
A Critical Look at the TAB Benchmark for Physical Design Tools

Nicolas Bruno
Microsoft Research

nicolasb@microsoft.com

Abstract
There has recently been considerable research on physi-
cal design tuning algorithms. At the same time, there is
only one published methodology to evaluate the quality
of different, competing approaches: the TAB benchmark.
In this paper we describe our experiences with TAB. We
first report an experimental evaluation of TAB on our lat-
est prototype for physical design tuning. We then identify
certain weakness in the benchmark and briefly comment
on alternatives to improve its usefulness.

1 Introduction
Lately there has been considerable effort in the database
community on reducing the total cost of ownership of
database installations. Specifically, physical design tun-
ing has become relevant, and most vendors nowadays in-
clude automated tools to tune database physical designs
as part of their products (e.g., [3, 10, 14]). Given a query
workloadW and a storage budgetB, these tools find the
set of physical structures (or configuration) that fits inB
and results in the lowest cost forW (see Figure 1).���������	��
� �
���
���� ������������ �������� ����� � ��!"�����"�� �#��$"!�%�"&"'��"��

Figure 1: Architecture of Physical Design Tools.

Although there has been considerable research in new
algorithms to find good configurations and extensions to
newer physical structures (e.g., [2, 4, 5, 7, 8, 11, 12, 15]),
much less attention has been paid on methodologies to
evaluate the quality of different approaches. Specifically,
we are aware of only one publication that proposes a
benchmark of physical design tools: the Toronto Auto-
nomic Benchmark, or TAB for short [9]. In this paper
we describe our experiences with TAB when evaluating
the quality of different alternatives, both in the context
of a shipping product [3] and also on different experi-
mental prototypes that we implemented over the last few
years [5, 6]. Specifically, in Section 2 we review the TAB
benchmark [9]. In Section 3 we report an experimental

evaluation of TAB. Then, in Section 4 we analyze both the
results of the experimental evaluation and also the bench-
mark itself. In doing so, we identify certain weaknesses
in the design of TAB (specifically, on the benchmark met-
rics, the choice of baseline configurations, and some com-
bination of database/workloads) and briefly comment on
alternatives to mitigate their impact.

2 The TAB Benchmark
Reference [9] introduces a framework to evaluate the
quality of automated physical design tuners, which we re-
fer to asTAB. We next review the three components of the
benchmark: the evaluation metrics, a baseline configura-
tion to compare against recommendations, and the set of
databases/workloads to tune.

Evaluation Metric Consider a workloadW over a
databaseD, and suppose that a tuner recommends con-
figurationC for W . TABevaluates the quality ofC using
MC,W , which returns, for an input timet, the number of
queries inW that executed faster thant:

MC,W (t) =
|{q ∈ W : cost(q, C) ≤ t}|

|W |

wherecost(q, C) is the actual execution time of queryq
under configurationC. For pragmatic purposes, a time-
out Tmax is chosen andcost(q, C) is capped byTmax.
Therefore, it is alwaysMC,W (Tmax) = 1.

Baseline Configuration TABidentifies a special config-
uration, called1C, which consists of all single-column
indexes over the database tables. Reference [9] justifies
the choice of1C by stating that“... the consistently good
performance of the single column configuration suggests
a practical improvement of DBMS configuration recom-
menders...”, “...1C was also far better than the configu-
rations recommended by both systems...”, and“...a very
conservative overall workload assessment results in 1C
producing almost 17 times better results than R!”.

Databases and Workloads TAB uses two databases.
The first one is a publicly available non-redundant ref-
erence protein database [13], orNREF for short, which

provides a collection of protein sequence data from sev-
eral genome sequencing projects. The second one is the
TPC-H benchmark used to evaluate the performance of
database systems [1]. The workloads in [9] are chosen
to “...represent fragments of typical iceberg queries, that
is, queries that compute aggregate functions over a set of
attributes to find aggregate values satisfying certain con-
ditions, grouped in different ways”. A typical query for
the reference protein database is shown below1:

SELECT T1.nref id, COUNT(DISTINCT T2.nref id)

FROM taxonomy T1, taxonomy T2, protein P

WHERE T1.taxon id = T2.taxon id AND

T1.nref id = P.nref id AND

P.p name = ’Phosphotransferase’

GROUP BY T1.nref id

For theTPC-H database,TABdoes not use theQGen work-
load of [1], but rather one that mimics that ofNREF.

3 Running TAB
We now report an experimental evaluation of TAB in
our physical design tuning prototype based on [5]. Our
objective with this experiment was two-fold. First, we
wanted to analyze the performance of our prototype de-
sign tuner and compare its quality with the baseline con-
figuration of [9]. Second, we wanted to understand the
design decisions behind TAB, and question whether there
was room for improvement in the benchmark definition
itself. We used a Intel Xeon 3.2 GHz CPU with 2GB
of RAM (we allocated 1GB of RAM to the DBMS for
the experiments) and a 250GB, 7200rpm hard drive to
store data. We used Microsoft SQL Server 2005 as the
database engine. For each workload, we proceeded as
follows. Following [9], we first created three copies of
the original database, and deployed a different configura-
tion on each instance. The first one, which we denote by
adding a suffix-P to the database name, has only primary
indexes. The second one, which we denote by adding a
suffix -P1C to the database name, additionally contains
all valid single-column indexes2. The third one, which
we denote by adding a suffix-R to the database name, is
obtained by running our physical design tuning tool for
the input workload considering both clustered and non-
clustered indexes with a storage bound equal to the size
of the-P1Cconfiguration. Table 1 shows statistics on the
databases and workloads. (Note that we also evaluated the
originalTPC-H workload generated using theQGen utility.)

To avoid external factors in skewing the results, we per-
formed the following additional steps. First, we stopped

1All queries in the workload follow the same pattern: (i) self-join of
a tableT1, (ii) join with a tableT2 that has a selective predicate, (iii)
aggregates on the values ofT1 tables.

2Restrictions in the DBMS prevent us from creating certain indexes,
such as indexes with keys larger than 900 bytes.

Database Size # Indexes

NREF-P 8GB 6
NREF-P1C 34GB 35
NREF-R (tuned with NREF3J) 28GB 31
TPC-H-P 12GB 8
TPC-H-P1C 34GB 61
TPC-H-R (tuned with UnTH3J) 21GB 29
TPC-H-R (tuned with QGen[1]) 34GB 15

Table 1: Databases used in the evaluation.

all non-essential operating system services to avoid inter-
ference. Second, we defragmented both the disk where
data resided and also the indexes inside the database.
Third, we created the same set of statistics in all databases.
Finally, we executed each query five times –with cold
buffers– and kept the median execution time. We used
a timeoutTmax of 30 minutes as in [9], but no execution
exceededTmax.

0

5000

10000

15000

20000

N
R

E
F

-P

N
R

E
F

-P
1C

N
R

E
F

-R

T
P

C
H

-P

T
P

C
H

-P
1C

T
P

C
H

-R

T
P

C
H

-P

T
P

C
H

-P
1C

T
P

C
H

-R

NREF3J UnTH3J Qgen

A
ct

ua
l E

xe
cu

ti
on

 T
im

e

Figure 2: Overall Execution Times.

Figure 2 shows the overall execution times for all work-
loads and databases. Figure 3 showsM(t) for each
database/workload combination. Finally, Figure 4 shows
a variation of theM metric where we used the optimizer’s
estimated cost rather than the actual execution cost for the
queries in the workload. We analyze these results next.

4 Analyzing TAB
We now analyze the results of the experimental evaluation
of the previous section. In doing so, we also address some
issues on TAB that we found during the evaluation and
comment on some alternatives to diminish their impact.

Overall Comments. Figure 2 shows that the recom-
mended configurations resulted in substantial improve-
ment over the basic-P configurations. Specifically, the
improvements were 64% forNREF/NREF3J, 94% forTPC-
H/UnTH3J, and 73% forTPC-H/QGen. A noticeable differ-
ence with [9] is the performance of the-P1C configura-
tions. While forNREF/NREF3Jboth-P1Cand-R resulted
in roughly the same performance, forTPC-H/UnTH3Jthe
performance of-P1C lies almost exactly between that of
-Pand-R. Also, forTPC-H/QGenthe performance of-P1C

0

20

40

60

80

100

0.001 0.1 10 1000
Seconds

C
um

m
ul

at
iv

e
%

 o
f Q

ue
ri

es

NREF-P

NREF-P1C

NREF-R
0

20

40

60

80

100

0 100 200 300 400
Seconds

C
um

m
ul

at
iv

e
%

 o
f Q

ue
ri

es

TPCH-P

TPCH-P1C

TPCH-R

0

20

40

60

80

100

0 100 200 300 400 500 600

Seconds

C
um

m
ul

at
iv

e
%

 o
f Q

ue
ri

es

TPCH-P

TPCH-P1C

TPCH-R

(a) NREF/NREF3J. (b) TPC-H/UnTH3J. (c) TPC-H/QGen.
Figure 3: Actual execution times for varying databases and workloads.

0

20

40

60

80

100

0.01 1 100 10000 1000000

(Estimated) seconds

C
um

m
ul

at
iv

e
%

 o
f Q

ue
ri

es

NREF-P

NREF-P1C

NREF-R

0

20

40

60

80

100

0 500 1000 1500 2000

(Estimated) seconds

C
um

m
ul

at
iv

e
%

 o
f Q

ue
ri

es

TPCH-P

TPCH-P1C

TPCH-R

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000
(Estimated) seconds

C
um

m
ul

at
iv

e
%

 o
f Q

ue
ri

es

TPCH-P

TPCH-P1C

TPCH-R

(a) NREF/NREF3J. (b) TPC-H/UnTH3J. (c) TPC-H/QGen.
Figure 4: Optimizer estimated execution times for varying databases and workloads.

is only slightly better than that of-P (a 13% improvement
compared with 73% of-R). Figures 3 and 4 give addi-
tional information about the relative performance of dif-
ferent configurations. Almost 80% of the queries inNREF-
3J finished in less than 10 seconds under either-P1C
or -R, but only 10% of the queries under-P finished in
that amount of time. ForTPC-H/UnTH3J, all 100% of the
queries finished in 75 seconds or less underR, where the
percentages were 50% for-P1Cand only 5% for-P. Fi-
nally, for TPC-H/QGen, 90% of the queries ran in less than
220 seconds under-R, where only 22% of the queries did
the same under either-P or -P1C. Interestingly, theM
curves for-P and-P1Ccross each other forTPC-H/QGen
in Figure 3(c), and therefore it is not clear how to inter-
pret their relative performance beyond our original claim
that the configurations were comparable. We examine and
comment on the design of the TAB benchmark itself next.

4.1 Evaluation Metrics
The metric used to compare tuners is a crucial compo-
nent of a benchmark. Usually, the existing literature uses
a single number to measure the quality of recommen-
dations, calledpercentage improvement, and defined as
1 − actual cost/recommended cost. TAB recognizes that a
single number might not provide enough detail to thor-
oughly evaluate and compare physical design tuners, and
proposes theM metric to address this limitation. While
we agree with the deficiency pointed out in [9] regarding
single-value metrics, we identify some problems inM.

4.1.1 Actual vs. Estimated Cost
TheM metric is based on the actual time it takes to exe-
cute queries in the workload. We believe that in the con-

text of evaluating a full system (i.e., not only the tuning
tool, but also the query optimizer, query processor, and
even the underlying operating system) this is clearly the
best, most unbiased choice. However, if the purpose is an
isolated evaluation of physical design tools, we claim that
execution costs are, although important, less relevant. The
reason is that using execution costs potentially introduces
additional variables that are outside the scope of the eval-
uated tool. We next clarify this claim with real examples.

The Role of the Optimizer. It is important to note the
we are bound to execute what the optimizer decides it is
the best plan for a given query3. Consider the following
example, simplified from a real query inNREF/NREF3J:

SELECT R.* FROM R, S

WHERE predicate(R) AND R.x=S.y

and suppose that the optimizer estimates that only a hand-
ful of tuples fromR satisfypredicate(R). If an index on
S.y is available, the optimizer would find that a nested-
index-loop alternative that first gets all valid tuples from
R and then fetches the matches fromS might be a bet-
ter alternative than, say, a hash join. Now suppose that
the estimate is not right due to limitations in the opti-
mizer’s cost model, and in reality almost all tuples inR
satisfypredicate(R). In this case, the index-nested-loop
plan, although it is costed the lowest by the optimizer and
therefore chosen if possible, would execute much slower
than the sub-optimal (to the eyes of the optimizer) hash-
join alternative. Now the problem is clear. Consider the
query above under the-P and-P1C configurations. The
optimizer would pick the hash-join based alternative un-
der -P (because there is no index onS.y in -P) and the

3Hints can be used to override optimizer’s decisions, but should be
used with caution and as a last resource

index-nested-loopalternative under-P1C(because the in-
dex is present). The net effect is that the execution cost
under-P1Cwould be significantly larger than that under
-P, and we would tend to rank the tuner that produced-P
higher than the one that produced-P1C. However, note
that under-P1C the optimizerconsideredthe hash-join
alternative but discarded it in favor of the index-nested-
loop plan! In fact, within the optimizer’s cost model, the
index-nested-loop alternative is better than the hash-based
alternative in both-P1Cand-P (although the former plan
is not implementable under-P).

When purely evaluating thequality of a physical de-
sign tuner, we should be careful to freeze any external
variables. It is therefore reasonable to assume that the
optimizer is correct and the physical design tool exploits
accurate information. Using the optimizer’s expected cost
rather that the actual execution cost of queries has pre-
cisely that effect, provided that the optimizer is operat-
ing under the same statistical model for all configurations
(which we can achieve by materializing the same set of
statistics, including those that are associated with indexes,
in each database instance).

Runtime conditions. Another problem when using ac-
tual execution times is the unwanted presence of external
factors that can compromise the accuracy of the measure-
ments. In one of our earlier experiments, we noticed that
the execution cost of a plan under-P was twice as fast
as the corresponding plan under-R (which was odd since
-R contained a strict superset of the indexes in-P and the
query did not do any updates). Even more puzzling, a
closer inspection of both plans revealed that they were in-
deed identical. After a long debugging session, we real-
ized that the root cause of the problem was index frag-
mentation. In fact, the query required a sequential scan
over an index. Since the index under-P was not frag-
mented, the execution engine could go through the index
using sequential I/O, which is fast. In contrast, under-R
the execution engine had to do one random I/O every 5
disk blocks on average due to fragmentation in the index,
which resulted in a larger execution time overall.

It seems unfair to punish a tuner tool due to external
factors that are not under its control. Although we min-
imized this effect by defragmenting the indexes and un-
derlying disk in our experiments, there is always a chance
that external factors play a role in biasing the results.

4.1.2 Timeouts in theM Metric
Reference [9] introduces a timeout valueTmax that caps
the maximum execution time of a query, set as 30 minutes.
Although this is a practical issue to avoid very long run-
ning queries, it introduces some problems in the bench-
mark methodology. Specifically, it changesa-posteriori
the optimization function that has been agreed upon and

leveraged in tuning tools. Consider the following extreme
scenario, with a 2-query workload that contains a light
query q1, which executes in 5 seconds under-P and a
heavy queryq2 that executes in 3,600 seconds under-P.
Consider a tunerT1 that optimizesq2 as much as possible
at the expense of not fully optimizingq1, and suppose that
the resulting times are(q1=4, q2=1900), with an overall
execution time of 1,905 seconds, or a 47% improvement.
A second tuning toolT2, knowing in advancethe 1,800-
second timeout value, might optimizeq1 without consid-
ering q2 obtaining the following times(q1=1, q2=3600),
with an overall execution time of 3,601 seconds, or just
0.1% improvement. Considering timeouts, the results
are(q1=4, q2=Tmax) for T1 vs. (q1=1, q2=Tmax) for T2,
harshly underestimatingT1’s quality.

We believe that timeouts open the door for the possi-
bility of “cheating” the benchmark by tools that exploit
the subtle issues described above, and therefore recom-
mend against using timeouts when evaluating configura-
tions. (Strictly speaking,M itself uses a different op-
timization criterium to what has been adopted in tuning
tools, but its limitations are less severe than those derived
from timeout values.)

4.1.3 Aggregating individual results
Once we obtain execution times for each query in the
workload, we need to display this information in a mean-
ingful manner. TAB therefore introduced theM metric to
show detailed information about performance of physical
tuners. This metric is interesting in the sense that (i) al-
lows to compare multiple tuners simultaneously, and (ii)
allows for certain goal-oriented evaluation (such as 30%
of the queries should execute in sub-second time [9]).
One drawback of theM metric is that it does not report
per-query comparisons because the individual queries are
sorted in different orders. It is not possible, just by looking
atM to draw conclusions about the performance of spe-
cific queries. For instance, although some queries were
better under-P than under-P1C for NREF, Figure 3(a) is
not enough to show this fact.

We next propose a complementary metric, which we
callI, that focuses on query-by-query performance. Con-
sider configurationsC1 andC2 coming from two tuning
tools. We then compute, for each queryqi in the work-
load, the valuevi=cost(qi, C1) − cost(qi, C2). Clearly,
positivevi values correspond to queries that were better
underC1 than underC2, and negativevi values corre-
spond to the opposite situation. We then sortvi values and
plot the results. Figures 5(a-c) show our proposed met-
ric for the databases/workloads in our evaluation. Anal-
ogously, Figures 5(d-f) shows a variation of theI met-
ric that normalizes eachvi value bycost(qi, -P) (i.e., the
cost of the query under the configuration that only has pri-
mary indexes). We can quickly see, for instance, that for

-100

0

100

200

300

Queries

A
bs

ol
ut

e
G

ai
n

of
 N

R
E

F-
R

 o
ve

r
N

R
E

F-
P

1C

-100

0

100

200

300

400

Queries

A
bs

ol
ut

e
G

ai
n

of
 T

PC
H

-R
 o

ve
r T

PC
H

-P
1C

-500

0

500

1000

1500

2000

Queries

A
bs

ol
ut

e
G

ai
n

of
 T

PC
H

-R
 o

ve
r T

PC
H

-P
1C

(a) NREF/NREF3J (b) TPC-H/UnTH3J (c) TPC-H/QGen

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

Queries

R
el

at
iv

e
G

ai
n

of
 N

R
E

F-
R

ov
er

 N
R

E
F-

P
1C

-5%

0%

5%

10%

15%

20%

25%

Queries

R
el

at
iv

e
G

ai
n

of
 T

PC
H

-R
ov

er
 T

PC
H

-P
1C

-20%

0%

20%

40%

60%

80%

100%

Queries

R
el

at
iv

e
G

ai
n

of
 T

PC
H

-R
ov

er
 T

PC
H

-P
1C

(d) NREF/NREF3J (e) TPC-H/UnTH3J (f) TPC-H/QGen

Figure 5: ProposedI metric to compare physical design tuners.

NREF/NREF3Jboth -P1C and-R result in almost no dif-
ference in performance, but there are still some queries
(which are easily identified in the figure) for which-R re-
sulted in better performance. Also, forTPC-H/UnTH3Jwe
can see that there are two clusters of queries: one that
results in almost no variation between-P1Cand-R, and
another for which the variation is significant in-R’s fa-
vor. Finally,TPC-H/QGengoes from no variation to almost
100% relative change in performance.

Although theI metric gives additional information on
a per-query basis, it cannot be used to compare more than
two configurations. We believe thatM andI are comple-
mentary metrics that provide different types of insights
when comparing physical design tuners.

4.2 Baseline Configuration
Before beginning our experiments we were surprised by
the consistently good performance of-P1Cclaimed in [9].
Our experiments led to two key observations. First, cur-
rent tuning tools result in configurations that range from
comparable to-P1Cto significantly better than-P1C. Sec-
ond, there is a very large variance of performance of-P1C
configurations, ranging from close to the best known so-
lutions to close to the trivial configurations. In light of
these observations, and based on Figures 3 and 4, we ar-
gue against using-P1Cas a baseline configuration to com-
pare against recommendations.

At some level, it is intuitive that-P1C would not be
particularly helpful in general, and specifically for deci-
sion support workloads that require aggregating or filter-
ing multiple columns. However,-P1Cis essentially indis-
tinguishable from the best recommended configuration for
the NREF/NREF3Jinstance, which features queries with
joins and aggregation. We next explain the main reasons
behind this rather unexpected result.

Implied Index Columns. Secondary indexes in a
DBMS store at the leaf nodes enough information to lo-
cate tuples in the primary index. To avoid storing record-

ids, which are volatile in the presence of updates, mod-
ern systems use the columns in the primary index as this
identifier4. This implies that, for all practical purposes,
single-column indexes implicitly behave as multi-column
indexes. We cannot seek these implied columns, but exe-
cution plans can rely on them as if they were explicitly de-
clared. Now consider theNREFdatabase. Not only the ta-
bles inNREFare narrow (the median number of columns
is only five), but also the primary indexes are wide. As
an example, consider tablesource, which is composed of
six columns, four of which are part of the primary index.
In this case, every single-column index onsource essen-
tially contains 4 or 5 out of the 6 columns of the table!
In fact, since just a minority of the table columns is not
present in the index leaf nodes, single-column indexes in
-P1Cactually behave like “covering-indexes” forNREF.

Workload. Even for the “quasi”-covering-indexes in
-P1C there are very simple examples that result in bad
execution plans. Consider the following query inNREF:

SELECT taxon id 2

FROM neighboring seq

WHERE nref id 2 < ’NF00000300’

where the predicate filters all but 7531 rows. The rec-
ommended configuration for this query has a covering in-
dex on(nref id 2, taxon id), so it can seek the rele-
vant tuples and return the results optimally with an ex-
pected time of 0.51 units and an actual execution time
of 0.078 seconds. Note that the primary index for ta-
ble neighboring seq does not contain columntaxon id.
Therefore,-P1Ccannot use the index onnref id 2 to lo-
cate the valid tuples and then fetch the remaining columns
because the cost would be too high. Instead, the best plan
for -P1C is to scan the index ontaxon id, which implic-
itly contains columnnref id 2 and filter on the fly the
resulting tuples. The expected cost of this strategy is 3.22
units (632 times slower than-R), and the actual execution

4If the primary index is not unique, a special “uniquifier” column is
implicitly added.

time is 67.6 seconds (8667 times slower than-R). Ad-
ditionally, for workloads with many updates, the perfor-
mance of-P1Cwould be heavily deteriorated due to the
overhead of updating the relevant indexes. Clearly,-P1C
can result in very bad execution plans for the simplest of
queries. A closer analysis ofNREF3Jshows, however, that
for virtually all queries such situations fortunately do not
happen, and thus-P1C performs extremely well in this
scenario.

4.3 Database/Workloads
Once the metrics have been defined, the most important
component of a benchmark is the actual databases and
workloads over which it would be run. The TAB bench-
mark goes in the right direction by proposing both real
(NREF) and synthetic (TPC-H) databases and workloads.
However, it is also an example of how careful we need
to be when designing benchmarks: by only consider-
ing NREF/NREF3JandTPC-H/UnTH3J, reference [9] ar-
rives at the questionable conclusion that-P1C is a very
competitive configuration. Another subtle problem with
theNREFworkload is that there is over six orders of mag-
nitude difference between the slowest and fastest queries.
Having very long queries in the workload is that these
“rogue” queries might bias the result, specially in con-
junction with timeout values in theM metric.

We believe that database/workload generation for the
purposes of physical design benchmarks is an open area of
research. In the meantime, we believe that useful bench-
marks should contain databases/workloads taken from at
least the following three “buckets”:

- Micro-benchmarks that evaluate the different capa-
bilities of the underlying DBMS and for which opti-
mal configurations can be manually derived.

- Synthetic, complex workloads that exercise the full
capabilities of the underlying query processor and
cannot be manually analyzed.

- Real databases and workloads to address subtle sce-
narios that might have been overlooked in the previ-
ous two buckets.

5 Conclusions
In this paper we reported an experimental evaluation of
the TAB benchmark for automated physical design tuners.
We described TAB and its design choices and analyzed
the quality of recommendations of our prototypes for the
databases and workloads specified in TAB. In doing so,
we identified certain weaknesses in the design of TAB and
proposed alternatives to mitigate their impact. While TAB
is an important first step in the area of physical tuning tool
benchmarking, we believe that more work is needed. In
particular, one of the biggest challenges in the area is to

obtain a principled way to generate databases and work-
loads that are comprehensive enough to compare compet-
ing tools that might be based on very different principles.
We note that both [9] and this work assume that the under-
lying database system does not change across alternative
physical design tuners. If this assumption does not hold,
it is not even clear how the different tuners could/should
be compared (actual execution times might be an ultimate
metric, but they evaluate the whole system rather than just
the tuning tool). We believe that this is a rather deep prob-
lem that might have profound implications in future re-
search on physical design tuning.

References
[1] TPC Benchmark H. Available athttp://www.tpc.org.

[2] S. Agrawal, S. Chaudhuri, and V. Narasayya. Auto-
mated selection of materialized views and indexes in SQL
databases. InProceedings of VLDB, 2000.

[3] S. Agrawal et al. Database Tuning Advisor for Microsoft
SQL Server 2005. InProceedings of VLDB, 2004.

[4] S. Agrawal, V. Narasayya, and B. Yang. Integrating ver-
tical and horizontal partitioning into automated physical
database design. InProceedings of SIGMOD, 2004.

[5] N. Bruno and S. Chaudhuri. Automatic physical database
tuning: A relaxation-based approach. InProceedings of
SIGMOD, 2005.

[6] N. Bruno and S. Chaudhuri. To tune or not to tune? A
Lightweight Physical Design Alerter. InProceedings of
VLDB, 2006.

[7] S. Chaudhuri, M. Datar, and V. Narasayya. Index selection
for databases: A hardness study and a principled heuristic
solution. InIEEE Trans. Knowl. Data Eng. 16(11), 2004.

[8] S. Chaudhuri and V. Narasayya. An efficient cost-driven
index selection tool for Microsoft SQL Server. InPro-
ceedings of VLDB, 1997.

[9] M. Consens, D. Barbosa, A. Teisanu, and L. Mignet.
Goals and benchmarks for autonomic configuration recom-
menders. InProceedings of SIGMOD, 2005.

[10] B. Dageville et al. Automatic SQL Tuning in Oracle 10g.
In Proceedings of VLDB, 2004.

[11] S. Papadomanolakis and A. Ailamaki. An integer linear
programming approach to database design. InWorkshop
on Self-Managing Database Systems, 2007.

[12] G. Valentin, M. Zuliani, D. Zilio, G. Lohman, and A. Skel-
ley. DB2 advisor: An optimizer smart enough to recom-
mend its own indexes. InProceedings of ICDE, 2000.

[13] C. Wu et al. The protein information resource: an inte-
grated public resource of functional annotation of proteins.
In Nucleic Acids Research, 2002.

[14] D. Zilio et al. DB2 design advisor: Integrated automatic
physical database design. InProceedings of VLDB, 2004.

[15] D. Zilio et al. Recommending materialized views and in-
dexes with IBM DB2 design advisor. InInternational Con-
ference on Autonomic Computing, 2004.

