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In Section Il we first define the top-query problem. We then determine, in Section lll,
how the different components @A reconcile with algorithms and data structures present in a
RDBMS, and what are the main differences between the middkewolution and its relational
counterpart. As we will see, depending on the availablexaegemany alternative TAtrategies
are possible. Not only the number of such strategies is &jlgivery large, but the cost of each
alternative can vary drasticallyTA strategies can be either orders of magnitude more efficient o
more expensive than scan-based alternatives.) It is thematto develop a cost model that helps
the query optimizer decide among @l strategies and the traditional scan-based alternative. In
the second half of Section Il we develop a cost model thas pesver-laws to approximate the
cost of aTA strategy in a way that it is easy to incorporate to an existipggmizer. Finally, In
Section IV we discuss some extensions to the basic model améport extensive experimental

results in Section V.

A. Related Work

There has been a significant amount of research ork tgperies in the recent literature. Al-
though in this work we refer to the middleware algorithmlag4], we note that slight variations
of TAwere independently proposed in [9] and [10]. Later, refeesn11] and [3], among others,
extended the basic algorithms to address middleware sbthiaerestrict their access capabilities.
Reference [12] conducted an experimental evaluation ofaaliee algorithm [13] that efficiently
answers topge queries. The authors implemented the algorithm in the Ganlddleware system
and explored its strengths and weaknesses. Later, reéeféhshowed thaTA is asymptotically
more efficient than the algorithm in [13].

Reference [6] presented techniques to evaluate:tgperies through traditional SQar der
by clauses. These techniques leverage the fact that wigerelatively small compared to the size
of the relation, specialized sorting (or indexing) techugg that can produce the first few values
efficiently should be used. However, in order to apply theshniques for the types of scoring
functions that we consider in this work, we need to first eatdithe scoring function for each
database object. Hence, these strategies require a siedjsean of all data as a preprocessing
step.

References [7], [8] proposed a different approach to evaliop+ selection queries in database

systems: a thin layer on top of the database system maps t@bection queries into tight
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range queries that are expected to contain thektapmswers. While [7] uses multidimensional
histograms to do the mapping, reference [8] relies on sanjilesome of the topg: results are
missed by the approximated range query, [7] restarts thé: tqpery with a larger range (or a
full sequential scan is performed). In contrast to [7], thehhiques presented in this work do
not result in restarts and therefore avoid sequential scans
Reference [5] focused on a problem closely related to ouhgclwis integrating tope join

gueries in relational databases. The assumption in that iwdhat the contribution of each table
to the overall scoring function depends on just one attelatthe table (or, at least, that we can
scan each table in descending order of the “partial score&daated with the table). Therefore,
the main problem consists of introducing non-blocking ramkare join operators and reorder
the joins in the final execution plan to minimize the overaltc In contrast, we focus on multi-
attribute topk queries over a single table, and investigate how we can gxpitexes to evaluate
such queries efficiently. As a motivating example, consi@erart museum that displays both
pictures and photographs. We might want to locate a roomamthseum that contains both a
picture with red circles and a photograph with blue squdetsug define the combined score of
a room as the average score of its best “red-circle” pictmc “®lue-square” photograph). We

might then issue the following query:

SELECT TOP 1 PI.rooml ocation

FROM pi ctures PI, photographs PH

VWHERE Pl .roomid = PH. roomid

ORDER BY 0.5+( redcircle(Pl) + bluesquare(PH) )
The techniques in [5] would efficiently answer this queryvided that there is a mechanism to
retrieve pictures in descending order‘edd _circle” values (similarly, photographs in descending
order of*blue_square” values). As we saw in the introduction, the “renicle” score of a picture
is not given by any of its attributes in isolation, but ingtelay another scoring function on
multiple attributes. Therefore, if we were to apply the t&Egaes in [5], we would need to first
scan bothpi ct ur es and phot ogr aphs tables, then sort all the objects by their respective
partial scoring functions, store these partial scores agpated columns, and finally pipeline this
intermediate result to the rank-aware join operator of {Bf.course, scanning and sorting the
leaf nodes in the plan can easily become the bottleneckidmptper we show how to efficiently

process such sub-queries. We believe that our work and faptement each other nicely: the
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resulting execution plans returned by our techniques caselea as the leaf nodes in the join
plans of [5], thus extending the set of tépgueries that can be evaluated without scanning the
underlying tables.

Recently, reference [14] proposed to maké cost-aware by explicitty modeling the cost
of sorted accesses and allowid@\ to vary the relative accesspeedto the sorted sources
accordingly. For instance, if a source suddenly becomeg slew, the algorithm in [14] would
reduce the frequency that this source is accessed, theraforeasing the efficiency of the
whole algorithm. Reference [14] has some similarities watir work, but it is still focused
on middleware scenarios and therefore does not take intouatdhe specific characteristics
of relational database systems. First, reference [14]nassuhat sorted access costs fluctuate
widely and are in general much larger than random access.dostontrast, in a RDBMS the
cost of (random or sequential) accesses are very predictid do not fluctuate significantly
(additionally, the cost of a random access is known to be niigher than that of a sequential
access in a RDBMS). Second, reference [14] adapts the @dgoon the fly, while the query
is executing. In contrast, our techniques exploit globatistics that are present in a RDBMS
to statically choose the best execution plan. Finally, intast with a middleware scenario, our
work recognizes that there might be different ways to acdmm@m random or sorted access
depending on the set of available indexes in the RDBMS, argldoice can greatly impact
the overall efficiency of the resulting algorithm. We beéehowever, that our work can benefit
from the ideas in [14]. In fact, after the best plan has beekqn, we could use the techniques
in [14] to vary the relative speed at which the chosen indexesaccessed and further improve

the efficiency of the algorithm (see Section IV-B for moreails).

[I. PROBLEM STATEMENT

We next review theTA algorithm for middleware systems and formalize our problanthe
context of a RDBMS.

A. TA Algorithm

Consider a tog: query over attributes,, . . ., ¢,, and a scoring functio®’ (s (c1), - . ., Sm(cm)),
wheres; is the scoring function of attribute. Suppose that sourde, handles attribute;. Below

we summarize th&A algorithm to obtain thé: objects with the best scores.
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1) Do sorted access in parallel to each of thesources. As an objec? is seen under sorted
access in sourc®;, do random access to the other sourBesind calculate the remaining
attribute scores; of objectO. Compute the overall scorg(sy, ..., s,) of objectO. If
this value is one of thé highest seen so far, remember objécand its score (break ties
arbitrarily).

2) Let sk be the score of the last object seen under sorted accessuimes®;. Define the
threshold valuel™ to be F(sE, ..., sk). If the score of the current top-object is worse
thanT, return to step 1.

3) Return the current top-objects as the query answer.

Correctness of A follows from the fact that the threshold valiierepresents the best possible
score that any object not yet seen can have, BRdtops when it can guarantee that no unseen
object might have a better score than the currentitapes. The algorithm in [4] was later
extended to support scenarios in which some sources camawide sorted access. In such
situations, we need to replac¢ with the maximum possible score for each souftethat
cannot provide sorted access. The correctness and instgiceality of TA are preserved in

this case as well.

B. Server Side Problem Statement
In the context of a RDBMS, we focus on the following problenonGider tableR with
attributescy, . . ., ¢,, (and possibly other attributes not mentioned in the queng. specify a

top-k query inSQL as follows:

SELECT TOP(k) c1, ..., cm

FROM R

WHERE P

ORDER BY F(si(cl), ..., su(cm) DESC

whereP is an filter predicatef: is a monotonic aggregate function, amdare individual attribute
scoring functions. In current database systems, the begttavavaluate such top-query is a

scan-based approach. Conceptually, we first obtain the éo&stution plan for the following

query:

2Queries might have additional columns in tBELECT clause that are not present in tBRDER BY clause. This results in

minor variations to our techniques, but we omit such defailssimplicity.
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SELECT c1,..., cm F(si(cl),..., sn(cm) as S
FROM R
VWHERE P

and then we apply gartial-sort® operator on columrs on top of this execution plan. If no
predicateP is specified, the best execution plan consists of a seqlienéia over tabl&, or over
the smallest-sized index that covers all columns of intefesy is available (since columns have
different widths, the smallest-sized index need not agritle the one with the fewest number of
columns). In the next section we focus on queries with norfpgtedicateP, and in Section IV
we explain how to lift this restriction.

Analogous to the middleware scenario, execution alterestadapted fronTA might some-
times outperform the scan-based approach used in curratiadae systems. We next investigate
how to adapfTA to work in a RDBMS, what are the differences and similaritieth respect to

the middleware case, and wh@A-based strategy can be beneficial in this new scenario.

1. TA INA RDBMS

We now explain howl'A can be adapted to work in the context of a RDBMS. Indexes are th
most widely used mechanism to improve performance in a RDBMf8 our adaptation of the
TA algorithm is based on such physical structures. Specifjcak simulateeach autonomous
source in the original A with suitable index strategies that support the sorted andam access
interfaces.

Recall thatTA's scoring function is a monotonic aggregate of individutlilaute scoring
functions. If we do not restrict these attribute scoringclions in any way, in general we would
need to access all tuple values and sort them by each agtisiooting function before providing
the first sorted access. This preprocessing step is exgeasd defeats the purpose DA (i.e.,
avoiding costly scans over the ddtalyor this reason, we restrict the attribute scoring fumstio
to those that can be evaluated efficiently by an index stragtspecifically, each sorted access

should be processed in a constant amount of time).

3A partial-sort operator scans its input and uses a priority queue to maitiaik tuples with the largest values in a given

column.

“In middleware systems, cost metrics do not include thisnoegssing step since it is assumed to be done by the autosomou

sources.
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Consider for instance an attribute scoring functior;. If an index with leading columm;,
is available (i.e., an index whose primary order iscpy, we scan this index in descending order
to obtain each tuple sorted By ¢, in constant time. As a slightly more complex example, if the
scoring function is—(c; —0.5)? and an index with leading column is available, we proceed as
follows®. Initially, we seek the index for valu@5 and return all the matches. Then, we maintain
two pointers that traverse the index in opposite directistasting atc;=0.5, and we return, for
each subsequent sorted access, the current tuple from dhe ofo traversals that is closer to
¢1=0.5 (see Figure 1). Although in this work we focus on simple fimts, the methodology is
the same for complex functions as long as they are efficientpported by indexes.

After obtaining a new tuple from each sourCB) performs random accesses to the other
sources to obtain the remaining attribute scores. Theréwaralifferences in this step between
the originalTA algorithm and our adapted version. First, in a RDBMS we caaiolall remaining
attribute values at once using a single (random) primargxridokup rather tham — 1 random
accesses. Second, if the index providing sorted accessagegiicg index (i.e., it is defined over

all ¢; columns), we do not even need a primary index lookup to oliteerremaining values.

Index on ¢4

..-01-02-03-05-055-057-071-0.85- ...
|

-l ] [
- Ll

Resultingrank ... 6 4 1 2 3 5 7
Fig. 1. Providing sorted accesses using indexes.

After defining how to provide sorted and random access bygusidexes, we need a piece
of logic that puts everything together. We define a new playsperator, which we calRTA
(for Relational-TA), illustrated in Figure 2. ThBTA operator, analogous to the origindA
algorithm, (i) retrieves a new tuple from each input in a muobin fashion, (ii)) maintains a
priority queue with the top:tuples seen so far, (iii) calculates the threshold valud,(ar) stops

when the threshold value is not better than the currentitepiue. Figure 2 shows a sample

*We assume that larger scores are better, so we introduceativeegign in—(c; — 0.5)? to first obtain tuples closer to

¢1=0.5. In general, the best scores could either be the largest alleshones, but we omit those details for simplicity.
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execution plan for a topg-query with scoring functiorzg’:1 —(c; — 0.5)%. In the example, the
index strategy for column; does not use a covering index, and therefore primary indekuips
are necessary. Because there is no index strategy foruaétri, RTA uses in the threshold

formula the maximum possible score fa@y, which in this case is zero.

Current top-k
tuples RTA

T = -(c"4-0.5)* - (c-2-0.5)> + 0

A

Primary index
lookup for (cy,c3)

*

Index strategy for c4 Index strategy for c,
using index l4(cq) using index I(c2,c4,C3)

Fig. 2. A sampleTA-based execution plan.

Any TA strategy that uses zero or one index with leading columior each attribute:; in
the scoring function is a candidate execution plan. In thea section we define the space of
candidateTA strategies with respect to the set of available indexes a&sdridbe some pruning

techniques that reduce the number of alternatives to censid

A. Space of TA Strategies

Suppose that we associate, with each colufrin the scoring function, the set of indexes that
havec; as their leading column. We can then obtain a vdlikistrategy by picking zero or one
index from each group. lf; is the number of indexes with leading column the total number
of plans isIl;(n; + 1) — 1. We now introduce two simple properties that allow us to oedthe
set of candidate indexes.

Property 1: If there is a covering index with leading columr; (or there are many covering
indexes but/ is the smallest-sized of those) and somfestrategyP uses another index for
columne¢;, we can replacd’ with [ to obtain a more efficient strategy.

In fact, a covering index provides all the necessary coluams therefore does not require

primary index lookups (see Figure 2). Since each entry ircthwering index is smaller than the
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corresponding one in the primary index, the number of pagesssed using the covering index
is no larger than the number of pages accessed by a non{egvedex and the primary index
lookups put together. Similarly, if many covering indexee available, the smallest-sized one
accesses the least number of pages. Therefore, the stithtdgyses the is more efficient than
any of the alternatives.

Property 2: Suppose that there is no covering index with leading columnf I is the
smallest-sized index with leading columpand somerTA strategyP uses another indek’ for
columnc;, we can replacd’ with I to obtain a more efficient strategy.

In fact, if no covering index is available fof;, then any index that handles attribute,
would miss at least one attribute, and therefore would requme (and only one) primary index
lookup to obtain the remaining attribute scores. The srsiafized index with leading column
¢; guarantees that the index traversal is as efficient as pessibaddition, independently of
the index used for;, the subsequent operators (including the primary indekupe) are the
same. Therefore, the smallest-sized index with leadingroolc; results in the most efficient

execution.

Using both properties, the space of candidéfestrategies is reduced, for each attribute
in the scoring function, to either zero or the best indexdoMe next show that in absence of
additional information, every possible plan is optimal smme data distribution. Consider the

following table and a scoring functiof' = " | ¢;.

id c1 Co 3 | | Cn || Cng1 | - | Cm
1 1 0 0O|..| 0 0 .| 0
2 0 1 0O|..| 0 0 ..| 0
3 0 0 1]..]0 0 ..| 0
n 0 0 0 1 0 0
ntl| 0.9(09|09)|..]09 0 ..| O
n+2| 09(09|09|..]09 0 ..| O

Assuming that the table is of siz¥, the top4 tuples (fork < N-n) will have score(.9n.
Suppose that we use indexes for columapshroughc,. In this case, aftek + n iterations the

top-k values will have scor®.9n and the threshold would also loe9n (because the maximum
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score for all columns without indexes is zero). Therefoffeerak + n iterations the algorithm
would terminate. Now, if we use indexes over any subsetcofc,, . .., c¢,}, the threshold value
after any number of iterations beyomdwould be0.9n; + 1(n — n;) for somen; < n, which

is larger than the current top-value 0.9n. Therefore, this strategy would require reading all
N tuples from such indexes and would in general be more exgerisan the previous one.
Finally, we note that any plan that uses indexes ftgm, throughc,, will be more expensive
than if those indexes are not used, because they do not reldeidareshold and therefore the
number of iterations remains the same while the number axrmbrted accesses increase. In
conclusion, the best possibl& strategy uses indexes just far throughc,,. But those columns
are arbitrary, so for any candidal® strategy there will be a data distribution for which it is
optimal.

More importantly, depending on the data distribution andilable indexes, the best possible
TA strategy might be worse than the scan-based alternativiactn consider the table above,
and suppose thal = n + k. In this case, the strategy that uses all indexethroughc, is still
optimal, but it terminates aftet + k£ = N iterations (in fact, anylTA strategy terminates after
N iterations for this specific data set). Depending on thelabks indexes, each iteration may
require a number of random accesses. Therefore, the opsinaabgy would require at least as
many random accesses as objects in the original table. T$teTBestrategy in this case will
therefore take more time than a sim@eanalternative. For that reason, it is crucial that we
develop a cost model that not only allows us to compare catgitA strategies, but also help
us decide whether the be$A strategy is expected to be more efficient than the scan-based

alternative. In the next section we introduce such cost mode

B. Cost Model

Although TA strategies are new to an RDBMS, they are composed of smadleepthat are
well-known and implemented in current systems. Any execubtf TA consists of a series of
sorted accesses (i.e., index traversals), a series of maadoesses (i.e., optional primary index
lookups in absence of covering indexes), and some compntati obtain scores, threshold
values, and priority queue maintenance (i.e., scalar ctatipn and portions of thpartial-sort

operator). If a givermA strategy require® iterations to finish (i.e.D sorted accesses over each
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attribute), the cost of its execution plan is estimated #s\is:

Cost:D-TC-< > Ts + ZTL)

1<4i<m, 1<4i<m,
c;uses index c;uses non
strategy covering index

where T represents the cost of maintaining the priority queue arldutzing scores and
threshold values]s, is the cost of a sorted access using the index for attribytand 77,
is the cost of a primary index lookup. We now explain how tolekphis formula to further
reduce the candidate plans that we need to consider duritigingation.

Consider twoTA strategiesl; andT;, and suppose that the set of attributes thatandles
using indexes is a subset of thatBf. Let D; and D, be the number of iterations required by
T, and T, respectively, to obtain the taptuples. The cost of is then estimated ab, - 1,
where D, is the number of iterations th&f; requires andy; represents the cost per iteration
(see the cost formula above). Similarly, the costois estimated a$); - v,. A property derived
from the TA algorithm is thatD, > D,. The reason is thdf; has less information to calculate
threshold values, and therefore requires more iterationsidke the threshold fall below the
current topk score. At the same time; < -, because, at each iteratiofi, makes sorted and
possibly random accesses to a subset of the indexes praséntTihus, in general, eithef; or
T, can be the better alternative. Now consider stratégywhose set of indexes includes that
of 77 and it is included in that of,. Using similar arguments as above, we can guarantee that
the cost of7; would be at leastD, - v;. Therefore, if the best strategy found so far is cheaper

than D, - v;, we can omit from consideration all intermediate stratediee 75.

Cost= D(op - Ytop

Fig. 3. PruningTA strategies.
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In practice, we can use this property as follows. Figure 3amsha lattice on the subset of
indexes used byA strategies. Suppose that we initially evaluate the costrategyTop which
uses indexes for all columns, and obtdi,, as the estimated number of iterations. Assume
that the best strategy found so far has cost equél,tg. Whenever we consider a new strategy
S, we can calculate the cost per iteratiog. If Dy, - vs > Cier We can safely omit from
consideration alllA strategies that includg’s indexes.

In the above cost formula, all components can be accurastimated reusing the cost model
of the database optimizer, except for the number of itematio. This value depends on the data
distribution and crucially determines the overall cosfléf We now show how to estimate the

expected number of iteration3 for a givenTA strategy.

C. Estimating the Complexity of TA

As explained above, in order to estimate the cost of any gilAnstrategy, we need to
approximate the number of iteratiord3 that such strategy would execute before the threshold
value falls below the current (and therefore final) fogeore. In other words, if we denotg
the score of the top-tuple and7'(d) the value of the threshold aftef iterations, we need to
estimateD, the minimum value ofl such that7'(d) < sx. We will find D by approximating
the two sides of this inequality. We first approximaie the score of the top-tuple. Then, we
estimate the minimum valué after which7'(d) is expected to fall below,.

Let us first assume that we already estimatgdthe score of the top-tuple. To approx-
imate the number of iterations after which the thresholdi@dhlls belows, we use single-
column histograms. In fact, an important observation réigarTA is that it manipulates single-
dimensional streams of data returned by the autonomousesand therefore exploiting single-
column histograms for the approximation does not implicassume independence. Thus, we
can accurately simulafBA over histograms very efficiently, at bucket granularitygue 4 shows
a simple example for a scoring functidn(c;, c;) = ¢; + 5 - ¢o. If we are told that the top-
score s is equal to, say, 0.95, we can walk the histogram bucketdirgjafrom the right-
most bucket and obtain the minimum numberfor which the threshold calculated with the
values of the topP tuples from each histogram is smaller thgn For simple attribute scoring
functions, this procedure requires splitting buckets asithgiinterpolation in a similar way as

when joining histograms for cardinality estimation (thergmexity is on the order of the number
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Scoring Function ~ +
Flen.co) = C1 + 5 ¢ —> Threshold(d) = v4(d) + 5 v,(d)

H(c4)
V|1(d)
" d
H(cz)
d
Vzl( ) —|

Fig. 4. ApproximatingD using histograms.

of histogram buckets). For complex attribute scoring fiomg, we use binary search over the
histogram domains to find, which is also very efficient.

As we will see, estimating the scokg of the top# tuple is more complex. The difficulty
resides on the fact that this is a truly multidimensionallgean, and therefore relying on
single-dimensional approximations (like traditional tbgrams) can easily result in excessive
approximation errors. For that reason, we need to use nmakigsional data synopses to estimate
s, values. We considered multidimensional histograms angkanas alternative synopses, and
experimentally determined that samples provided the lesilts. The reason is that multidi-
mensional samples scale better with increasing numbernoémiions. In fact, it is known that
multidimensional histograms do not provide accurate egions beyond five to six attributes
(e.g., see [15], [16]) and therefore we would need to buildad number of at most 5-
dimensional histograms to cover all attribute combinaionwide tables. We note that, unlike
previous work in approximate query processing, our preaget samples must be very small.
The reason is that these samples are loaded and maniputapedtaof query optimization, and
therefore must be roughly of the size of other databasesstati In other words, single-column
projection of the precomputed sample must be roughly a€ lasga single-column histogram in
the database system. In all our experiments, we use a sainplefsl,000 tuples, independently
of the size of the underlying table.

To estimate the value, from the precomputed sample we proceed as follows. We firapcte
the score of each tuple in the sample and order the scoresdgading score value. We then
estimates;, using interpolation. If the original table containstuples and the sample contaifis

tuples, the probability that the tag: element in the sample is the tep- element in the original
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data, denoted’(rs is ry), is given by:
(o) - (o)
()

and therefore, the expected rank in the original table oftdipe-s tuple in the sample, denoted

P(TS iS’f’N):

E(rg), is given by: (1. (N_i) Nt
S P e
Using this equation, we locate the two consecutive samplelescending order of score that
are expected to cover the tépelement in the original data and interpolate their respedcores

to obtain an approximation of,. The estimation algorithm can then be summarized as follows

1) Using a precomputed small sample, obtain the approxis@iees, of the top4 tuple.
2) Using single-column histograms, obtain the minimum galuthat results in a threshold
value belowsy.

3) Evaluate the cost function using as the approximation of the number of iterations.

We note that this algorithm can be used for arbitr&#ystrategies, by using in step 2 only the
histograms that correspond to columns that are handled) usdexes in the query plan (the
remaining columns simulaf€A by using the maximum possible score). On the other hand, the
above algorithm presents some problems for the class ok tgperies that we address in this

work. In the next section we explain these obstacles and hevaddress them.

D. Addressing Smak Values

Unfortunately, the algorithm of the previous section hasimportant drawback in most
interesting query instances. The problem is that only atoanthousand tuples are used in
the precomputed sample, and therefore we are always workimghe tails of probability
distributions. For instance, suppose that our data setasentl million tuples, and we use a

sample of size 1,000. In this case, the top scoring tuple éensdimple is expected to rank at

1,000,001

position 1,001

~ 999 in the original table. This means that for any tbmuery withk < 999

(i.e., a very common scenariod; would likely be smaller than the top tuple in the sample.
In this situation, we would need extrapolate the topeore. As we show in the experimental
section, this procedure generally results in large appmakion errors. In this section we discuss

two complementary approaches to address this issue.
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Interpolating Iterations rather than Object Scores

We next propose an alternative approximation mechanistntbiks in the space of iterations
of TA rather than on the space of object scores. We first obtaindpé’tscores from the
precomputed sample whekéis a small constant number (we uke= 10 in our experiments).
If the original table containgV tuples and the sample size §5 the top4’ scores in the sample
are expected to rank in the original table at positiq')ng%1 for i = 1..10. We then calculate
as before the approximated number of iterations for each saore and obtain a set of pairs
{(@- %, expected iterations for - %),i = 1..10}. Finally, we fit the best curve that assigns
expected number of iterations to obtain tbpvalues for arbitrary values df, and evaluate this
function atC = k. We use the obtained value as the estimated number of desatd obtain

the top4 elements. The revised algorithm can be summarized as fellow

1) Using a precomputed small sample, obtain the top-10 sdbi are expected to rank in

the original data at position§=}, . .., 12D

2) Using single-column histograms, obtain the expectedbmirof iterations for each score.
3) Find the best curve that approximate the “number of itenat function and evaluate it
in k£ obtaining D.

4) Evaluate the cost function using as an approximation for the number of iterations.

An important decision is which model function to use to apprate number of iterations
for arbitrary values oft. The simplest approach is to use linear regression, but rno#msrs
are possible. After an extensive experimental evaluatian,decided to use a power function
D(k) = a-e"* wherea andb are parameters that minimize the square root &rff course, this
is just an approximation as the true underlying functioneshels on the data distribution and in
general can have any (monotonically increasing) behakiowever, we found that power laws
resulted in the best overall accuracy for a wide class of deti@ibutions and scoring functions

(see Section V for some examples that validate our choiceanfetnfunctions).

Note that [13] introduces an earlier algorithm to obtain-kopnswers with a probabilistic access cost that follows a powe

law in terms ofk.
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Using a Safety Factor for Large Rank Variance

A second difficulty that our techniques face arises from tingtéd sample size. As we
explained earlier, the expected rank in the data distobutif thei-th highest ranked element

in the sample is - &L, We now briefly analyze how accurate that estimation is ferdgpecial

St
case ofi=1 (i.e., how close td{ in the original data set is the rank of the top object in the

sample). The variance of the rank in the original table ofttiye tuple in the sample, denoted

V(1g), is given by:

(BT N+1 N2 S(N+1)(N?— NS 3N + 5% +2)
V=2 () ‘<S+1_1) O (IH1ASH+YN -5 +1)

which is approximatel;(%)2 if N > S. In other words, the standard deviation of the rank
in the original relation of the top object in the sample is ag¢ as the expected rank itself.
Figure 5 illustrates this behavior for a hypothetical taliéh 1 million tuples and a sample of
size 1,000. In this case, the rank in the original table ofttiglest ranked sample is expected to
be around 999. Figure 5(a) shows the probability distrdoutf such rank. We can see that 999
is not even the most frequent value, and that the probaliityibution is rather flat. Figure 5(b)
shows the cumulative probability distribution and the fawt with 95% confidence the actual
rank of the top ranked sample can be anywhere between 1 ad(&80@nge that is three times

as large as the actual expected value).
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(a) Probability. (b) Cumulative Probability.

Fig. 5. Rank estimation using samples.

Although this issue seems very problematic, the ultimatd @b our estimation procedure is
not to get very accurate values for the number of iteratibasto help the optimizer choose a

good execution plan. Therefore, if the actual estimatet afothe besfTA strategy is significantly
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larger or smaller than that of the scan-based alternativelemate variations in the estimation
of cost will not change the optimal plan from being chosen.eWkhe two numbers are close,
though, there is a larger chance that errors in estimatidrpvapagate to the selection of plans.
We examine these issues in the experimental section.

We use an additional small “safety” factor as follows. Retaét the procedure to estimate
the cost of anylA strategy uses some approximations that are intrinsicallyery accurate. On
the other hand, the cost estimation for a scan alternatimebeaestimated very accurately. As
a conservative measure, we only choosBAastrategy if it is cheaper than times the cost of
an alternative scan, whefe< o < 1 (we usea = 0.5 in our experiments, but this number can
in general reflect the degree of confidence that we requirerdefxecuting &'A strategy). We
choose al'A strategy only if we are confident enough that it will be cheapan the scan-based
alternative. In doing so we might choose the scan-basethattee even though @A strategy
was indeed the optimal plan, but this is an expected consequaf our conservative approach.

We analyze this tradeoff experimentally in Section V.

IV. EXTENSIONS

In this section we discuss some extensions that can be easdyporated to our model.

A. Handling Filter Predicates

In the previous section we assumed that there was no filtetiqgate restricting the set of
tuples that qualify to be part of the answer. We now descritne We can relax that restriction.

Consider the general query:

SELECT TOP(k) c1, ..., cm

FROM R

WHERE P

ORDER BY F(si(cl), ..., su(cm) DESC

whereP is an arbitrary predicate over the columnsRfWe now discuss how we can evaluate
such queries and then how we can estimate their executidn cos

1) Execution AlternativesA straightforward extension ofA to handle arbitrary filter pred-
icates is as follows. Recall from Figure 2 the main composerfta typical TA strategy. The

idea is to add a small piece of logic in th&A operator, which evaluates predicdebefore
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considering the addition of the current object to the setapfit tuples. If the current tuple
does not satisfyp, it is dropped from consideration. The calculation of theeihold, however,
considers all tuples whether they satigfyor not. This execution strategy is feasibleRTA
receives input tuples that additionally reference all tbumins required to evaluate. If the
current tuple is obtained from an index strategy followedabgrimary index lookup, then all
relevant columns are already present. Otherwise, if a aoyéndex is used, we need to perform
an additional index lookup to obtain the remaining colum@s§.course, if the covering index
additionally contains all columns referenced Bythen there is no need to do any primary index
lookup. All the pruning considerations are similar to theimral case discussed in Section I11-B.
If the predicateP satisfies certain properties, there is a different altéredhat might be more

efficient, especially ifP is selective. Consider the following query:

SELECT TOP(10) a, b, ¢

FROM R

WHERE d=10

ORDER BY a+b+c DESC
and suppose that an index on columns available. In that case, we can push the selection
condition into the order by clause and transform the quenvalas follows:

SELECT TOP(k) a, b, ¢

FROM R

0 if d=10
ORDER BY a+b+c+ DESC
—oo otherwise

It is fairly simple to see that, if there are at ledstuples for whichd=10 both queries are
equivalent (otherwise, we need to discard from the lattarygall the tuples with score equal
to —o0). In this case, we reduced a query with a filter predicate teguivalent one that does
not have it. Also, the index on colunuh can be used to return all tuples that satisfy the filter
predicate before any tuple that does not satisfylit general, we can use this alternativa
strategy by pushing to the scoring function all predicates tan be efficiently retrieved using

indexes.

"After the first tuple that not satisfying is returned, the threshold value drops below the currenttspore and execution

terminates.
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2) Cost EstimationA key observation to estimate the cost of the extended giesteliscussed
above is that introducing filter predicates does not chaigeearly termination condition, which
is “stop after the threshold falls below the score of the@otr{and final) topk object”. Therefore,
the procedure explained in Section IlI-B can also be usedigdcenario. The difference is that
initially we need to apply predicatP to the precomputed sample so that we only consider
tuples that satisfy the filter predicate. Note, howevert the accuracy of this method will
diminish since the effective sample that we use for estonais smaller than the original one.
For instance, a very selective predicate might filter oubatl five tuples in the original sample
S. The actual number of tuples in the resulting sam@levould therefore be too small, which
makes our techniques more difficult to apply (e.g., recahifrSection IlI-D that we need at
least ten elements in the sample to fit the best power law th@rmines the expected cost of

a TA strategy).

B. Other Enhancements

There are other enhancements to the main algorithm thatpmedsup the overall execution
of a top+ query. For instancelA uses bounded buffers and only stores the currenktopjects
in a priority queue. While this is important to guaranteet tie algorithm will not run out of
memory during its execution, some objects might be lookednuihe primary index multiple
times if they are not part of the tap-objects (once each time an object is retrieved from a
source). We can trade space for time by keeping a hash talalk albjects already seen. If we
retrieve an object using sorted access and it is alreadyerhésh table, we do not process it
again (saving a primary index lookup).

An optimization studied in the literature is to relax the uggment that sorted accesses are
done in a round-robin fashion [14]. In general, we can aceast source at different rates, and
retrieve tuples more often from those sources that con&ribwre to decreasing the threshold
value. Conversely, if the score distribution of an attréig close to uniform, we can decrease
the rate at which we request new tuples from that source. fiirly straightforward to show
that a strategy that performs sorted accesses at diffentgg can be better than any alternative
strategy that proceeds in lockstep. It is interesting te nioat for fixed, but different access rates
to the sources, the estimation technique of Section IlI-8t tlises single-column histograms

can be applied with almost no changes. In this case, we wobddiro the minimum values
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{Ds,...,D,,} for which the threshold value calculated with the tbpvalue for each attribute
¢; is expected to fall below the top-score.

Finally, there are opportunities to further avoid primangex lookups. Consider a topguery
over attributess, b, and ¢, and suppose that we use a composite non-covering index, o
to process attribute. For each tuple retrieved from the index, we can first assume the
value of ¢ is as large as possible. If the resulting score calculatetthah way is still smaller
than the current top- score, we can discard the tuple without performing a primagex
lookup. Although this idea is at first glance straightfordat carries important implications for
optimization. Specifically, our pruning techniques of &actlll-A need to be refined to work
in this scenario. For instance, if indexes over bathand(a, b) are available for a top-query
over attributea, b, and ¢, our pruning techniques would not consider b) (see Property 2),
which might be the best alternative when this optimizat®mused.

Implementing these enhancements and providing suitaldasions to the cost model is part

of future work.

V. EXPERIMENTAL EVALUATION

We next report an extensive experimental evaluation of echirtiques, which we implemented
in Microsoft SQL Server. We note that, aside from our own esiens, we did not use vendor-
specific features in our experiments. We therefore beliéat dur results would be directly
applicable to other implementations of SQL that supportthualumn indexes. Below we detail
the data sets, techniques, and metrics used for the expesrogthis section.

Data Sets: We use both synthetic and real data sets for the experim€hésreal data set
we consider iCovType [17], a 55-dimensional data set used for predicting foresec types
from cartographic variables. Specifically, we considerfti®ewing quantitative attributes for our
experiments: elevation, aspect, slope, horizontal anticeédistances to hydrology, horizontal
distances to roadways and fire points, and hill shades atrdift times of the day. The cardinality
CovType is around 545,000 tuples.

To evaluate specific aspects of our techniques we also gedesiasynthetic data distribution
with 1 million tuples and 14 attributes with different dibutions and degrees of correlation.
Table | described the attributes of the synthetic databdséii-Gaussian distributions consist of

a number of overlapping gaussian bells, where the numbeunpdés on each bell is regulated
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Column Description

uni f1, unif2 | Random(0, 1)

corr 0.1 uni f 1 + Randon—0.0005, 0.0005)

corr_1 uni f 1 + Randoni—0.005, 0.005)

corr_10 uni f 1 + Randon{—0.05,0.05)

corr _100 uni f 1 + Randonf—0.5,0.5)

g1, g2, g3 Multi-Gaussian(3 peak$;=0.05, 2=0.75)

g4, g5, g6 Multi-Gaussian(50 peak$,=0.01, 2=0.75)

z1, z2 Multi-Zipfian(2500 distinct pointsz=0.5)
TABLE |

SYNTHETIC DATA SET USED IN THE EXPERIMENTS

by a Zipfian distribution with parameter. In Multi-Zipfian distributions, each dimension has
a number of distinct values, and the value sets of each dioremse generated independently.
Frequencies are generated according to a Zipfian distoibwtith parameter and assigned to
randomly chosen cells in the joint frequency distributioatnx.

Workloads: For each experiment we generated a 100-query workload. &geh query in
the workload uses a scoring function of the ford . w; - (¢; — v;)* where0 < w; <1 andw;
belongs ta;’'s domain, and: ranging from 20 to 100 (values é&fin this range are reasonable and
were used previously in related work, i.e., [12], [14], [P]]). We tried other scoring functions
and values ofc and obtained similar results, but we omit those for brevity.

Techniques. We compare our proposed strategies of Section Ill when rgryiow we
approximate the number of iterations DA, and also against existing approaches used in current
database systems. Specifically, we consider the followiragegjies to evaluate top-queries:

- Scan As a baseline, we consider the scan-based execution @amthdern query optimizers
use to answer top- queries. If a covering index is present, this technique sdae index,
calculates the scoring function of each tuple and keeps #st /b If no covering index is

present, it uses the existing primary index of the table.

- TA-Power The strategy of Section Il that uses a power law to modehtimaber of iterations

D. We obtain the best plan using a bottom-up enumeration ahldtigthe cost-based pruning
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technique of Section IlI-B.

- TA-Power-Greedy This strategy uses the same cost modelTAsPower but in addition
to the cost-based pruning we use a greedy strategy to entenadtarnative plans. The greedy
technique is similar to the one used to enumerate indexset&ion plans in traditional database

systems.

- TA-Linear A variant of TA-Powerthat uses linear regression instead of power laws to
estimate the number of iterations. We include this techmitpuillustrate the improvement in

accuracy obtained by using power laws.

- TA-Score This strategy does not use the ideas of Section IlI-D to lasthall © values.
Instead, wherk is smaller than% for a table with N tuples and a sample of siz&, we
extrapolates,, the topk score as follows. For a scoring functidincy, .. ., ¢,,) we first obtain
the maximum possible score of any tuple, denot&t’, as F'(v]"**, ... v"*), wherev"** is
the maximum possible value for the attribute score functbmttributec;. Suppose that; is
the top-score from any tuple in the precomputed sample. Videvkhat there arég%l expected
tuples with scores betweefi and s™**. We then approximate the tdp-score s, assuming

uniformity assy + (s — 1) - (k= 1) /(55 - 1).

For all the sample-based techniques we use a precomputé&dtlfle@ sample.

Metrics: We report experimental results using these metrics:

- Absolute D Error. When comparing different cost models, we use the absaluterror
metric, calculated as follows. For a given technique andyggyen the workload, we consider
all possibleTA strategies that are feasible according to the availablexesl For each such
strategys, we estimate the unknown variable in the cost equation, denotdd’;; and we also

inspect the data to obtain the exact number of iteratibfis. For a given query; that admits

TA strategiessy, . . ., s, we calculate the absolute error as follows:

1

} : 4,80 a,5i
- ‘Dejst _Da7ct
n

s

The absoluteD error of a workloadiV' is the average absolute error for all queries ini/,
and intuitively represents the accuracy of competing netelapproximate the execution cost

of TA strategies.
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- Estimated Execution Timéfter we establish thaTA-Powerresults in the most accurate
cost estimation among the differef@ techniques, we conduct an experimental evaluation of its

expected performance. For that purpose, we use the folipwietrics:

- Scan-TimeExpected execution time @&can which is the default execution plan in absence

of TA strategies.

- Opt-Time: Expected execution time taken by the optimal strategy wHemfarmation is
available. To obtain this value, we inspect the data distidim and obtain the actual number of
iterations required by eachA strategy. We then calculate the expected cost of &adhternative
assuming perfect information and select the most efficitamt pmong all thelA strategies and
Scan Opt-Timerepresents the expected time taken by the best posBfbte Scanalternative
when all cost decisions are perfectly accurate, and it ispgreiubound of the improvement that

we can obtain by addingA strategies to a database system.

- TA-Time:Expected time taken by the best plan chosen by the optimézre¢ Scanor the
bestTA strategy) when usingA-Powerto estimate the cost ofA alternatives. To obtain this
value, we calculate the expected cost of edéhstrategy usinglTA-Powerand pick the best
plan among theTA strategies andcan Then, we re-evaluate the cost of such best alternative
(if it is a TA strategy) with the true value @D obtained by inspecting the data. In other words,
TA-Timeis the expected cost using accurate information of the bestugion plan chosen using
TA-Power

We note that in our experiments we measure expected exeaudsi (as returned by the query
optimizer) rather than actual execution times. We beliéa in the context of this work this is
a better alternative. In fact, after we estimate the numbé&erations D for a givenTA strategy
as shown in Section IlI-B, our cost model is handled entit®lythe optimizer itself. The cost
model in the optimizer, however, sometimes results in sligaccuracies with respect to actual
execution times (e.g., sometimes the optimizer might cagtquential scan slightly cheaper than
an index intersection plan when the opposite is actuallg)trlio evaluate our algorithms we
assume that the optimizer has a precise model of executsinamd use its output as a measure

of query performance. This way we avoid adding another @utiion layer that might ultimately
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bias our conclusioris

A. Evaluating TA Strategies

In this experiment, we issued a 3-dimensional top-100 queer columnsgl, g2 andg3
in the synthetic data set and evaluated the cost of d&cbktrategy (when varying the set of
available indexes) by examining the data. Thus, we obtaihedaccurate cost that competing
TA strategies would require to evaluate the input query. Eiduishows, for different physical
configurations, the expected cost of eddhstrategy compared to that &can(the figure uses
S1, S2, .., S7to represent the differerfA strategies in increasing order of expected cost). We
can see that when only single-column indexes are presemgir@=i6(a)) allTA strategies are at
least 10 times more expensive th8oan When all covering indexes are available (Figure 6(d))
the situation is reversed and all alternatives are chedyzar3can(the cheapest being almost
2 orders of magnitude faster th&tar). Figures 6(b) and 6(c) show results when only one or
two covering indexes are available. In those cases, therdealmost four orders of magnitude
between the cheapest and most expen3ikestrategy. This experiment suggests that having
an accurate cost model is critical to incorpordi strategies into a relational engine, as bad
decisions can dramatically hurt performance. Figure 7 dements this result by comparing the
cost of the bestA strategy and the correspondiBSganstrategy for the same query when varying
the set of covering indexes that were available (the figues G4, C2,..., C8to represent the
optimal TA strategy for varying index configurations in increasingesrdf expected cost). We
can see that for some configurations, the best alternativeuish better tharScan while for
others is over 10 times more expensive.

Analyzing Figure 6(a), it seems that if only single-columdexes were availabl@A strategies
would be significantly worse thaBican We now examine this claim in detail. For that purpose,
we use columnsini f and the different correlated colume®r r _x in the synthetic data set.
Consider as an example colummsi f andcorr _10. The values in the joint distribution form
a narrow band around the diagonadi f =cor r _.10. Suppose that we ask a tape query with

scoring function funi f - v)? - (corr 10 - v)? for some0 < v < 1. The top100 tuples for

8Note, however, that we executed the different executiomypia the database system and in most cases the trends were

similar to what the optimizer predicted.
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Fig. 7. Estimated execution cost of the b&ststrategy for varying available indexes.

such a query would lie in a tight circle arourid, v) (see Figure 8). Moreover, the amount of

additional tuples thalA strategies need to retrieve is minim@l(strategies using indexes over

bothuni f andcorr _10 would examine all tuples in the shaded regions of Figure Bg more

correlated the columns, the better the performanc®Aoftrategies for tog: queries centered in

the diagonal (in fact, the best scenario fofAstrategy consists of columns that have the same

values).

Figure 9 reports values FAime/Scan-Timéor different workloads, that is, the fraction of the

time of Scanthat we require to evaluate 100 tépgueries wherlA strategies are additionally

available. Again, for this experiment we used the actualeslof D to estimate the cost ofA

strategies to analyze their behavior independently ofdaaxies introduced byA-Power We
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see in Figure 9(a) that when data is very correlated andktgperies are centered in dense
areas,TA strategies are more efficient th&tan However, forUni f 1 and Cor r _10 the Scan
alternative is already better than the bd@gt strategy, and therefore it is always chosen as
the optimal plan, resulting in a ratio of one. In contrast,ewlcovering indexes are available
(Figure 9(b)) the cost of the be3$A strategy is always much better than thatSufan(as little

as one percent dbcanin the worst case for this set of experiments). This expeaninseiggests
that TA strategies using single-column indexes can be useful in nestricted scenarios. As we
will see in the rest of this section, none of the remainingkhmads benefits fronTA when only
single-column indexes are available. On the other hancgromy indexes can have an important

impact in the time taken bYA strategies.
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Fig. 9. Using covering and non-covering indexes for cotezladata.

B. Comparison of Cost Estimators

Having shown thafTA strategies can be beneficial as alternative execution paasmswer
top-k queries, we now analyze the accuracy of different methodsapproximate the number
of iterationsD of TA strategies, and therefore their expected costs. We first ¢he accuracy
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of using power laws for approximating the number of itenagiof TA strategies. As an example,
Figure 10 shows two executions ©A. We obtained the exact number of iterations for varying
values, and then calculated the best power function thatlfttie data. For Figure 10(a) we used
the CovType data set and a scoring function of the fo@fz1 —(c; —v;)?. For Figure 10(b) we
used the two-dimensional Zipfian distribution and the sapfunctionw, - ¢; + ws - ¢3. Again,
we note that this is just an approximation as the true unagljunction depends on the data
distribution. However, as we see in the figures, power laws loa used to approximate the

number of iterations with reasonable accuracy.
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(a) Cover data, 3d query. (b) Zipfian data, 2d query.

Fig. 10. Estimating iterations with power laws.

We next generated several 100-query workloads using diftecolumns from both real and
synthetic data sets and obtained the absaluggror for each alternative method. Figure 11 shows
the results of this experiment fGA-Power TA-Linear, andTA-Score For clarity of presentation,
we sorted the workloads by the absoliiteerror value according tdA-Power Figure 11(a) shows
that for the realCovType data set,TA-Powerconsistently results in better estimations /of
values than botfTA-Linearand TA-Score Figure 11(b) shows the results corresponding to the
synthetic data set. In this case there are larger variabehseen the accuracy of the different
methods, since the data exhibits very different types ofetations. We can see that, although
TA-Poweris not always the most accurate alternative, it is alwaylseeithe most accurate or
very close to it. The other methods, instead, can be significdess accurate than the best
technique for some situations. The reason thatScoreperforms significantly worse for some
workloads is that it assumes, during extrapolation, thaeen scores are uniformly distributed
from the maximum possible score to the top score in the sgmagiech can be far from true

in correlated data setJA-Linearis based on a principle that is similar to that DA-Power
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and therefore the two techniques perform similarly. Howewe can see in the figures that
TA-Linearis consistently less accurate th@A-Power confirming that the usage of power laws
is generally more accurate than using simple linear regnesés explained earliefTA-Power

is just a heuristic that approximatés values, but it seems to consistently result in reasonably
estimations for a wide spectrum of data and query distiiimsti We therefore focus exclusively

on TA-Powerin the rest of the work as the method to estimate the co3todtrategies.
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() CovType data set. (b) Synthetic data set.

Fig. 11. Accuracy of different methods to estimate the nundféterations ofTA strategies.

As explained in Section IlI-D, we use a “safety facter’to address the intrinsic limitations
in accuracy that are present when estimating the co3tAo$trategies. Only if the cost of the
best TA alternative is cheaper tham times the cost ofScan we choose the former over the
latter. Figure 12 reports the performance impact of difiesafety factors. We used a workload
consisting of the union of all workloads used in Figure 11gkgr the synthetic data set, and
obtainedTA-Timevalues for different values af. We can see that for very small valuesgfthe
Scanalternative is almost always chosen and therefiokelTimeis closer toScan-TimeOn the
other extreme, for values af close to one, inaccuracies in the cost model make the omimiz
chooseTA strategies even thoughcanwould have been better. Somewhere between these two
extreme values lies a good tradeoff point that chod&&svhen it is reasonably certain that it
will be more efficient tharScan and the opposite otherwise. We see in the figure that values
of a between 0.35 and 0.65 result in the best expected cost. A different workloads and
the curves fora changed a little but the best expected cost still appear@ahdioc = 0.5. We
believe thate = 0.5 provides a reasonable trade-off and can be used in absernc®wfedge
about the workload. Otherwise, if performance is cruciatalibration step similar to what we

did in Figure 12 can be conducted with a representative warklto obtain the optimal value
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of «. In the remaining of this section we use= 0.5.
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Fig. 12. Determining the safety factor.

C. Evaluation of TA-Power

In this section we evaluate the expected performance ofabdaé system wherA strategies
are additionally available to answer tépequeries. Figures 13 and 14 report results for the
synthetic data set and Figure 15 does it for @/ Type real data set.
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Fig. 13. UsingTA-Powerwith correlated data.

We first study the correlated scenarios of Section V-A by vateting the workloads of
Figure 9 whenTA-Poweris used to model the cost GfA strategies. We can see that when
covering indexes are available (Figure 13(B)A-Timeis virtually identical toOpt-Time(i.e.,
TA-Poweralways chooses the best execution plan). Also, note thaxpected execution time of
the TA strategies is over two orders of magnitude faster than th&can Since the costs ofA
strategies in these situations are much more efficient 8tam TA-Poweralmost always chooses
the best plan despite inaccuracies in the cost model. Onthiee band, when only single-column
indexes are available (Figure 13(a)A-Powermisses the best plan more frequently. This is not

a big problem for highly correlated data (the first three vimelkis in Figure 13(a) are still more
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efficient thanScar). However, for scenarios in which the best strategy is asi&gan TA-Power
can sometimes be chosen insteadSchn thus raising the overall execution time. In fact, the
last two workloads in Figure 13(a) represent the worst-casmario forTA. Those workloads
do not benefit fronlA strategies in absence of covering indexes, so any inagcimabe cost
model can result in worse execution times than whi@nstrategies are unavailable. We note,
however, that due to the safety factor, even in those caseddfradation is below 25%. This

results reinforce the fact, though, thBA strategies offer limited benefit in absence of covering

indexes.
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Fig. 14. UsingTA-Powerwith the synthetic data set.

Figure 14 shows results for the synthetic data set. For eackload we tried four different
configurations that result from considering (i) singletcoh versus covering indexes, and (ii)
uniform versus random weights in the scoring functibn= — >, w;(c; — v;)*. In all cases,
TA-Timeis at most 5% more expensive th@pt-Time When only single-column indexes are
available, TA strategies are no better than existiBganalternatives (the reason is that the data
attributes, while having different degrees of correlatstiil require significant iterations forA to
terminate). When covering indexes are availabk;Timeis from 1% to 40% the value ddcan
We also note that when the scoring weightsare random[TA strategies that exploit covering
indexes are slightly more efficient (comparedSoar) than when the weights are uniform. The
reason is that if weights are random, many times a subsettrifLaes receives a very small
weight and therefore plays almost no role in lowering theshold valueTA strategies that omit
using indexes on such attribute require a slightly largenioer of iterations over a smaller set
of indexes, ultimately saving execution time. For the casimgle-column indexes, however,
this difference is not enough to maK@ strategies more efficient the&can

Finally, Figure 15 shows results for the re2dvType data set for workloads with varying

DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?NO. ?, ? ? 33

=
PN
+

0.8 +-
0.6
0.4
0.2

Fraction of Cost of .
Scan Alternative
Fraction of Cost of .
Scan Alternative

Single Column One Covering All Covering Single Column One Covering All Covering
Indexes Index Indexes Indexes Index Indexes

Configurations Configurations

(a) Two attributes. (b) Three attributes.

1.2
1v-v @ B Opt-Time ---------
084-4 - __ BTA-Time |

0.6

0.4 4

Scan Alternative
Fraction of Cost of .
Scan Alternative

02+-4 - -
04

Fraction of Cost of .

Single One Five All Covering
Single Column ~ One Covering All Covering Column Covering Covering Indexes
Indexes Index Indexes Indexes Index Indexes

Configurations Configurations

(c) Four attributes. (d) Ten attributes.

Fig. 15. UsingTA-Powerwith the CovType data set.

number of attributes. For each workload we evaluated thoeégurations: (i) all single-column
indexes are present, (ii) one of the indexes is covering &edrést are single-column, and
(ii) all indexes are covering (Figure 15(d) also reporte ttase with five covering indexes).
The results are consistent with those over synthetic daks s8th TA-Time being at most
5% more expensive than the optimal strategy (except in Eiduti(d), whereTA-Timeis at
most 15% more expensive than the optimal strategy due to ijie dimensional nature of
the approximation). Specifically, using single-columnédres does not improve performance. In
contrast, the more covering indexes are available, theehigjfe chance that they will be used
in someTA strategy, decreasing the overall execution time of the lwack (when all covering
indexes are presentA-Timeis below 15% ofScan-Timein Figures 15(a-c) and below 40%
of Scan-Timein Figure 15(d)). We also see that as we increase the numbattrdfutes, the
performance offA-Timedecreases compared &can The reason is that in higher dimensions,
the number of iterations required BWA to lower the threshold value below the tépscore
increases, and so does the expected cost. Figure 15(d) shaineven though it is still possible
to useTA strategies for up to ten dimensions, the results are lessueaging as in the other
cases. Even when five covering indexes are predehtises over 90% of the time d&can
When all covering indexes are presend results in 40% of the time o$can but it requires

materializing a large number of redundant structures.
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D. Impact of Greedy Search

We re-evaluated all workloads using bofid-Powerand TA-Power-Greedyln all but three
cases, the resulting execution plans were exactly the santmth techniques. For the remaining
three casesJA-Power-Greedyesulted in less than 2% degradation with respectAePower

by examining a fraction of the space ©A strategies.

VI. CONCLUSIONS

In this work we studied whether recent algorithms proposesfficiently answer tog: queries
in middleware systems could be adapted to work in the cordéxt RDBMS. We identified
the main challenges in adapting tfé algorithm to work inside the relational engine. As with
traditional relational processing, the choice of indexescally determines the execution cost
of TA strategies. We identified the space of execution alteresitidesigned a cost model based
on power laws to approximate the cost of each alternative,paavided pruning rules to speed
up query optimization. We then showed experimentally thaggéneral TA strategies based on
single-column indexes are rarely more efficient than sinsplguential scans over the underlying
table unless the data is extremely correlated. Howevernd or more covering indexes are
available, the improvement given by the b&ststrategy can be of orders of magnitude. We do
not expect covering indexes to be built just for answeringrargtop-k query (in fact, if that were
the case, we would be using a full sequential scan to buildritiex as a prerequisite for BA
strategy, which defeats its purpose). In contrast, we welibat for given query workloads, the
cost of building a useful set of indexes (once) would be aimedtby a large number of queries
that subsequently benefit from such indexes. As usual, oedsn® be careful since each new
index adds overhead for update statements in the worklagdthis is the same trade-off that
occurs in traditional query processing. We see physicabddsining as an orthogonal problem.
Deciding which indexes to create for a given tbpuery workload is a very important problem
but it lies outside of the scope of this work. Although someoaf results seem intuitive, this
is the first quantitative evaluation of relying dii-like techniques to answer tdpgueries in a
RDBMS. Our conclusion is that it is good to incorporate oua@edTA strategies to the set of

algorithms that a relational optimizer can take advantdge efficiently evaluate queries.
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