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Abstract

Accurate in-silico models for predicting aqueous solubility are needed
in drug design and discovery, and many other areas of chemical research.
We present a statistical modelling of aqueous solubility based on measured
data, using a Gaussian Process nonlinear regression model (GPsol). We
compare our results with those of 14 scientific studies and 6 commercial
tools. This shows that the developed model achieves much higher ac-
curacy than available commercial tools for the prediction of solubility of
electrolytes. On top of the high accuracy, the proposed machine learning
model also provides error bars for each individual prediction.

1 Introduction

Aqueous solubility is of paramount importance to many areas of chemical re-
search, such as medicinal chemistry, pharmacokinetics, formulation, agrochem-
istry1 and environmental applications. In the drug design process, 50% of the
failures2 are due to an unfavorable ADMET profile (Absorption, Distribution,
Metabolism, Excretion & Toxicity), often resulting from poor aqueous solubility.

A lot of research has thus been devoted to developing in-silico models to
predict aqueous solubility directly from a compound’s structure.3–17 Yet, one
can not expect global models to be sufficiently accurate.18 Many physical factors
with separate mechanisms are involved in the phase transition from solid to

1Corresponding author e-mail: anton@first.fraunhofer.de
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solvated molecules. The aqueous solubility of electrolytes at a specific pH is
especially hard19,20 to predict—yet, many drugs are electrolytes.

In this paper we introduce a modern machine learning tool, the Gaussian
Process model, and use it to develop accurate models for predicting water sol-
ubility at pH 7 (GPsol). This is done following standard machine learning
protocols: Based on a “training” data set of solubility measurements for about
4,000 electrolytes and non-electrolytes, the goal is to build a learning machine
that uses the statistical fine structure of the molecular descriptor space to pre-
dict solubility for unseen compounds. In this manner the “learning” (statistical
inference) procedure allows to generalize from a given set of measurements to
unseen data (“out-of-sample data”21).

A particular focus of our approach is to provide meaningful error bars, that
is, that each prediction of the model is equipped with an individual confidence es-
timate. Our analysis shows that the trained model achieves a high performance
gain over existing methods. Furthermore, the confidence estimates provide re-
liable estimates for the deviation of predicted solubility from true solubility.

1.1 Background: Machine Learning

Machine learning subsumes a family of algorithmic techniques with a solid statis-
tical foundation that aim to find reliable predictions by inferring from a limited
set of measurements. In computational chemistry, the data could be a com-
pound for which we seek, e.g., a predictor for the property “water solubility”,
or whether the compound is a drug-like molecule.22 A large variety of tech-
niques have been developed in the machine learning and statistics communities
to account for different prediction tasks and application areas.21,23,24

Machine learning techniques, for example Neural Networks25,26 have already
been used in computational chemistry.13,27 In the last years, however, Neural
Networks have been used somewhat less in engineering and science. Instead
there has been an upsurge of interest in Support Vector Machines21,28–31 (SVMs)
for various domains, due to their ease in handling complex problems.

It is a key requirement for predictive models in this context to provide con-
fidence estimates, such that users can assess whether they can trust the predic-
tions made by the model. With that in mind, SVMs are not ideal for modelling
solubility, since they can not provide theoretically well founded confidence esti-
mates.2 Instead, a Bayesian modelling approach is more suited. As one of the
seminal works, Neal33 has shown excellent results with a Bayesian approach to
neural network learning.

The limiting case of Bayesian neural networks are the Gaussian Process (GP)
models,34,35 nonlinear regression models that are straight-forward to use and
readily provide confidence estimates.3 The Bayesian framework provides criteria
(see Sec. 2.7.4) to automatically choose the “amount of nonlinearity”, thereby
circumventing problems such as the choice of architecture in neural network

2Platt32 shows a simple heuristic for the case of SVM classification, yet no such heuristic
is known for the case of support vector regression.

3The advantage comes however at the cost of higher computational complexity.
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models. The authors have demonstrated a number of successful applications of
GP models to different domains,36–38 see also Rasmussen and Williams34 for
further references.

Previous work39–41 has shown the applicability of Gaussian Process models
to problems in computational chemistry, mainly for predicting log P from rela-
tively small data sets. Yet, the full potential of this class of models has seemingly
not been recognized. We believe that the principled approach to providing con-
fidence estimates, combined with the ease of use, are the key advantages when
applying Gaussian Process models to problems in computational chemistry.

1.2 Background: Water Solubility

Among the physico-chemical characteristics of chemical compounds, water sol-
ubility is a key parameter in drug discovery. Many processes affecting the sys-
temic availability of a drug such as intestinal absorption, transport through the
blood and tissue distribution are linked to the dissolved neutral fraction of ad-
ministered drug material that is amenable to pass through biological barriers
and/or distribute among body tissues before binding to the target protein. But
even in less complex in vitro systems such as cell-free or cell-based biological
assays used in high-throughput screening (HTS), insufficient solubility of the
test compound may be a limiting factor to the biological response.

Meanwhile, progress in instrumentation and miniaturization allows for medium
throughput measurements of thermodynamic solubilities under constant and
well-defined conditions even for larger sets of compounds. This valuable source
of experimental data can be used to establish tools for solubility predictions
which are primarily applied to virtual compounds in synthesis planning, e.g. as
one important criterion to decide on the most promising subset of structures for
chemical synthesis from fully-enumerated combinatorial libraries with millions
of structures. Solubility predictions are also used to decide for compounds with
reasonable bio-pharmaceutical properties in compound purchasing campaigns.
Given this scenario of applications, the primary goal of models for solubility
prediction is speed—with a sufficiently high degree of accuracy to support the
decisions mentioned above.

Predicting aqueous solubility directly from a compound’s structure is a diffi-
cult exercise because so many physical factors with separate mechanism are in-
volved in the phase transition from a solid form to a solvated solute molecule. In
particular, the pH dependency of electrolytes in water, the temperature depen-
dency of solubility and the effect of polymorphs in the solid state are challenging
tasks for any predictive model aimed to be based on first physical principles.4

Despite these general difficulties, many attempts have been made to estimate
water solubility applying more heuristic approaches, i.e., accepting the trade-

4Klamt et al.42 published a model mostly based on quantum mechanical calculations. The
problem of finding the correct crystal structure is avoided by including a QSAR-model for
solid state properties. This type of model can be used for small numbers of compounds, but is
computationally too demanding for HTS or library design (a single solubility prediction takes
2 hours on a 1 GHz CPU)
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off between computational demand and general applicability of the predictive
model. With a reasonable set of experimental high-quality data, regression
methods provide an attractive and pragmatic approach for solubility models.
These methods are based on a fragmental representation of molecular structure
by combinations of molecular descriptors with different degrees of complexity
(1D, 2D).

A number of different regression methods has been used for this purpose,
neural networks being a particularly popular approach.3–8,10–13,17 Linear meth-
ods were typically used as baseline methods when studying more complex meth-
ods.3,7,10 Also, results obtained with support vector regression have been re-
ported.15,17,43,44

So far, existing models typically have two shortcomings. Firstly, most of
them are only applicable to molecules in their neutral form (i.e., they predict
intrinsic solubilities, see Sec. 2.2). Yet, a lot of current and future drugs are
electrolytes, existing in ionized forms at physiologic pH. Secondly, to our knowl-
edge, none of the currently available commercial tools can provide confidence
intervals for each individual prediction. From the available literature, we could
only identify one single paper45 where this issue is taken into account.5

Our work addresses both of these issues. To be able to predict the aqueous
solubility of electrolytes at physiologic pH, we included a large number of high
quality measurements of solubility of electrolytic drugs and drug-like compounds
in buffered solutions. In order to produce accurate predictions with individual
confidence intervals, we employ a Bayesian modelling approach, as discussed
in Sec. 1.1. In the Bayesian framework, uncertainty is an integral part of the
modelling assumptions, thus confidence estimates can be given with a solid
statistical foundation.

2 Methods and Data

2.1 Methodology overview

For each molecule, the 3D structure of one conformation in its neutral form is
predicted using the program Corina.46 From this 3D structure, 1,664 Dragon47

descriptors are generated. Based on solubility measurements and molecular
descriptors of a large set of compounds, a Gaussian Process (GPsol) model
is fitted to infer the relationship between the descriptors and the solubility
for a set of training data. When applying this model to a previously unseen
compound, descriptors are calculated as described above and passed on to the
trained Gaussian Process model, which in turn produces an estimate of the
solubility together with a confidence estimate (error bar).

5Göller et al.45 uses a heuristic that is based on the spread of predictions made by a
number of differently trained neural networks. This heuristic can potentially lead to seriously
underestimating the prediction error, in particular in regions far from the training data.
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2.2 Different kinds of solubility

Aqueous solubility is defined as the maximum amount of compound dissolved
in water under equilibrium conditions. For electrolytes this property is strongly
pH dependent, so we need more precise definitions:

Buffer Solubility The solubility in a buffer solution at a specific pH is called
buffer solubility or apparent solubility. It can be estimated using, e.g., the
Henderson-Hasselbalch equation or combinations of multiple such equations.
For drug-like molecules these corrections have been shown to be unreliable.48

Intrinsic solubility This is the solubility of a compound in its neutral form.
Electrolytes can exist in different ionic forms, depending the the pH. Intrinsic
solubility is only reached at a pH where almost 100 % of the compound is present
in its neutral form.

Pure Solubility The pure solubility of a compound (sometimes also called
native solubility) can be observed by adding the compound to pure (unbuffered)
water. The pH of the solution typically changes during this process.

Kinetic Solubility Kinetic Solubility is the concentration when an induced
precipitate first appears in a solution. This value is often much higher that
the intrinsic solubility. Furthermore, it is more difficult to obtain reproducible
results.49,50

2.3 Data preparation

Subsequently, we describe data sets of solubility measurements, obtained from
different sources. Compounds that were originally present in more than one set
were only retained in one set, such that all data sets are pairwise disjoint.

2.3.1 Data Set 1: Physprop and Beilstein

We extracted 34,314 measurements of aqueous solubility for 23,516 unique com-
pounds from the Physprop51 and Beilstein52 databases. Restricting the range of
temperatures to 15 . . . 45◦C, excluding salts, and measurements for electrolytes
at unknown pH values leaves 5,652 measurements for 3,307 individual com-
pounds. All of these compounds are neutral.

2.3.2 Data Set 2: Flask

From an in-house database at Schering AG we extracted high quality flask mea-
surements in the pH range between 7.0 and 7.4. Measurements indicating ranges
or bounds were eliminated. Again, we restricted the range of temperatures to
15 . . . 45◦C and excluded salts, leaving 688 high quality flask measurements for
632 individual compounds. 549 of these compounds are electrolytes.
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2.3.3 Data Set 3: Huuskonen

This is the well known dataset originally extracted from the Aquasol53 and
Physprop51 databases by Huuskonen.3 Ran et al.,54 Tetko et al.4 and Gasteiger
et al.5 later revised this set. We used the latest version containing measure-
ments for 1311 compounds6 availabe from www.vcclab.org (January 2006).
This dataset has been used by numerous researchers3–5,7,8,10,12–17,43,54 and is
considered a benchmark set. The dataset contains measurements of pure solu-
bilities,55 i.e., the solubility observed when adding the compound to unbuffered
water.

2.3.4 Data Set 4: Flask Blind Test

For a second validation stage, Schering AG collected 536 flask measurements of
drug candidates, using the same filters as for data set 3, Sec. 2.3.2. The set of
compounds is disjoint from other data used in this study, and was never used
for training in any form.

2.4 Training and Validation Setups

Based on the data sets described in Sec. 2.3, we employ different setups for
model building. These setups, respectively the models built in these setups, all
have different aims:

• In the “Flask” setup, we combine data that makes the model predictive
for buffer solubility. This setup is the basis for the GPsol model that has
been implemented for production use at Schering AG.

• In all other setups, we obtain models that are predictive for pure solubility
or pure solubility of neutral compounds. These models are built for the
purpose of comparing the performance of our modelling approach with the
performance obtained by other methods or commercial tools.

The setups are described subsequently, a graphical summary is given in Table 1.
In all cases, it was ensured that no molecules were used both for model training
and evaluation, that is, that there were no duplicate molecules in training and
test validation set.

Setup “Flask” Our ultimate modelling goal is to predict the solubility of
biologically relevant compounds. A large fraction of these compounds are elec-
trolytes (i.e., they can exist in solution in a number of ionic forms). The model
should be predictive for the buffer solubility in the pH-range of 7.0 through 7.4.
Neutral compounds can also be used here, since their buffer solubility is simply
independent of the pH value. Thus, in the Flask setup, we combine the data set

6Due to problems with generating Dragon descriptors for this set, we could effectively only
use 1290 of these compounds.
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Physprop/Beilstein (solubility of neutral compounds), the subset of 704 neu-
tral compounds from the Huuskonen data set and the Flask data set (buffer
solubility at known pH 7.0 . . . 7.4).

After model validation, all data from the “Flask” setup were used to build a
final GPsol model that is now implemented in a PCADMET toolbox at Schering
AG.

Setup “Flask Blind Test” The final GPsol model, trained on data in the
“Flask” setup, was evaluated by Schering AG on the Flask blind test data
set. The experimental values were not disclosed to the modellers at Fraunhofer
FIRST, in order to verify the predicted performance of the GPsol model.

Setup “Huuskonen” In order to obtain a model that predicts pure solu-
bility, we combine the data sets Physprop/Beilstein (pure solubility of neutral
compounds) and Huuskonen (pure solubility of neutral compounds and elec-
trolytes).

Models built in the “Huuskonen” setup are used solely to compare the Gaus-
sian Process methodology with the performance of commercial tools when pre-
dicting pure solubility.

Setup “Huuskonen Only” In the “Huuskonen Only” setup, we only use the
Huuskonen data set, without adding other literature data.

Models built in the “Huuskonen Only” setup are used to compare the GP
methodology with other methodologies reported in the literature, see Sec. 4.4.

Setup “Huuskonen Neutral” Predicting the solubility of neutral compounds
is considered easier than predicting the solubility of electrolytes. To compare
the performance of different tools on that task (see Sec. A.2), we combine data
sets Physprop/Beilstein (solubility of neutral compounds, independent of pH)
and the subset of the Huuskonen data that corresponds to neutral compounds.

Training and Validation Procedure In the setups “Flask”, “Huuskonen”,
and “Huuskonen neutral”, we compile training and validation set as follows:
Training data are the Physprop/Beilstein data, plus half of the “Flask” (resp. “Hu-
uskonen” and “Huuskonen neutral”) data. After training the model, it is eval-
uated on the other half of “Flask” (resp. “Huuskonen” and “Huuskonen only”)
data. This is repeated with the two halves of the validation set exchanged. The
overall procedure is then repeated 10 times with a different random split. Thus,
in each of the 10 runs, model predictions for the full “Flask” (resp. “Huuskonen”
and “Huuskonen neutral”) validation set are generated, where each prediction is
an out-of-sample prediction, made by a model that has not seen the particular
compound in its training data.
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Setup Prediction Data

Flask buffer sol,
Sec. 3

Validation

Huuskonen
neutral (704)

Training

Physprop/Beilstein (3307) Flask (632)

Flask
blind test

buffer sol,
Sec. 3.1.1 Huuskonen

neutral (704)

Training

Physprop/Beilstein (3307)

Blind test

Flask (632) (536)

Huuskonen pure sol,
Sec. 3

Validation

Physprop/Beilstein (3307)

Training

Huuskonen (1290)

Huuskonen
neutral

pure sol,
Sec. A.2

Validation

Physprop/Beilstein (3307)

Training

Huuskonen neutral
(704)

Huuskonen
only

pure sol,
Sec. 4.4

Training Validation

Huuskonen (1290)

Table 1: Summary of the different setups that are used for performance evalu-
ation. See Sec. 2.4 for a description, and Sec. 2.3 for details on the individual
data sets

The setup “Huuskonen only” is evaluated in 3-fold cross-validation.7 This
means that the data is randomly split into three parts. Two of these are used
to train a model, which is in turn evaluated on the third part of the data. This
is repeated three times, such that each of the three parts is used as the test set
once. Again, this is repeated 10 times with different random splits.

When computing error rates, as listed in Sec. 3.1, we average over the error
rates of all 10 runs. For plotting model predictions versus measured value (such
as in Figure 2), we only use out-of-sample predictions from one randomly chosen
run.

2.5 Molecular descriptors

Initially, we used the full set of 1,664 Dragon descriptors. These include, among
others, constitutional descriptors, topological descriptors, walk and path counts,
eigenvalue-based indices, functional group counts and atom-centered fragments.
A full list of these descriptors including references can be found online.56 After a
first modelling stage using all descriptors, it turned out that the computationally
most expensive descriptors (Dragon blocks 5 and 13) can be omitted without
significantly impacting the models performance. A prediction for log D at pH
7, obtained from a model we previously trained on 20,000 log D measurements,
was found to slightly8 increase the performance of our solubility model and was
therefore included as a descriptor. An evaluation of the importance of individual

73-fold was chosen since it gives training sets of around 860 compounds. This matches well
with most previous work, where models were trained on around 800 − −880 compounds, see
Table 4. Thus, we believe that the reported model performance is comparable with previous
results.

8By including log D information, the percentage of compounds with error ≤ 1 log unit
increased by 1% at maximum, depending on the setup used
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descriptors can be found in section 4.3.

2.6 Multiple Measurements

Due to merging data from different sources (see Sec. 2.3), many compounds have
a number of associated solubility measurements. Multiple measurements could,
in principle, be used directly for model fitting. We decided to first apply a pre-
processing step, where a consensus measurement is found for each compound
that has multiple measurements. This is necessary since the set of measured
values is noisy and often prone to gross outliers (the range spanned by the
measurements can be as large as 8 orders of magnitude).

Determining such a consensus value is an unsupervised learning problem,
that can be tackled by the following decision rule: We consider the histogram
of measurement values on a logarithmic scale, log SW . Such a histogram is
characterized by two antagonist quantities, the spread of values (y-spread) and
the spread of the bin heights (z-spread).

Several cases arise regularly: For small y-spreads (all measured values are
similar), taking the median value is the most sensible choice. On the other hand,
large y-spread with large z-spread hints at outliers. In such a case, we use the
median of the values in the higher of the two bins as the consensus value. The
worst case is given by two far apart bins of equal height (high y-spread and zero
z-spread). In this case we omit the compound altogether, since we have equally
strong evidence for the conflicting measurements.

We found that 0.5 log units is a suitable value for the threshold between
small and large spreads. Also, it has been noted that the measurement error for
solubility values from different sources is typically 0.5 log units.18

2.7 Gaussian Process Models

2.7.1 Overview

Gaussian Process (GP) models are techniques from the field of Bayesian statis-
tics. O’Hagan57 presented one of the seminal work on GPs, a recent book34

presents an in-depth introduction.
Before going into detail, we first give a short overview of the procedure that

underlies Bayesian learning with Gaussian Processes. This overview can be sum-
marized with the three graphs shown in Figure 1. In GP modelling, we consider
a family of functions that could potentially model the dependence of solubility
(function output, denoted by y) from the descriptor (function input, denoted by
x). This space of functions is described by a Gaussian Process prior. 25 such
functions, drawn at random from the prior, are shown in Figure 1(left). The
prior captures, for example, the inherent variability of solubility as a function
of the descriptor.

This prior belief is then updated in the light of new information, that is, the
solubility measurements at hand. In Figure 1(middle), the available measure-
ments are illustrated by three crosses. Principles of statistical inference are used
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Figure 1: Modelling with Gaussian Process priors. Left: 25 samples from a
Gaussian Process prior over functions, each plotted as y = f(x). For illustra-
tion, we only consider functions for one-dimensional input x. Middle: After
observing 3 data points (crosses), we only believe in functions from the prior
that pass through a “tunnel” near the data depicted by the parallel lines above
and below the crosses. These functions are in fact samples from the “posterior”
distribution, and we have highlighted one of them (dashed line). Right: Summa-
rizing representation of our beliefs about the plausible true functions, obtained
from the 25 samples from the posterior shown the middle pane. For each input
we compute the mean of these functions (black line) and the standard deviation.
The shaded area encompasses ±2 standard deviations around the mean.

to identify the most likely posterior function, that is, the most likely solubility
function as a combination of prior assumptions and observed data (shown in the
right panel of Figure 1). The formulation with a prior function class is essential
in order to derive error bars for each prediction. Note also that the uncertainty
increases on points that are far from the measurements.

2.7.2 Key ideas

The main assumption of a Gaussian Process model is that solubility can be de-
scribed by an (unknown) function f that takes a vector of molecular descriptors
as input, and outputs the solubility. We denote by x a vector of descriptors,
which we assume to have length d. The solubility of a compound described by
its descriptor vector x can thus be written as f(x). It is assumed that f is
inherently random.9

The Gaussian Process model is built from solubility measurements for a set
of n compounds. For each of these n compounds, we have a descriptor vector,
x1 . . .xn, (each of length d), together with a solubility measurement, y1, . . . yn.
We additionally account for the fact that these measurements are not accurate,
and assume that the n measured values are related to actual solubility by

yi = f(xi) + ε, (1)

9The notation here is chosen to allow an easy understanding of the material, thus dropping,
e.g., a clear distinction between random variables and their outcome.
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where ε is Gaussian measurement noise10 with mean 0 and standard deviation
σ.

The name “Gaussian Process” stems from the assumption that f is a random
function, where functional values f(x1), . . . , f(xn) for any finite set of n points
form a Gaussian distribution.11 This implies that we can describe the process
also by considering pairs of compounds x and x′. The covariance for the pair is
given by evaluating the covariance function,

cov(f(x), f(x′)) = k(x,x′), (2)

similar to kernel functions in Support Vector Machines.21,29 Note, that all as-
sumptions about the family of functions f are encoded in the covariance function
k. Each of the possible functions f can be seen as one realization of an “infinite
dimensional Gaussian distribution”.

Let us now return to the problem of estimating f from a data set of n com-
pounds with solubility measurements y1, . . . , yn, as described above in Eq. (1).
Omitting some details here (see Sec. B), it turns out that the prediction of a
Gaussian Process model has a particularly simple form. The predicted function
(solubility) for a new compound x∗ follows a Gaussian distribution with mean
f̄(x∗),

f̄(x∗) =
n∑

i=1

αik(x∗,xi). (3)

Coefficients αi are found by solving a system of linear equations,
k(x1,x1) + σ2 k(x1,x2) . . . k(x1,xn)

k(x2,x1) k(x2,x2) + σ2 . . . k(x2,xn)
...

...
...

k(xn,x1) k(xn,x2) . . . k(xn,xn) + σ2




α1

α2

...
αn

 =


y1

y2

...
yn

 (4)

In matrix notation, this is the linear system (K+σ2I)α = y, with I denoting the
unit matrix. In this framework, we can also derive that the predicted solubility
has a standard deviation (error bar) of

std f(x∗) =

√√√√k(x∗,x∗)−
n∑

i=1

n∑
j=1

k(x∗,xi)k(x∗,xj)Lij (5)

where Lij are the elements of the matrix L = (K + σ2I)−1.

10In the typical Gaussian Process model, all measurements share the same measurement
noise. We will relax this condition in Sec. 2.7.5, to account for compounds where several
agreeing measurements are available.

11For simplicity, we assume that the functional values have zero mean. In practice, this can
be achieved easily by simply shifting the data before model fitting.

11



2.7.3 Relations to Other Machine Learning Methods

Gaussian Process models show close relations to a number of methods that
have been considered in the machine learning community.34 Here, we only
focus on two particular models, that have already been used successfully in
computational chemistry.

Support Vector Machines SVM Gaussian Process models share with the
widely known support vector machines the concept of a kernel (covariance) func-
tion. Support vector machines (SVM) implicitly map the object to be classified,
x, to a high-dimensional feature space φ(x). Classification is then performed
by linear separation in the feature space, with certain constraints that allow
this problem to be solved in an efficient manner. Similarly, support vector re-
gression21 can be described as linear regression in the feature space. Gaussian
Process models can as well be seen as linear regression in the feature space that
is implicitly spanned by the covariance (kernel) function.34 The difference lies
in the choice of the loss function: SVM regression has an insensitivity thresh-
old, that amounts to ignoring small prediction errors. Large prediction errors
contribute linearly to the loss. GP models assume Gaussian noise, equivalent
to square loss.

Note, however, that SVMs are completely lacking the concept of uncertainty.
SVMs have a unique solution that is optimal under certain conditions.21,28 Un-
fortunately, these assumptions are violated in some practical applications.

Neural Networks Radial Basis Function networks with a certain choice of
prior distribution for the weights yield the same predictions as a Gaussian Pro-
cess model.34 More interestingly, it can be shown that a two-layer neural net-
work with an increasing number of hidden units converges to a Gaussian Process
model with a particular covariance function.33

2.7.4 Using GP Models

For predicting water solubility, we use a covariance function of the form

k(x,x′) =

(
1 +

d∑
i=1

wi(xi − x′i)
2

)−ν

(6)

(the “rational quadratic” covariance function34). k(x,x′) describes the “simi-
larity” (covariance) of solubility for two compounds, given by their descriptor
vectors x and x′. The contribution of each descriptor to the overall similar-
ity is weighted by a factor wi > 0 that effectively describes the importance of
descriptor i for the task of predicting water solubility.

Clearly, we can not set the weights wi and the parameter ν a priori. Thus,
we extend the GP framework by considering a superfamily of Gaussian Process
priors, each prior encoded by a covariance function with specific settings for wi.
We guide the search through the superfamily by maximizing a Bayesian criterion
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called the evidence (marginal likelihood). For n molecules x1, . . . ,xn with asso-
ciated measurements y1, . . . , yn, this criterion is obtained by “integrating out”
everything we don’t know, namely all the true functional values f(xi). Using
vector notation for f = (f(x1), . . . , f(xn)) and y = (y1, . . . , yn), we obtain

L = p(y |x1, . . . ,xn, θ) =
∫

p(y|f , θ) p(f |x1, . . . ,xn, θ) df . (7)

This turns out to be

L = −1
2

log det(Kθ + σ2I)− 1
2
y>(Kθ + σ2I)−1y − n

2
log 2π (8)

Here, det denotes the determinant of a matrix, and > is vector transpose. We
use Kθ to explicitly denote the dependence of the covariance matrix K on a set
of parameters θ of the covariance function.12 Gradient ascent methods13 can
now be used to maximize L with respect to covariance function parameters θ
and the measurement variance σ2. References34,35 present further details, and
a discussion of problems such as multi-modality.

2.7.5 Noise groups

After inspection of the data and outlier removal (see Sec. 2.6), it turned out
that for a number of compounds, multiple agreeing measurements were available.
Clearly, if two or more agreeing measurements are available, one would put more
confidence in the data for this compound. Following this intuition, we grouped
compounds according to the number of available measurements (if they were
consistent), and used a different standard deviation for the measurement noise
ε, Eq. (1):

• Single measurement available (2,532 compounds): Noise std σ1

• Two measurements available (1,160 compounds): Noise std σ2

• ≥ 3 measurements available (242 compounds): Noise std σ3

Similar to the procedure outlined above, the effective values for σ1, σ2 and σ3

are estimated from the data by gradient descent on the evidence, Eq. (8).14

2.8 Evaluating Error Bars

Once the model is fitted, we assess its performance on a set of validation data
(see Table 1), with compounds x∗1 . . .x∗M and according measured solubility
values y∗1, . . . , y∗M . The Gaussian Process model outputs for each of these
compounds a probabilistic prediction, that is, a predicted mean f̄(x∗i) and
standard deviation std f(x∗i).

12In the case of Eq. (6), θ = {ν, w1, . . . , wd} for a total of d descriptors.
13In our actual implementation, we use the Broyden-Fletcher-Goldfarb-Shanno method.58
14An alternative approach would be to put multiple measurements directly in the GP model,

yet this would increase the computational cost of model fitting.
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To evaluate the predicted confidences, we proceed as follows15: The model
assumptions, Eq. (1) and Eq. (2), imply that the predictive distribution is again
Gaussian. By employing the cumulative density function of the Gaussian, we
can easily compute confidence intervals of the form “True value is within the
interval f̄(x∗i)± v with confidence c per-cent”. We can subsequently count the
percentage of points in the validation set where the true value lies within this
interval. Ideally, for c per-cent of the validation data, the true solubility value
should fall into the predicted c per-cent confidence interval. This check is made
for several values for c.

3 Results

3.1 Accuracy

We analyzed the performance of GPsol for the two separate tasks of predicting
buffer solubility and predicting pure solubility.

• Performance for predicting buffer solubility at pH 7.0 through 7.4 is listed
in Table 2 (top). This is the “Flask” setup, see Sec. 2.4 for a description
of the involved data sets. We also list the performance of the best two
commercial tools for predicting buffer solubility: SimulationsPlus Admet
Predictor59 and ACD/Labs v9.0.60

• Prediction performance for pure solubility is evaluated in the Huuskonen
setup, see Table 2 (bottom). We compare the performance with the EPI
Suite61 and SimulationsPlus Admet Predictor.59

The best commercial tools were chosen on the basis of an extensive evaluation
that is given in Sec. A.2. Accuracy is measured using different criteria: Per-
centage of compounds for which the prediction error is below 1 (on log scale,
meaning that the solubility is correct within one order of magnitude), mean
absolute error MAE, and root mean square error RMSE.16

As one would expect, the two setups “Flask” and “Huuskonen” represent
different levels of difficulty. GPsol achieves a performance that is comparable
with the best commercial tools on the Huuskonen data set.17 Yet, on the dif-
ficult task of predicting the solubility of drug-like electrolytic compounds, the
performance of the GP model is clearly superior to that of the commercial tools.
This also shows up clearly when plotting measured versus predicted18 solubil-

15It has been suggested to use numeric criteria, such as log probability of the predictive
distribution, for this purpose. Our experience suggests that these criteria can be misleading,
they thus have not been used.

16MAE = 1
n

Pn
i=1 |predi −measuredi|, RMSE =

q
1
n

Pn
i=1(predi −measuredi)2

17It remains unknown to us whether the Huuskonen data has been used in the process of
training the commercial tools we had evaluated. Thus, the evaluation we present here might
be biased in favor of the commercial tools.

18Note that, as described in Sec. 2.4, the predictions in Figure 2 are always made by a
Gaussian Process model that has not seen any training data for the compound it is being
evaluated on.
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Flask Percent within ±1 RMSE Mean abs. error
S+ ph7 57 1.34 1.03
ACDv9 64 1.16 0.90
GPsol 82 0.77 0.60

Huuskonen Percent within ±1 RMSE Mean abs. error
EPI 84 0.75 0.54
S+ native 93 0.56 0.43
GPsol 91 0.61 0.43

Table 2: Accuracy achieved by GPsol and the best two commercial tools. Top:
Performance when predicting buffer solubility of electrolytes in the Flask setup,
see Sec. 2.4. Bottom: Predicting pure solubility in the Huuskonen setup. Per-
formance is listed in terms of “% predictions correct within one log unit”, root
mean square error RMSE and mean absolute error MAE. “S+ ph7” refers to
SimulationsPlus AdmetPredictor,59 “ACDv9” is ACD/Labs v9.0,60 “EPI” is
Wskowwin v1.41 in the EPI Suite.61 See Sec. A.2 for an extended table, and
tool details

ity, see Figure 2. On the Flask data, GPsol predictions are correct up to one
log unit for about 82% of the compounds, whereas the best commercial tools,
ACD/Labs v9.060 reaches only 64%. We believe that the performance in the
Flask setup is most relevant for practitioners, since it contains mostly drug-like
molecules.

A full list of results for all evaluated commercial tools and all performance
measures can be found in Sec. A.2 in the appendix.

3.1.1 Second Validation

The final GPsol model, trained on all data in the Flask setup, went through an
additional validation stage. GPsol predictions were compared against flask mea-
surements for 536 drug candidates in recent projects at Schering AG. This addi-
tional validation was performed at Schering AG in a “blind test” scenario, with-
out revealing the experimental results to the modellers at Fraunhofer FIRST.

Results of this validation are summarized in Figure 3. We can observe a
small drop in performance of the GPsol model when compared to the results in
Table 2. Still, there is a significant performance gain over the best commercial
tool, ACD/Labs60 v9.0.

3.2 Analysis of Error Bars

As one of its most distinctive features, GPsol is able to predict a standard
deviation (error bar) for each of the water solubility predictions it makes. As
described in Sec. 2.8, we evaluate the error bars by counting the percentage
of points that fall into the c per-cent confidence interval, for several values of
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Figure 2: Predicted buffer solubility (y-axis) versus measured buffer solubil-
ity (x-axis) in the Flask setup. We compare GPsol (left), and predictions of
buffer solubility at pH 7.4 from the two best commercial tools, ACD/Labs60

v9.0 (middle) and the AdmetPredictor v1.2.3 of SimulationsPlus59 (right). The
dashed lines indicate the region where the prediction is within the range ±1
from the measured value. Similar plots for other commercial tools can be found
in Figure 2 in the appendix.
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Blind test Percent within ±1 RMSE Mean abs. error
ACDv9 58 1.24 0.98
GPsol 75 0.92 0.73

Figure 3: Predicted buffer solubility (y-axis) versus measured buffer solubility
(x-axis) on an independent validation set of 536 recent drug candidates (“blind
test”). We compare GPsol (left graph), and predictions of buffer solubility at
pH 7.4 from ACD/Labs v9.060 (right). The dashed lines indicate the region
where the prediction is within the range ±1 from the measured value
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c. c per-cent of the points should optimally fall into the c per-cent confidence
interval.

This analysis of error bars is shown in Figure 4. Optimal error bars would
give the curve given in dashed in Figure 4. One can see that the predicted error
bars do give a good match to the optimal curve. We can conclude that the
predicted error bars can serve as reliable estimates of the model’s confidence in
its prediction. Still there are some compounds that fall outside the predicted
confidence intervals at c = 99%, that is, compounds for which the GP model
was over-confident about its predictions. An analysis of these compounds is
given in Sec. 4.1.

As a general tendency, one can notice that the error bars in the Huuskonen
setup are much tighter than those in the Flask setup. The region in the chemical
space that is spanned by the neutral compounds in the Huuskonen data set is
also populated by data from the Physprop/Beilstein data set. The more data
is available, the tighter error bars usually become. On the other hand, only few
data is available in the region spanned by the Flask data (electrolytes). Despite
the high prediction performance of the GPsol model, the model recognizes that
its training data is only loosely distributed, and accordingly predicts larger error
bars. Thus more data for buffer solubility will be a key to further improvements
of the model.

4 Discussion

4.1 Outliers

Figure 4 showed a graphical evaluation of the quality of errorbars. These plots
show that the predicted standard deviation, Eq. (5), does faithfully represent
the expected deviation from the true solubility value. Still, there are a few
compounds where the true solubility is outside the predicted 99% confidence
interval. In this section, we will analyze these compounds in more detail. It
turned out that the two major reasons for these mis-predictions are low data
quality (e.g., contradictory measurements), and inherent limitations caused by
the molecular descriptors (two compounds with different solubility, but almost
identical descriptors).

Recall from Sec. 2.4 that our evaluation methodology generates 10 out-of-
sample predictions for each compound in the data sets Flask and Huuskonen.
The subsequent discussion focusses on compounds where the measured log SW

is outside the interval “predicted mean ± 3 standard deviations” (f̄(x∗) ±
3 std f(x∗), corresponding to a 99.7% confidence interval) in more than 5 (out
of the 10) cases.

Table 3 lists these compounds for the Huuskonen set19, along with measured
log SW and predicted solubility f̄(x∗).20 Additionally, we list the three com-

19A discussion of outliers on the Flask data can not be provided, since these are in-house
drug candidate molecules.

20f̄(x∗) is given for the first of the 10 random splits where an error is made
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Figure 4: Evaluation of error bars that are generated by GPsol in the Huuskonen
and the Flask setup. In the left column, we plot model prediction (indicated
by ×) on the y-axis versus measured value on the x-axis, plus a vertical line
±1 standard deviation, corresponding to a 68% confidence interval. To avoid
over-cluttered plots, this is only done for a random subset of 100 compounds. In
the right column, we plot the percentage of points that fall into the c per-cent
confidence interval (x-axis) versus c (y-axis). See Sec. 3.2 for a discussion of the
plots
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pounds in the model’s training data that are considered most similar to the test
compound in terms of solubility, i.e., the compounds with highest value for the
covariance function, Eq. (6).

From the set of mis-predictions, we could identify a subset where the solu-
bilities listed by Huuskonen3 are contradictory to measurements obtained from
other data sources. In some cases, GPsol supports the alternative measure-
ment. For some of the polychlorinated biphenyls listed in Table 3, we had one
or two results indicating very low solubility (log SW = −8 to insoluble) and
three or more results indicating a solubility that is several orders of magnitude
higher (including the measurement from3). Suspecting transcription errors, we
checked some of the original publications.62,63 The authors indeed reported the
high values that are included in the Physprop51 and Beilstein52 databases. At
this point, it is unclear which measurement is correct.

In other cases, the “nearest neighbors” that are identified by Eq. (6) are
misleading. A particular example are the hydroxypyridines listed in Table 3.
Based on the availabe descriptors, ortho, meta and para are considered as almost
identical. Yet, meta-hydroxypyridine has a solubility of SW ≈ 0.35mol/l while
the ortho- and para-compound have a very high solubility of SW ≈ 10mol/l.
This shows that the molecular descriptors used for predictive models set a strict
limit to the achievable accuracy of any type of model.

In the last group of cases, the model prediction was simply wrong, and no
clear reason for this mis-prediction could be identified.

Open points for further developments of the technology are the use of differ-
ent noise models and descriptors. It has turned out that for some forms of data,
the assumption of a Gaussian distribution for measurement noise is not fully
met, and that performance can be improved by switching to a more heavy-tailed
noise model.64
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Table 3: Compounds from the Huuskonen data set that are mis-
predicted by GPsol. The table lists the compound and the nearest
neighbors in terms of solubility, based on Eq. (6). We also list
the experimental values for log SW (given in mol/l) that were used
for model building, obtained as outlined in Sec. 2.6. f̄ denotes the
model prediction for the respective compound, Eq. (3). See Sec. 4.1
for further discussions

Test compound Neighbor 1 Neighbor 2 Neighbor 3

predicted f̄ = −5.2 log SW = −5.9 log SW = −5.9 log SW = −2.6
log SW = −2.8

Comments: Alternative measurement for test compound: log SW = −5.6 at
25◦C (from52) Measurements at higher temperatures52 indicate that log SW =
−5.6 is the more likely value

predicted f̄ = −1.38 log SW = −0.85 log SW = −1.8 log SW = −1.1
log SW = 0.39

Comments: Alternative measurements for test compound: log SW = −0.27
(from65), log SW = −0.56 at 25◦C (from53)

N

OH

predicted f̄ = 0.91 log SW = 1.02 log SW = 1.02 log SW = 0
log SW = −0.46

Comments: Misleading neighbors: Based on the availabe descriptors, ortho,
meta and para are considered as almost identical.

predicted f̄ = −6.5 log SW = −7 log SW = −5 log SW = 5.2
log SW = −3.7

Comments: Alternative measurement66 for test compound: log SW = −6.91.
Reference66 lists the solubility of neighbor 1 as log SW = −7
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Table 3: (continued)

Test compound Neighbor 1 Neighbor 2 Neighbor 3

predicted f̄ = −5.5 log SW = −1.95 log SW = −7.5 log SW = −2.4
log SW = −7.4

Comments: Neighbor 1 was used in model building with log SW = −1.95. Origi-
nal data were 5 measurements log SW = {−7.3;−1.8;−2.1;−2.3;−2.6}. Outlier
detection had discarded log SW = −7.3 as an outlier. Similarly, neighbor 3
had 5 measurements log SW = {−2.32;−2.56;−2.81;−3.04} and “insoluble”21.
Again, the smallest value was treated as an outlier

predicted f̄ = −4.7 log SW = −3 log SW = −8 log SW = −3.6
log SW = −7.82

Comments: Neighbor 1 was used in model building with log SW = −3. Origi-
nally 5 measurements, four indicating log SW ≈ −3, and one indicating SW = 0
(unsoluble). Outlier detection had discarded SW = 0 as an outlier. Sim-
ilarly, neighbor 3 was modelled with log SW = −3.63. Measurements were
log SW = {−3.46;−3.80;−3.95;−4.14;−8.72} and one indicating SW = 0 (un-
soluble)

predicted f̄ = −8.7 log SW = −8.7 log SW = −7.9 log SW = −8.7
log SW = −7.9

Comments: The prediction error is not particularly large here (0.8 log units).
Yet, all neighbors are very close in descriptor space and have similar solubility
values. This makes GPsol output a small error bar, Eq. (5).

21I.e. solubility below limit of detection.
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Table 3: (continued)

Test compound Neighbor 1 Neighbor 2 Neighbor 3

predicted f̄ = −7.6 log SW = −7.6 log SW = −8.6 log SW = −5.8
log SW = −5.2

Comments: Alternative measurement51 for test compound: log SW = −7.56,
this matches with model prediction

predicted f̄ = −2.9 log SW = −2.7 log SW = 0.8 log SW = −4.5
log SW = −5.1

Comments: Misleading neighbors
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4.2 Noise parameters

In Sec. 2.7.5, it was outlined that different parameters for the measurement
noise were used, depending on the number of available measurements. The
values σ1, σ2 and σ3 for the measurement noise for compounds with 1, 2, or
≥ 3 measurements were not set to fixed values. Rather, the value was estimated
from the available data by gradient descent on the marginal likelihood, Eq. (8).

After model fitting, we are now ready to examine the learned parameters.
Compounds with single measurements turned out to have σ1 = 0.46. This
matches well with previous experience that the measurement noise for solubility
measurements can be estimated to be around 0.5 log units.18 For compounds
with two measurements, the noise standard deviation was estimated to be σ2 =
0.15, agreeing with the intuition that two agreeing measurements entail lower
uncertainty. Compounds with ≥ 3 measurements had σ3 = 0.026, meaning that
they are considered as even more trustworthy by GPsol. Still, we had expected
the value σ2 to be smaller. When re-examining the data, we noted that some of
double measurements were exactly equal up to the last digit, most likely caused
by one source having copied from other sources. Such duplicate measurements
can clearly not lower the measurement uncertainty.

4.3 Relevant Descriptors

As one of their most pronounced features, Gaussian Process models allow to
assign weights to each descriptor that enters the model as input. The similarity
of water solubility for two compounds, Eq. (6), takes into account that the ith
descriptor contributes to the similarity with weight wi. Similar to the noise
parameters (see Sec. 4.2), these weights are chosen automatically when maxi-
mizing marginal likelihood, Eq. (8). After model fitting, the assigned weights
can be inspected, in order to get an impression of the relevance of individual
descriptors.

Among the 30 descriptors with highest weight, a set with a clear link to
solubility could be identified:

• Number of hydroxy groups (nROH, Dragon block 17)

• Number of carboxylic acid groups(C-040, Dragon block 18)

• Number of keto groups (O-058, Dragon block 18)

• LogD at ph 7, see section 2.5

• Total polar surface area (TPSA(NO), Dragon block 20)

• Number of nitrogen atoms (nN, Dragon block 1)

• Number of oxygen atoms (nO, Dragon block 1)

A number of other descriptors were given high weight, and it seems plausible
that they influence solubility. These are: number of 10-membered rings (nR10,
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Dragon 1), sum of topological distances between N and O (T(N..O), Dragon
2), different forms of autocorrelation weighted by electronegativity and polar-
izability (GATS1e, GATS2e, and MATS1p, Dragon 6), measures for the global
charge transfer in the molecule (JGI9, Dragon 9), quadrupole moments (QXXe
and QXXp, Dragon 9), radius of gyration (RGyr, Dragon 12)22 , and a number
of different fragment counts (C-026, C-028, C-029, C-034, N-075, and O-059,
Dragon 18).

As one of the reviewers pointed out, the descriptors used in this study include
the influence of crystal packing only implicitly. Future descriptor generators that
can provide accurate information on molecular packing interactions might help
to improve the presented models.

4.4 Comparison With Other Approaches

The dataset by Huuskonen3 has been used by numerous researchers since it was
first published in 2000. All results known to us are summarized in Table 4.
If multiple methods of evaluation were employed, we chose the method that is
most comparable with those in other studies. If a reference contained different
results, e.g., reflecting different model parameters, we only included the best
result in Table 4.

The results listed contain squared correlation coefficient, r2, and root mean
square error RMSE as performance criteria. r2 is listed since many references
only report this criterion. Yet, we find that r2 is not well suited as a performance
criterion for regression. r2 is scale invariant and invariant to systematic errors.
E.g., if (1, 2, 3, 4) is the a set of measured log SW values, and (2, 4, 6, 8) is the
set of according predictions, we obtain r2 = 1, indicating perfect prediction.

For the many approaches from literature we cite in Table 4, one should bear
in mind that very diverse methodologies with respect to evaluation and choice
of model parameters were employed. For example, the performance on the test
set should never be used to guide the choice of model parameter. Also, results
on a single training/test split are prone to random effects that only occur in this
very split, and can thus not give reliable estimates of the generalization error
on unseen data. All these aspects make a direct comparison of the results in
Table 4 quite difficult.

The RMSE criterion is essentially the standard deviation of the residuals
after model fitting. Considering that the measurement errors for solubility are
believed to be at least 0.5 log units,18 it is unclear how far the results on the
Huuskonen data can be improved upon without over-fitting.

Note also, that none of the models employed in the listed references3–17

can provide individual measures of confidence (error bars) for each individual
prediction.

22Many measures of size are contained in the DRAGON descriptors. It is not clear to us
why in particular this measure of size has been given high weight
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Reference Method Split ntrain ntest r2 RMSE
Huuskonen3 MLR single3 884 413 0.88 0.71

ANN single3 884 413 0.92 0.60
Tetko et al.4 MLR single3 879 412 0.85 0.81

ANN single3 879 412 0.90 0.66
Liu et al.8 ANN single 1033 258 0.87
Ran et al.54 GSE subset3 0 380 0.76
Bruneau10 ANN subset3 1560 673 0.82
Engkvist et al.12 ANN crossval. 1160 130 0.95
Gasteiger et al.7 MLR max overlap 797 496 0.82

ANN max overlap 797 496 0.92
Gasteiger et al.5 MLR max overlap 741 552 0.89

ANN max overlap 741 552 0.94
Lind et al.43 SVM single3 884 412 0.89 0.68
Gasteiger et al.13 ANN subset3 2083 799 0.94
Hou et al.14 MLR single3 887 412 0.90
Fröhlich et al.15 SVM crossval. 1135 162 0.90
Clark16 PLS subset3 2427 1297 0.84
Rapp17 SVM single 1,016 253 0.92

ANN single 1,016 253 0.91
This study, “Huuskonen only” GP crossval. 860 430 0.93 0.55
This study, “Huuskonen” GP cv subset3 3,952 645 0.91 0.55

Table 4: A comparison of previous results on the data provided by Huuskonen.3

Column “Method” lists the model used (MLR Multiple Linear Regression, ANN
Artificial Neural Network, SVM Support Vector Machine, GSE General Solu-
bility Equation, PLS, Partial Least Squares, GP Gaussian Process). Column
“split” indicates how the original data3 was separated into training (size ntrain)
and test set (size ntest). Some researchers used the same single split as described
in the original reference3 (indicated by “single3”). Others use a different sin-
gle random split (“single”), cross-validation (“crossval”), or trained on external
data and then evaluated on differently sized subsets of the Huuskonen3 data
(“subset3”). One group chose splits that maximize the overlap between train-
ing and test set (“max overlap”). Performance criteria are squared correlation
coefficient, r2 and root mean square error RMSE. See Sec. 4.4 for a discussion
of the results, and of problems with using r2 as a performance criterion.
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5 Summary

Over the last decade, the prediction of water solubility has shown a tremendous
impetus on many areas of chemical research. In this work, we presented a novel
method for predicting buffer solubility by means of a nonlinear regression model,
namely a Gaussian Process model (GPsol). Training data were measurements
for around 4,000 literature compounds and in-house drug candidates. For the
difficult task of predicting the buffer solubility of drug candidates, the developed
GPsol model achieves excellent accuracy and high performance gains over avail-
able commercial tools. We could verify the high performance in cross-validation,
as well as in an additional “blind test” on data from recent projects.

Note that global models for aqueous solubility are typically unable to pre-
dict the solubility of in-house compounds (drug candidates) with satisfactory
accuracy. Using machine learning approaches, such as the presented Gaussian
Process methodology, previously acquired in-house data can be employed to cre-
ate tailored models of buffer solubility (or other properties of interest) that are
particularly accurate in the investigated region of the chemical space. Our final
GPsol model was then implemented in C# (suitable for Linux and Windows
operating systems) and can produce one prediction per second on a single 2
GHz Pentium CPU.

Error bars are of great value to any form of black box model built without
explicit knowledge of the mechanisms that underly water solubility. As a par-
ticular advantage of the proposed method, GPsol is able to estimate the degree
of certainty for each of its predictions. This can be used to assess the validity of
the prediction, and whether the model is queried within its range of expertise.
Our evaluation has shown that the predicted error bars can be interpreted as
a true measure of confidence. GPsol is the first model of water solubility that
outputs error bars with a solid statistical foundation.

We finally conjecture that the progress in solubility prediction is far from
coming to an end. Certainly, the collection of well-defined, high quality solubility
measurements of electrolytes and drug-like compounds is a key issue in this
endeavor. Further progress can be made due to the increasing availability of
more detailed and accurate molecular descriptors, and in particular also by
exploiting the benefits of novel machine learning methods. Drug design and
discovery permanently explores new regions of the chemical space. Machine
learning can provide the tools to keep track with the latest developments, and
guide further explorations.
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A Appendix

A.1 Further Evaluations of GPsol

Figure 5 shows a cumulative histogram of the prediction error made by GPsol.
The cumulative histogram is over the absolute error, and thus indicates how
many predictions are within 0.5, 1, 1.5, . . . , 3, 3.5 orders of magnitude from the
measured value. Again, the high performance of GPsol can be seen clearly. For
more than 50% of the compounds in the Flask data set, the prediction error
is even smaller than 0.5 orders of magnitude.23 As a baseline, we can assign

23In general, the uncertainty of solubility measurements is believed to be about 0.5 orders
of magnitude.18 The exceptionally good performance on this set results from the fact that it
was generated under highly standardized conditions (see section 2.3 on the preparation of the
datasets). The very low noise parameter learned from the data in this set (see Sec. 2.7.5 and
4.2) is another indicator for the high quality of this data.
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Figure 5: Cumulative histogram of the absolute prediction error made by GPsol,
when either predicting pure solubility in the Huuskonen setup (left plot) or when
predicting buffer solubility of electrolytes in the Flask setup (right plot). The
solid line indicates how many predictions are within 0.5, 1, 1.5, . . . , 3, 3.5 orders
of magnitude from the measured value

each compound an average solubility value within its respective data set. With
this baseline prediction, 60% of the compounds in the Flask data set are correct
within 1 log unit (32% within 0.5 log unit). For the Huuskonen data, 39% of
the compounds are correct within 1 log unit, 20% within 0.5 log units.

A.2 Comparison With Available Tools

On the data sets “Flask”, “Huuskonen” and “Huuskonen neutral”, as described
in Sec. 2.3, we evaluated six commercial tools. The performance is compared to
GPsol trained in the “Flask”, “Huuskonen” and “Huuskonen neutral” setups,
see Sec. 2.4. The settings used for each tool are listed in table Table 5. The full
set of results is compiled in Table 6, with a graphical summary given in Figure 6.
Plots showing predicted versus measured solubility are given in Figure 9 for the
“Flask” data set, Figure 8 for the “Huuskonen” data set, and Figure 7 for the
“Huuskonen neutral” data.

AdmetPredictor of SimulationsPlus59 was used in six different modes. The
models for native (pure) solubility, intrinsic24 solubility and solubility at a spec-
ified pH (which was set to 7.4) all come in two flavors, general and drug-like
compounds. Surprisingly, the best predictions for buffer solubility on the Flask
dataset (drug candidates at pH 7.0 to 7.4) are produced using the predictor for
native (i.e., pure, unbuffered) solubility of non-drug compounds.

24We found that the predictions for intrinsic solubilities were in general not as precise as
those for native solubility and solubility at pH 7.4. Thus, we omitted results for intrinsic
solubility from our evaluation.

32



Abbrev. Vendor / Agency Product Version Settings
S+ nat SimulationsPlus AdmetPredictor 1.2.3 native
S+ pH7 pH 7.4
S+d nat native, drugs
S+d pH7 pH 7.4, drugs
PP SciTegic PipelinePilot 5.0.1.100 native
QIKP Schroedinger QikProp 2.2
EPI U.S. Environmental

Protection Agency
Wskowwin (from the
EPI Suite)

1.41

ACDv8 ACD/Labs Solubility Batch 8.0 pH 7.0
ACDv9 ACD/Labs Solubility Batch 9.0 pH 7.0

Table 5: Settings used for the various commercial tools. The leftmost column
is the shorthand name used for the tool in tables and figures
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Figure 6: Graphical summary of the results listed in Table 6. The left plot shows
accuracy in terms “percentage of points where prediction is correct within one
log unit” (the higher, the better), whereas the right plot shows accuracy in
terms of mean absolute error (the lower, the better). A horizontal line marks
the performance for each commercial tool, the name of the best tool is written
out. For the GP model, we show a box plot for the performance obtained in each
of the 10 runs, see Sec. 2.4. The “whiskers” extend to minimum and maximum
performance over the 10 splits, median performance is shown as the central line.
See Table 5 for the list of tools and their settings
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Figure 7: Predicted pure solubility (y-axis) versus measured pure solubility (x-
axis) on the Huuskonen neutral data for GPsol and a number of commercial
tools. See Table 5 for the list of tools and their settings
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Figure 8: Predicted pure solubility (y-axis) versus measured pure solubility (x-
axis) on the Huuskonen data for GPsol and a number of commercial tools. See
Table 5 for the list of tools and their settings
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Figure 9: Predicted buffer solubility (y-axis) versus measured buffer solubility
(x-axis) on the Flask data for GPsol and a number of commercial tools. See
Table 5 for the list of tools and their settings
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B Gaussian Process Derivations

In order to derive Eq. (3), we need a simple theorem for conditional distribution
of the multivariate normal. Assume a vector z = (z1, . . . , zn), the elements
of which follow a joint multivariate normal distribution with mean vector µ
and covariance matrix V , denoted by z ∼ N (µ, V ). We partition the vector
z = (zo, zn), where zo holds all elements excluding the last one. Accordingly,
we can partition mean vector and covariance matrix, and write

z =
(
zo

zn

)
∼ N

((
µo

µn

)
,

(
Voo Von

V >
on Vnn

))
(9)

If we observe values for all elements zo up to the last one, the conditional
distribution for zn, p(zn | zo), is a univariate normal distribution,

zn | zo ∼ N
(
µn + V >

onV −1
oo (zo − µo), Vnn − V >

onV −1
oo Von

)
(10)

With this lemma, we can already derive Eq. (3). Recall from Sec. 2.7.2 the key
assumption about GP models, namely that all solubility values f = (f(x1), . . . , f(xn))
form a joint Gaussian distribution, f ∼ N (0,K). For convenience, we assume
for the mean µ = 0.25. Elements of the covariance matrix K are given by the
covariance function, Eq. (2), with Kij = k(xi,xj). Similarly, we can consider
the joint distribution of solubility values f along with the solubility f(x∗) of
the compound x∗ we wish to predict. Again, the Gaussian Process assumption
allows us to write (

f
f(x∗)

)
∼ N

(
0,

(
K v
v> k(x∗,x∗)

))
(11)

v denotes the vector of evaluations of the covariance function vi = k(xi,x∗).
From that, we can easily derive the joint distribution of measured values y =

(y1, . . . , yn) and predicted value f(x∗). We need to include the measurement
noise, Eq. (1), which amounts to adding σ2 along the diagonal of the covariance
matrix. The joint distribution becomes(

y
f(x∗)

)
∼ N

(
0,

(
K + σ2I v

v> k(x∗,x∗)

))
. (12)

With that, we can directly use Eq. (10) and compute the conditional distribution
of f(x∗) after having observed all values y = (y1, . . . , yn),

f(x∗) |y ∼ N
(
v>(K + σ2I)−1y, k(x∗,x∗)− v>(K + σ2I)−1v

)
. (13)

Writing out the matrix expressions as sums, we arrive at Eq. (3) (for the mean
of the conditional distribution) and Eq. (5) (for the standard deviation of the
conditional).

25In practice, this can be achieved by simply shifting the data to have zero mean
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