A Critical Look at the TAB Benchmark for Physical Design Teol

Nicolas Bruno
Microsoft Research

nicolasb@microsoft.com

Abstract evaluation of TAB. Then, in Section 4 we analyze both the

There has recently been considerable research on phg‘fults of the experimental evaluation and also the bench-

cal design tuning algorithms. At the same time, there' ark itself. In doing so, we identify certain weaknesses

only one published methodology to evaluate the qual the design of TAB (specifically, on the benchmark met-

of different, competing approaches: the TAB benchmafics: the choice of baseline configurations, and some com-

In this paper we describe our experiences with TAB. V\R{at'o?. of dtatap?se{w?r:kl_oads) atnd briefly comment on
first report an experimental evaluation of TAB on our |pfternatives 1o mitigate theirimpact.
est prototype for physical design tuning. We then identify

certain weakness in the benchmark and briefly comm?\t The TAB Benchmark

on alternatives to improve its usefulness. ,
Reference [9] introduces a framework to evaluate the
quality of automated physical design tuners, which we re-
1 Introduction fer to asTAB. We next review the three components of the

Lately there has been considerable effort in the datab bseélchmark: the evaluation metrics, a baseline configura-

community on reducing the total cost of ownership ?jpn to compare against recommendations, and the set of

database installations. Specifically, physical design tunatabases/workloadsto tne.

ing has become relevant, and most vendors nowadaysg(z ation Metric Consider a workloadW over a
clude automated tools to tune database physical deSiQQ%basd) and suppose that a tuner recommends con-

as part of their products (e.g., [3, 10, 14]). Givep a queﬁ}ﬁuration(} for W. TABevaluates the quality af' using
workloadW and a storage budgé, these tools find the Me.w, which returns, for an input time the number of
set of physical structures (or configuration) that fits4n quefies iV that executed faster than

and results in the lowest cost fdr (see Figure 1).
~ Ha e W :cost(q,C) <t}
(W
wherecost(q, C) is the actual execution time of quegy
under configuratior”. For pragmatic purposes, a time-

out 7)., is chosen andost(q, C) is capped byT},qz-
Therefore, it is alwaysM c,w (Tmaez) = 1.

AlthOUQh thgre has been (_:onsid_erable research in N&¥seline Configuration TABidentifies a special config-
algorithms to find good configurations and extensions Pation. calledLC’, which consists of all single-column

newer physical structures (e.g., [2, 4, 5,7, 8,11, 12, 1 dexes over the database tables. Reference [9] justifies

much less attention has been paid on methodologies choice ofi ' by stating that... the consistently good
evaluate the quality of different approaches. Specificaliyo formance of the single column configuration suggests
we are aware of only one publication that proposes

a“practical improvement of DBMS configuration recom-
benchmark of physical design tools: the Toronto Aut 6b " P g
nomic Benchmark, or TAB for short [9].

hi Fhenders..” *...1C was also far better than the configu-
i) X In this PaP€l4tions recommended by both systemsarid“...a very
we describe our experiences with TAB when evaIuaUrg:%

the quality of different alternatives, both in the conte

nservative overall workload assessment results in 1C
of a shipping product [3] and also on different experi-

>Fltroducing almost 17 times better results than R!”
mental prototypes that we implemented over the last fgyatabases and Workloads TAB uses two databases.
years [5, 6]. Specifically, in Section 2 we review the TABhe first one is a publicly available non-redundant ref-
benchmark [9]. In Section 3 we report an experimentatence protein database [13], SREF for short, which

Mcyw(t)

Workload W ———»| Physical

Storage Bound B ————» Design Tuning
Tool

optimization

Configuration C «———

Figure 1: Architecture of Physical Design Tools.

provides a collection of protein sequence data from sev-_Database Size | #Indexes

eral genome sequencing projects. The second one is theNREF-P 8GB | 6

TPC-H benchmark used to evaluate the performance of NREF-P1C 34GB | 35
database systems [1]. The workloads in [9] are chosen NREF-R (tuned with NREF3J)| 28GB | 31
to “...represent fragments of typical iceberg queries, that TPC-H-P 12GB | 8

is, queries that compute aggregate functions over a set of TPC-H-P1C 34GB | 61
attributes to find aggregate values satisfying certain con- TPC-H-R (tuned with UnTH3J)| 21GB | 29
ditions, grouped in different ways”A typical query for TPC-H-R (tuned with QGen[1]) 34GB | 15

the reference protein database is shown b&low . .
P Table 1: Databases used in the evaluation.

SELECT T1.nref_id, COUNT(DISTINCT T2.nref_id)

FROM taxonomy T1, taxonomy T2, protein P

WHERE T1.taxon id = T2 taxon id AND all non-essential operating system services to avoid-inter

T1.nref id = P.aref id AND ference. Second, we defragmented both the disk where
P.p_name = ’Phosphotransferase’ data resided and also the indexes inside the database.
GROUP BY Ti.nref id Third, we created the same set of statistics in all databases
Finally, we executed each query five times —with cold
For therpc-H databaseTABdoes not use th@Gen work- puffers— and kept the median execution time. We used

load of [1], but rather one that mimics thatNREF a timeoutT},,,. of 30 minutes as in [9], but no execution
exceeded, .
3 Running TAB =

We now report an experimental evaluation of TAB in 15000 1

our physical design tuning prototype based on [5]. Our
objective with this experiment was two-fold. First, we
wanted to analyze the performance of our prototype de-
sign tuner and compare its quality with the baseline con- 0
figuration of [9]. Second, we wanted to understand the
design decisions behind TAB, and question whether there
was room for improvement in the benchmark definition
itself. We used a Intel Xeon 3.2 GHz CPU with 2GB Figure 2: Overall Execution Times.
of RAM (we allocated 1GB of RAM to the DBMS for
the experiments) and a 250GB, 7200rpm hard drive toFigure 2 shows the overall execution times for all work-
store data. We used Microsoft SQL Server 2005 as tloads and databases. Figure 3 showft¢) for each
database engine. For each workload, we proceededlatbase/workload combination. Finally, Figure 4 shows
follows. Following [9], we first created three copies o variation of theM metric where we used the optimizer’s
the original database, and deployed a different configuestimated cost rather than the actual execution cost for the
tion on each instance. The first one, which we denote gyeries in the workload. We analyze these results next.
adding a suffixP to the database name, has only primary
indexes. The second one, which we denote by adding a)
suffix -P1C to the database name, additionally contair Analyzing TAB
all valid single-column indexés The third one, which We now analyze the results of the experimental evaluation
we denote by adding a suffiR to the database name, if the previous section. In doing so, we also address some
obtained by running our physical design tuning tool fassues on TAB that we found during the evaluation and
the input workload considering both clustered and nogemment on some alternatives to diminish their impact.
clustered indexes with a storage bound equal to the size
of the-P1Cconfiguration. Table 1 shows statistics on th@verall Comments. Figure 2 shows that the recom-
databases and workloads. (Note that we also evaluatedft@ded configurations resulted in substantial improve-
original Trc-H workload generated using theen utility.) ment over the basieP configurations. Specifically, the

To avoid external factors in skewing the results, we pdfaprovements were 64% ffREF/NREF3,)94% forTPC-

formed the following additional steps. First, we stoppddfUnTH3J and 73% folTPC-H/QGen A noticeable differ-

ence with [9] is the performance of thB1C configura-
LAll queries in the workload follow the same pattern: (i) el of tions. While forNREF/NREF3.both-P1Cand-R resulted

Zg;gggz?és("gnj?él Vvve'flﬁeas%bliaésmat has a selective predicate, (i), o, ghly the same performance, foPC-H/UnTH3Jthe
2Restrictions in the DBMS prevent us from creating certaiteires, Performance ofP1Clies almost exactly between that of

such as indexes with keys larger than 900 bytes. -Pand-R. Also, forTPC-H/QGerthe performance 6P1C

10000 { |- |

5000 -

Actual Execution Time

NREF-P
NREF-R
TPCH-P

NREF-P1C

TPCH-P1C

TPCH-P1C
TPCH-R

zZ
P
m
m
w
s

UNTH3J Qgen

100

80 4

60

40

——TPCH-P
—=—TPCH-P1C
—+—TPCHR ||

——NREF-P
20 T “|—=—NREF-P1C
—+—NREF-R

Cummulative % of Queries
Cummulative % of Queries
Cummulative % of Queries

0 T T T T T T
0.001 0.1 10 1000 0 100 200 300 400 [¢] 100 200 300 400 500 600
Seconds Seconds Seconds

(a) NREF/NREF3J. (b) TPC-H/UnTH3J. (c) TPC-H/QGen.
Figure 3: Actual execution times for varying databases amiklvads.

100 100

80 -l]

—e—TPCH-P

8 @
3 9
%’ & &
< E 60 IR S T 5 SR —=—TPCH-PIC |
ERN Y S ——NREFP | ° 2 —a—TPCH-R
E —=— NREF-P1C 2 a0 Z a0
2 —a—NREF-R 3 ——TPCH-P £
£ 204 £ —=—TPCH-P1C E
3 E 20 —a—TPCH-R E 20

0 °© ©

0.01 1 100 10000 1000000 o 0

o 500 1000 1500 2000 o 500 1000 1500 2000 2500 3000
(Estimated) seconds (Estimated) seconds (Estimated) seconds
(a) NREF/NREF3J. (b) TPC-H/UnTH3J. (c) TPC-H/IQGen.

Figure 4: Optimizer estimated execution times for varyiatpthases and workloads.

is only slightly better than that oP (a 13% improvement text of evaluating a full system (i.e., not only the tuning
compared with 73% ofR). Figures 3 and 4 give addi-tool, but also the query optimizer, query processor, and
tional information about the relative performance of dieven the underlying operating system) this is clearly the
ferent configurations. Almost 80% of the querieSIREF- best, most unbiased choice. However, if the purpose is an
3J finished in less than 10 seconds under eitietC isolated evaluation of physical design tools, we claim that
or -R, but only 10% of the queries undeP finished in execution costs are, although important, less relevard. Th
that amount of time. FOFPC-H/UnTH3J all 100% of the reason is that using execution costs potentially introduce
queries finished in 75 seconds or less uridewhere the additional variables that are outside the scope of the eval-
percentages were 50% fdP1Cand only 5% for-P. Fi- uated tool. We next clarify this claim with real examples.
nally, for TPC-H/QGen90% of the queries ran in less than o o

220 seconds undeR, where only 22% of the queries did! "€ Role of the Optimizer. It is important to note the
the same under eitheP or -P1C. Interestingly, the\Mt W€ are bound to exe_cute what the optlmlzer deudgs it is
curves for-P and-P1C cross each other foPC-H/QGen the best plan for a given que°’ryC0nS|qur the following

in Figure 3(c), and therefore it is not clear how to inteB*@mple, simplified from a real query NREF/NREF3J

pret their relative performance beyond our original claim SELECT R.* FROM R, S

that the configurations were comparable. We examine and, . owsH:l:rElaﬁﬁgiga;%ii)erAgsDtirl?rg:ess. Strhat onlv a hand-
comment on the design of the TAB benchmark itself ne at PP P y

il of tuples fromR satisfypredicate(R). If an index on
)) S.y is available, the optimizer would find that a nested-
4.1 Evaluation Metrics index-loop alternative that first gets all valid tuples from
The metric used to compare tuners is a crucial compR-and then fetches the matches fréhmight be a bet-
nent of a benchmark. Usually, the existing literature usgs alternative than, say, a hash join. Now suppose that
a single number to measure the quality of recommethe estimate is not right due to limitations in the opti-
dations, calledbercentage improvemenand defined as mizer's cost model, and in reality almost all tuplesfin
1 — actual cosfrecommended castTAB recognizes that a satisfypredicate (R). In this case, the index-nested-loop
single number might not provide enough detail to thoplan, although it is costed the lowest by the optimizer and
oughly evaluate and compare physical design tuners, aherefore chosen if possible, would execute much slower
proposes the\ metric to address this limitation. Whilethan the sub-optimal (to the eyes of the optimizer) hash-
we agree with the deficiency pointed out in [9] regardirjgin alternative. Now the problem is clear. Consider the
single-value metrics, we identify some problems\ii query above under thé® and-P1C configurations. The
optimizer would pick the hash-join based alternative un-
4.1.1 Actual vs. Estimated Cost der-P (because there is no index ¢hy in -P) and the

The M m_etri(? is based on the actual .time it talfes t0 €Xe- 3ints can be used to override optimizer's decisions, butishbe
cute queries in the workload. We believe that in the cowsed with caution and as a last resource

index-nested-looplternative undeiP1C(because the in- leveraged in tuning tools. Consider the following extreme
dex is present). The net effect is that the execution cesenario, with a 2-query workload that contains a light
under-P1Cwould be significantly larger than that undequery ¢;, which executes in 5 seconds undérand a
-P, and we would tend to rank the tuner that produded heavy queryy, that executes in 3,600 seconds under
higher than the one that produceéelLlC. However, note Consider a tun€r; that optimizess as much as possible
that under-P1C the optimizerconsideredthe hash-join at the expense of not fully optimizing, and suppose that
alternative but discarded it in favor of the index-nestethe resulting times arég; =4, ¢2=1900), with an overall
loop plan! In fact, within the optimizer’s cost model, thexecution time of 1,905 seconds, or a 47% improvement.
index-nested-loop alternative is better than the haskéad second tuning tool,, knowingin advancethe 1,800-
alternative in bothP1Cand-P (although the former plan second timeout value, might optimize without consid-
is not implementable undep). ering ¢ obtaining the following timegq¢;=1, ¢2=3600),
When purely evaluating thquality of a physical de- with an overall execution time of 3,601 seconds, or just
sign tuner we should be careful to freeze any externfl1% improvement. Considering timeouts, the results
variables. It is therefore reasonable to assume that #re (¢1=4, ¢2=Tinaz) for 71 vs. (¢1=1, ¢2=Tinaz) for T,
optimizer is correct and the physical design tool exploitgrshly underestimatirgy;’s quality.
accurate information. Using the optimizer’s expected costWe believe that timeouts open the door for the possi-
rather that the actual execution cost of queries has phdity of “cheating” the benchmark by tools that exploit
cisely that effect, provided that the optimizer is operatie subtle issues described above, and therefore recom-
ing under the same statistical model for all configurationsend against using timeouts when evaluating configura-
(which we can achieve by materializing the same settafns. (Strictly speakingM itself uses a different op-
statistics, including those that are associated with iedgxtimization criterium to what has been adopted in tuning
in each database instance). tools, but its limitations are less severe than those derive

from timeout values.)
Runtime conditions. Another problem when using ac-
tual execution times is the unwanted presence of exterga&! 3 Aggregating individual results
factors that can compromise the accuracy of the measucs'e-'
. . . ce we obtain execution times for each query in the
ments. In one of our earlier experiments, we noticed thap . . o
, . workload, we need to display this information in a mean-
the execution cost of a plan undd? was twice as fast .

. . . ingful manner. TAB therefore introduced thie metric to
as the corresponding plan und&(which was odd since show detailed information about performance of physical
-R contained a strict superset of the indexesHrand the P Py

. .~ tuners. This metric is interesting in the sense that (i) al-

query did not do any updates). Even more puzzling, a . . .
) . lows to compare multiple tuners simultaneously, and (ii)
closer inspection of both plans revealed that they were Inr . : .
allows for certain goal-oriented evaluation (such as 30%

deed identical. After a long debugging session, we real . o queries should execute in sub-second time [9)]).

ized that the root cause of the problem was index frag-
. pro X "88he drawback of theW metric is that it does not report
mentation. In fact, the query required a sequential scan . S :
. : : per-query comparisons because the individual queries are
over an index. Since the index undét was not frag- . . . X .
: : " sorted in differentorders. Itis not possible, just by louki
mented, the execution engine could go through the mdsetx .
at M to draw conclusions about the performance of spe-
ciéic queries. For instance, although some queries were

using sequential 1/0, which is fast. In contrast, under
the execution engine had to do one random I/O BVery R ior underP than underP1Cfor NREF, Figure 3(a) is

disk blocks on average due to fragmentation in the index

. : 2 rdt enough to show this fact.
which resulted in a larger execution time overall. . .
. . We next propose a complementary metric, which we
It seems unfair to punish a tuner tool due to external

. . call Z, that focuses on query-by-query performance. Con-
factors that are not under its control. Although we mi query-by-query p

.)) . "ider configurationg’; andCs coming from two tuning
|m|ze_d th|_s effect by defr_agmentmg th‘? indexes and Uhols. We then compute, for each quegyin the work-
derlying disk in our experiments, there is always a chance

AR l6ad, the valuev;=cost(g;, C1) — cost(g;, Ca). Clearly,
that external factors play a role in biasing the results. . i=cost (g, C1) — cos ((.J“ 2) Y
positivev; values correspond to queries that were better

underC; than underC,, and negativey; values corre-
4.1.2 Timeouts in theM Metric spond to the opposite situation. We then sgstalues and
Reference [9] introduces a timeout valilg .. that caps plot the results. Figures 5(a-c) show our proposed met-
the maximum execution time of a query, set as 30 minuteis. for the databases/workloads in our evaluation. Anal-
Although this is a practical issue to avoid very long ruregously, Figures 5(d-f) shows a variation of themet-
ning queries, it introduces some problems in the bengcfe that normalizes each value bycost(q;, -P) (i.e., the
mark methodology. Specifically, it changagosteriori cost of the query under the configuration that only has pri-
the optimization function that has been agreed upon amdry indexes). We can quickly see, for instance, that for

over NREF-P1C

,4
]
3

i
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Absolute Gain of TPCH-R

over TPCH-P1C

Absolute Gain of NREF-R

Queries Queries Queries

(2) NREF/NREF3J (b) TPC-H/UnTH3J (c) TPC-H/QGen
o Queries Queries Queries
(d) NREF/NREF3J (e) TPC-H/UnTH3J (f) TPC-H/QGen

Figure 5: Proposed metric to compare physical design tuners.

NREF/NREF3both-P1C and-R result in almost no dif- ids, which are volatile in the presence of updates, mod-
ference in performance, but there are still some quergrs systems use the columns in the primary index as this
(which are easily identified in the figure) for whieRre- identifie’. This implies that, for all practical purposes,
sulted in better performance. Also, foPC-H/UnTH3Jwe single-column indexes implicitly behave as multi-column
can see that there are two clusters of queries: one timalexes. We cannot seek these implied columns, but exe-
results in almost no variation betweddlCand-R, and cution plans can rely on them as if they were explicitly de-
another for which the variation is significant iR's fa- clared. Now consider tHdREFdatabase. Not only the ta-
vor. Finally, TPC-H/QGergoes from no variation to almostbles inNREFare narrow (the median number of columns
100% relative change in performance. is only five), but also the primary indexes are wide. As
Although theZ metric gives additional information onan example, consider tabdeurce, which is composed of
a per-query basis, it cannot be used to compare more teancolumns, four of which are part of the primary index.
two configurations. We believe thAtt andZ are comple- In this case, every single-column index €surce essen-
mentary metrics that provide different types of insight&lly contains 4 or 5 out of the 6 columns of the table!
when comparing physical design tuners. In fact, since just a minority of the table columns is not
present in the index leaf nodes, single-column indexes in

4.2 Baseline Configuration -P1Cactually behave like “covering-indexes” fbiIREF

Before beginning our experiments we were surprised orkload. Even for the “quasi’-covering-indexes in
the consistently good performance BfLCclaimed in [9]. -P1C there are very simple examples that result in bad
Our experiments led to two key observations. First, cuxecution plans. Consider the following queryNREF
rent tuning tools result in configurations that range from i

- SELECT t _id.2
comparable teP1Cto significantly better tharP1C Sec- FROM nei;igzrling seq
ond, there is a very large variance of performancd>aiC WHERE nref id.2 < ’NFO0000300’

configurations, ranging from close to the best known so- .)
lutions to close to the trivial configurations. In light o]where the predicate filters all but 7531 rows. The rec-

these observations, and based on Figures 3 and 4 Weog?[nended configuration for this query has a covering in-
' ' dex on (aref_id_2, taxon_id), SO it can seek the rele-

gue against using?1Cas a baseline configurationto com- . .
pare against recommendations. vant tuples and return the results optimally with an ex-
At some level. it is intuitive thatP1C would not be pected time of 0.51 units and an actual execution time

particularly helpful in general, and specifically for decf—)f 0.078 seconds. Note that the primary index for ta-
le neighboring_seq does not contain columtexon_id.

sion support workloads that require aggregating or filt)
bp d 9greg 9 herefore-P1Ccannot use the index atref_id_2 to lo-

ing multiple columns. HowevefP1Cis essentially indis- . .
9 P P y te the valid tuples and then fetch the remaining columns

tinguishable from the best recommended configuration th ¢ Id be t00 hiah. Instead. the best ol
the NREF/NREF3Jnstance, which features queries wit ecause the cost would be 100 high. Instead, the best plan
-P1Cis to scan the index otaxon_id, which implic-

joins and aggregation. We next explain the main reas) :
behind this rather unexpected result itly contains colummref_id_2 and filter on the fly the
' resulting tuples. The expected cost of this strategy is 3.22

DBMS Store_ at the I.eaf nqdes enough i_nform?tion t0 10- 4t the primary index is not unique, a special “uniquifier” aoin is
cate tuples in the primary index. To avoid storing recorakplicitly added.

time is 67.6 seconds (8667 times slower thB Ad- obtain a principled way to generate databases and work-
ditionally, for workloads with many updates, the perfoteads that are comprehensive enough to compare compet-
mance of-P1Cwould be heavily deteriorated due to théng tools that might be based on very different principles.
overhead of updating the relevant indexes. CleaR§,C We note that both [9] and this work assume that the under-
can result in very bad execution plans for the simplestlgfng database system does not change across alternative
gueries. A closer analysis NREF3Jshows, however, thatphysical design tuners. If this assumption does not hold,
for virtually all queries such situations fortunately da nat is not even clear how the different tuners could/should
happen, and thus?1C performs extremely well in this be compared (actual execution times might be an ultimate

scenario. metric, but they evaluate the whole system rather than just
the tuning tool). We believe that this is a rather deep prob-
4.3 Database/Workloads lem that might have profound implications in future re-

. _) search on physical design tuning.
Once the metrics have been defined, the most important

component of a benchmark is the actual databases Réferences
workloads over which it would be run. The TAB bench-
mark goes in the right direction by proposing both reaj1] TPC Benchmark H. Available aittp: //www.tpc.org.
(NRER and syntheticTPC-H) databases and workloads.[2] s. Agrawal, S. Chaudhuri, and V. Narasayya. Auto-
However, it is also an example of how careful we need mated selection of materialized views and indexes in SQL
to be when designing benchmarks: by only consider- databases. IRroceedings of VLDB2000.
ing NREF/NREF3andTPC-H/UnTH3Jreference [9] ar- [3] S. Agrawal et al. Database Tuning Advisor for Microsoft
rives at the questionable conclusion thRLC is a very SQL Server 2005. lProceedings of VLDR2004.
competitive configuration. Another subtle problem withj4] S. Agrawal, V. Narasayya, and B. Yang. Integrating ver-
theNREFworkload is that there is over six orders of mag- tical and horizontal partitioning into automated physical
nitude difference between the slowest and fastest queries. database design. Proceedings of SIGMO[2004.
Having very long queries in the workload is that thesgs] N. Bruno and S. Chaudhuri. Automatic physical database
“rogue” queries might bias the result, specially in con- tuning: A relaxation-based approach. Pmoceedings of
junction with timeout values in tha1 metric. SIGMOD, 2005.

We believe that database/workload generation for thi€] N. Bruno and S. Chaudhuri. To tune or not to tune? A
purposes of physical design benchmarks is an open area of Lightweight Physical Design Alerter. IRroceedings of
research. In the meantime, we believe that useful bench- VLDB, 2006.

marks should contain databases/workloads taken from &l S. Chaudhuri, M. Datar, and V. Narasayya. Index selectio
least the following three “buckets”: for databases: A hardness study and a principled heuristic

- Micro-benchmarks that evaluate the different capa- solution. InIEEE Trans. Knowl. Data Eng. _16(]*12004'_
bilities of the underlying DBMS and for which opti- [8] S. Chaudhuri and V. Narasayya. An efficient cost-driven
mal configurations can be manually derived index selection tool for Microsoft SQL Server. PRro-

. . ceedings of VLDB1997.
- Synthetic, complex workloads that exercise the ful

biliti f th derlvi] M. Consens, D. Barbosa, A. Teisanu, and L. Mignet.
capabilities of the underlying query processor an Goals and benchmarks for autonomic configuration recom-

cannot be manually analyzed. menders. IrProceedings of SIGMO2005.
- Real databases and workloads to address subtle $¢6r B. Dageville et al. Automatic SQL Tuning in Oracle 10g.
narios that might have been overlooked in the previ- |n Proceedings of VLDR004.
ous two buckets. [11] S. Papadomanolakis and A. Ailamaki. An integer linear
programming approach to database designWbrkshop
. on Self-Managing Database Syste@307.
5 Conclusions [12] G. Valentin, M. Zuliani, D. Zilio, G. Lohman, and A. Skel
In this paper we reported an experimental evaluation of ley. DB2 advisor: An optimizer smart enough to recom-
the TAB benchmark for automated physical design tuners. Mend its own indexes. IRroceedings of ICDE2000.
We described TAB and its design choices and analyZdgl C. Wu et al. The protein information resource: an inte-
the quality of recommendations of our prototypes for the grated p.ublic.resource of functional annotation of pratein
databases and workloads specified in TAB. In doing so, '™ Nucleic Acids Researc002.
we identified certain weaknesses in the design of TAB aHdl D- Zilio et al. DB2 design advisor: Integrated autornati
proposed alternatives to mitigate their impact. While TAB Physical database design. Bnoceedings of VLDE2004.
is an important first step in the area of physical tuning tod] D- Zilio et al. Recommending materialized views and in-
benchmarking, we believe that more work is needed. In dexes with IBM DB2 design advisor. International Con-
particular, one of the biggest challenges in the area is to ference on Autonomic Computirgn04.

