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 

Abstract—Inspired by the great success of margin-based 

classifiers, there is a trend to incorporate the margin concept into 

hidden Markov modeling for speech recognition. Several 

attempts based on margin maximization were proposed recently. 

In this paper, a new discriminative learning framework, called 

soft margin estimation (SME), is proposed for estimating the 

parameters of continuous density hidden Markov models. The 

proposed method makes direct use of the successful ideas of soft 

margin in support vector machines to improve generalization 

capability and decision feedback learning in minimum 

classification error training to enhance model separation in 

classifier design. SME is illustrated from a perspective of 

statistical learning theory. By including a margin in formulating 

the SME objective function, SME is capable of directly 

minimizing an approximate test risk bound. Frame selection, 

utterance selection, and discriminative separation are unified into 

a single objective function that can be optimized using the 

generalized probabilistic descent algorithm. Tested on the 

TIDIGITS connected digit recognition task, the proposed SME 

approach achieves a string accuracy of 99.43%. On the 5k-word 

Wall Street Journal task, SME obtains relative word error rate 

reductions of about 10% over our best baseline results in different 

experimental configurations. We believe this is the first attempt to 

show the effectiveness of margin-based acoustic modeling for 

large vocabulary continuous speech recognition in a hidden 

Markov models framework. Further improvements are expected 

because the approximate test risk bound minimization principle 

offers a flexible and rigorous framework to facilitate 

incorporation of new margin-based optimization criteria into 

hidden Markov model training.  

 
Index Terms—soft margin estimation, test risk, statistical 

learning, discriminative training  

 

I. INTRODUCTION 

ITH the prevailing usage of hidden Markov models 

(HMMs), rapid progress in automatic speech 

recognition (ASR) has been witnessed in the last two decades. 

Usually, the HMM parameters are estimated by the traditional 

maximum likelihood estimation (MLE) method. MLE is 
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known to be optimal for density estimation, but it often does 

not lead to minimum recognition error that is the goal of ASR. 

As a remedy, several discriminative training (DT) methods 

have been proposed in recent years to boost the ASR system 

accuracy. Typical methods are maximum mutual information 

estimation (MMIE) [1], [2], [3]; minimum classification error 

(MCE) [4], [5], [6]; and minimum word/phone error (MWE/ 

MPE) [7]. MMIE training separates different classes by 

maximizing approximate posterior probabilities. On the other 

hand, MCE directly minimizes approximate string errors, while 

MWE/MPE attempts to optimize approximate word and phone 

error rates. If the acoustic conditions in the testing set match 

well with those in the training set, these DT algorithms usually 

achieve very good performance when tested. However, such a 

good match cannot always be expected for most practical 

recognition conditions. To avoid the problem of over-fitting on 

the training set, regularization is achieved by using 

“I-smoothing” [7] in MMIE and MWE/MPE while MCE 

exploits a smoothing parameter in a sigmoid function for 

regularization [8]. 

According to statistical learning theory [9], a test risk is 

bounded by the summation of two terms: an empirical risk (i.e., 

the risk on the training set) and a generalization function. The 

power to deal with possible mismatches between the training 

and testing conditions can often be measured by the 

generalization function. In particular, large margin learning 

frameworks, such as support vector machines (SVMs) [10], 

have demonstrated superior generalization abilities over other 

conventional classifiers. By securing a margin from the 

decision boundary to the nearest training sample, a correct 

decision can still be made if the mismatched test sample falls 

within a tolerance region around the original training samples 

defined by the margin. The idea of SVMs is explored widely in 

speech research. Different kinds of kernels are employed in the 

area of speaker recognition, such as the work in [11], [12]. 

However, this kind of work cannot be easily incorporated into 

ASR because it is hard to combine with HMMs. SVMs were 

also used in the framework of landmark-based speech detection 

[13]; however this framework is not widely used because it 

deviates from the HMM paradigm. Some technologies (e.g., 

[14], [15]) loosely couple SVMs with HMMs by using SVMs 

instead of Gaussian mixture models (GMMs) as the state 

observation density of HMMs. These frameworks do not take 

full advantage of SVMs to get better generalization with a 

larger margin. A combination of SVMs and HMMs, called 
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HM-SVMs, was explored in [16] with discrete distributions, 

but it is far from being a solution to the state-of-the-art ASR 

systems, whose state distributions are usually continuous 

densities. Moreover, like SVMs, HM-SVMs work on the 

problem of finding the optimal projection matrix. HM-SVMs 

differ from SVMs on the point that the observations of 

HM-SVMs are sequences instead of discrete samples. 

Therefore, HMMs are used to model the hidden state of the 

sequences in HM-SVMs. Obviously, HM-SVMs are too 

simple to solve the ASR problem.  

Adopting the concept of enhancing margin separation, large 

margin estimation (LME) [17], [18] and its variant, large 

relative margin estimation (LRME) [19], of HMMs have been 

proposed. In essence, LME and LRME update models only 

with accurately classified samples. However, it is well known 

that misclassified samples are also critical for classifier 

learning. Recently, LRME was modified [20] to consider all of 

the training samples, especially to move the most incorrectly 

classified sample toward the direction of correct decision. 

However, this modification makes the algorithm vulnerable to 

outliers, and the idea of margin is not very meaningful. In [21], 

a large margin algorithm for learning GMMs was proposed, but 

makes some approximations to use GMMs instead of HMMs. 

More recently, the work of [21] was extended to deal with 

HMMs in [22], by summing the differences of Mahalanobis 

distances [23] between the models in the correct and competing 

string, and comparing the result with a Hamming distance. It is 

not clear whether it is suitable to directly compare the 

Hamming distance (the number of different labels of two 

strings) with the Mahalanobis distance difference, which is the 

distance of two Gaussian models given an observation. 

In this study, soft margin estimation (SME) is proposed as a 

unified DT framework for discriminative separation, frame 

selection, and utterance selection. Frame/utterance selection is 

to select the critical frames/utterances for SME training, 

instead of using all the training frames/utterances. Because of 

the incorporation of a soft margin into the optimization 

objective, SME achieves a better generalization capability and 

less recognition errors over LME and MCE. We illustrate the 

SME theory and show that its objective function approximates 

a bound of the test risk expressed as a sum of an empirical risk 

and a function of Vapnik & Chervonenkis dimension, or VC 

dimension, commonly known in statistical learning theory [9]. 

SME is in contrast to most DT methods that attempt to 

minimize the empirical risks with additional strategies for 

generalization. SME is also different from LME because LME 

only maximizes the separation margin. We show that different 

choices of separation measures in loss functions lead to various 

approximate test risks that can be formulated as functions of 

string, word and phone errors and their combinations. This 

makes SME flexible and capable of incorporating new losses 

and margin definitions in a theoretically rigorous manner. 

Using 12-state digit models, SME achieves a string accuracy 

of 99.43%, the best result ever reported on the TIDIGITS 

database [24] using 32-component mixture Gaussian state 

observation densities when no further decoding option is used. 

Even with 1-mixture SME models, the achieved string 

accuracy is better than that obtained with 32-mixture MLE 

models, although a single Gaussian model cannot characterize 

the state distribution well.  

The effectiveness of SME was also evaluated on the 

5k-word Wall Street Journal (5k-WSJ0) task [25]. Two 

separation measures are proposed to take advantage of 

competing strings in lattices obtained from speech recognition. 

One method is similar to current DT algorithms, defining 

corresponding separation measures with statistics collected 

from a lattice using forward backward methods. The other 

method defines separation using word pairs appearing in a 

lattice. The performance of the second method (SME_word) is 

compared with those of MLE and MCE. Initial results on the 

5k-WSJ0 task show that SME_word outperforms both MLE 

and MCE, with around 10% relative word error rate reduction 

from the MLE baselines. Further performance improvements 

are expected with flexible combinations of loss and margin 

function definitions. 

II. EMPIRICAL RISK AND TEST RISK BOUND 

In this section, we show that there is a gap between empirical 

risk and test risk. The theory of statistical learning explains this 

gap and gives insight of current state-of-the-art HMM learning 

algorithms for designing ASR systems. 

A. Empirical Risk 

The purpose of classification and recognition is usually to 

minimize classification errors on a representative testing set by 

constructing a classifier f (modeled by the parameter set  ) 

based on a set of training samples (x1, y1),…, (xN, yN) YX * . 

X is the observation space, Y is the label space, and N is the 

number of training samples. However we do not know exactly 

what the property of testing samples is and can only assume 

that the training and testing samples are independently and 

identically distributed from some distribution P(x, y). 

Therefore, we want to minimize the expected classification 

risk: 

      yxdPyxfyxlR
YX

,,,,
*

  . 

  yxfyxl ,,,  is a loss function. There is no explicit 

knowledge of the underlying distribution P(x, y). It is 

convenient to assume that there is a density p(x, y) 

corresponding to the distribution P(x, y), and replace   yxdP ,  

with   dxdyyxp , . Then, p(x, y) can be approximated with the 

empirical density as: 

     



N

i

iiemp yyxx
N

yxp
1

,,
1

,  , 

where  ixx, is the Kronecker delta function. Finally, the 

empirical risk is minimized instead of the intractable expected 

risk: 

         


 
N

i

iiiiemp

YX

emp yxfyxl
N

dxdyyxpyxfyxlR
1*

,,,
1
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TABLE I 

DISCRIMINATIVE TRAINING TARGET FUNCTION AND LOSS FUNCTION 

 Optimization Objective Loss Function l 
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Most current DT methods focus on how to minimize this 

empirical risk. However, as shown above, the empirical risk 

approximates the expected risk by replacing the underlying 

density with its corresponding empirical density. Simply 

minimizing the empirical risk does not necessarily minimize 

the expected test risk. 

In the application of speech recognition, most DT methods 

directly minimize the risk on the training set, i.e. the empirical 

risk, which is defined as: 

   



N

i

iemp O
N

R
1

,
1

 , 

where  ,iO  is a loss function for utterance Oi, and N is the 

total number of training utterances. ),,( ba is a parameter 

set denoting the set of initial state probability, state transition 

probability and observation distribution. Table I lists the 

optimization objectives and loss functions of MMIE, MCE and 

MPE with iS  being the correct transcription and iŜ denoting 

the possible string sequence for utterance Oi. In MMIE and 

MPE,  ii SOP ˆ
 (or  ii SOP ) and  iSP ˆ  (or  iSP ) are 

acoustic and language model scores, respectively. 

 iScuracyRawPhoneAc ˆ  is the phone accuracy of the string 

iŜ comparing with the ground truth iS .  In MCE, hi is a 

misclassification measure defined as the difference between a 

geometrical average of log likelihoods of competing strings 

and log likelihood of the correct string.  and are parameters 

for a sigmoid function. With these loss functions, these DT 

methods all attempt to minimize some empirical risks.  

B.  Test Risk Bound 

The optimal performance on the training set does not 

guarantee the optimal performance on the testing set. This 

stems from the statistical learning theory [9], which states that 

with at least a probability of 1 (  is a small positive 

number) the risk on the test set (i.e., the test risk) is bounded as 

follows: 

       

















4
log1/2log

1
dimdim


VCNVC

N
RR emp .  (1) 

N is the number of training samples. VCdim is the VC dimension 

that characterizes the complexity of a classifier function group 

G, and means that at least one set of VCdim (or less) number of 

samples can be found such that G shatters them. That the 

function group G shatters samples B means if samples B are 

divided into two classes, we always have one function from G, 

which can correctly classify all the samples into those two 

classes. Eq. (1) shows that the test risk is bounded by the 

summation of two terms. The first is the empirical risk, and the 

second is a generalization (regularization) term which is a 

function of the VC dimension. Although the risk bound is not 

strictly tight [10], it still gives us insight to explain current 

technologies in ASR: 

 The use of more data: In current large scale large 

vocabulary continuous speech recognition (LVCSR) 

tasks, thousands of hours of data may be used to get better 

performance. This is a simple but effective method. When 

the amount of data is increased, the empirical risk is 

usually not changed, but the generalization term decreases 

as the result of increasing N. 

 The use of more parameters: With more parameters, the 

training data will be fit better with reduced empirical risk. 

However, the generalization term increases at the same 

time as a result of increasing VCdim. This is because with 

more parameters, the classification function is more 

complex and has ability to shatter more training points. 

Hence, by using more parameters, there is a potential 

danger of over-fitting when the empirical error does not 

drop while the generalization term keeps increasing. 

  Most DT methods: DT methods, such as MMIE, MCE, 

and MWE/MPE in Table I, focus on reducing the 

empirical risks and do not consider decreasing the 

generalization term in Eq. (1) from the perspective of 

statistical learning theory. However, these DT methods 

have other strategies to deal with the problem of 

over-training. “I-smoothing”, used in MMIE and MWE/ 

MPE, makes an interpolation between the objective 

functions of MLE and the discriminative methods. The 

sigmoid function of MCE can be interpreted as the 

integral of a Parzen kernel, helping MCE for 

regularization. Parzen estimation has the attractive 

property that it converges when the number of training 

sample grows to infinity. In contrast, margin-based 

methods reduce the test risk from the viewpoint of 

statistical learning theory with the help of Eq. (1). 

III. SOFT MARGIN ESTIMATION 

In this section, soft margin estimation is proposed as a link 

between statistical learning theory and ASR. We provide a 

theoretical perspective about SME, showing that SME directly 
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minimizes an approximate test risk bound. The idea behind the 

choice of the loss function for SME is then illustrated and the 

separation functions are defined. DT algorithms, such as 

MMIE, MCE, and MWE/MPE, can also be cast in the rigorous 

SME framework by defining corresponding separation 

functions. Finally, two solutions to SME are provided and the 

difference with other margin-based methods is discussed. 

A.  Approximate Test Risk Bound Minimization 

If the right hand side of inequality (1) can be directly 

minimized, it is possible to minimize the test risk. However, as 

a monotonic increasing function of VCdim, the generalization 

term can not be directly minimized because of the difficulty to 

compute VCdim. It can be shown that VCdim is bounded by a 

decreasing function of the margin [9] (In this paper, margin is 

used to stand for the width of margin). Hence, VCdim can be 

reduced by increasing the margin. Now, there are two targets 

for optimization: one is to minimize the empirical risk, and the 

other is to maximize the margin. Because the test risk bound of 

Eq. (1) is not tight, it is not necessary to strictly follow 

Vapnik’s theorem. Instead, the test risk bound can be 

approximated by combining two optimization targets into a 

single SME objective function: 

   



N

i

iemp

SME O
N

RL
1

,
1

)( 







.    (2) 

  is the soft margin, and   is a coefficient to balance the soft 

margin maximization and the empirical risk minimization. A 

smaller   corresponds to a higher penalty for the empirical 

risk. The soft margin usage originates from the soft margin 

SVMs, which deal with non-separable classification problems. 

For separable cases, margin is defined as the minimum distance 

between the decision boundary and the samples nearest to it. As 

shown in Figure 1, the soft margin for non-separable case can 

be considered as the distance between the decision boundary 

(solid line) and the class boundary (dotted line). The class 

boundary is the same definition as for the separable case after 

removing the tokens near the decision boundary, and treating 

these tokens differently using slack variable i  in Figure 1. The 

approximate test risk is minimized by minimizing Eq. (2). 

Again, this approximate test risk is very rough but helpful for 

classifier design, according to the analysis in Section II.B.  

This view distinguishes SME from both ordinary DT 

methods and LME. Ordinary DT methods only minimize the 

empirical risk  empR  with additional generalization tactics. 

LME only reduces the generalization term by minimizing   

in Eq. (2), and its margin   is defined on correctly classified 

samples. 

B. Loss Function Definition 

The next issue is to define the loss function  ,iO  for Eq. 

(2). As shown in Figure 1, the essence of margin-based method 

is to use a margin to secure some generalization in classifier 

learning. If the mismatch between the training and testing 

causes a shift less than this margin, a correct decision can still 

be made. So, a loss happens only when  ,iOd  (the 

separation between the correct and competing string. It will be 

defined in Section III.C) is less than the value of the soft 

margin. It should be emphasized that the loss here is not the 

recognition error. A recognition error happens when  ,iOd  

is less than 0. Therefore, the loss function can be defined as: 

    

   



 


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otherwise       ,0
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

, 

with the SME objective function re-written as: 
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


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where I is an indicator function, and U is the set of utterances 

that have the separation measures less than the soft margin. 

 

 

Figure 1. Soft margin estimation. i is the loss of sample i, which equals 

to   ,iOd . 

C. Separation Measure Definition 

The third step is to define a separation (misclassification) 

measure,  ,iOd , which is a distance between the correct and 

competing hypotheses. A common choice is to use LLR, or log 

likelihood ratio, as in MCE [4] and LME [17]: 

 
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If di is greater than 0, the classification is correct, otherwise a 

wrong decision is obtained.  ii SOP  and  ii SOP ˆ
  are the 

likelihood scores for the target and the most competitive string. 

In the following, a more precise model separation measure is 

defined. For every utterance, we select the frames that have 

different HMM model labels in the target and competitor 

string. These frames can provide discriminative information. 

The model separation measure for a given utterance is defined 

as the average of those frame LLRs. We use ni to denote this 

number of different frames for utterance Oi. Then, a separation 

of the models is defined as: 

 
 

 
 iij

j
iij

iij

i

i

utterSME FOI
SOP

SOP

n
Od 

















 




ˆ
log

1
,_ ,       (4) 
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where Fi is the frame set in which the frames have different 

labels in the competing strings. Oij is the jth frame for utterance 

Oi. Only the most competitive string is used in the definition of 

Eq. (4). 

Our separation measure definition is different from LME or 

MCE, in which the utterance LLR is used. For the usage in 

SME, the normalized LLR may be more discriminative, 

because the utterance length and the number of different 

models in the competing strings affect the overall utterance 

LLR value. For example, it may not be appropriate that an 

utterance consisting of five different units in the target and 

competitive string has greater separation for models inside it 

than another utterance with only one different unit because the 

former has a larger LLR value. 

By plugging the quantity in Eq. (4) into Eq. (3), the 

optimization function of SME becomes: 

 
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    
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As shown in Eq. (5), frame selection (by  iij FOI  ), utterance 

selection (by  UOI i  ), and discriminative separation are 

unified in a single objective function. This quantity provides a 

flexible framework for future studies. For example, for frame 

selection, Fi can be defined as a subset with frames more 

critical for discriminating HMM models, instead of equally 

choosing distinct frames in current study.  

We can also define separations corresponding to MMIE, 

MCE, and MPE as shown in Table II. These separations will be 

studied in future. All these measures can be put back into Eq. 

(3) for HMM parameter estimation. 

 
TABLE II 

SEPARATION MEASURES FOR SME 

 

 ,_

i

utterSME Od  

 

 
 iij

j
iij

iij

i

FOI
SOP

SOP

n























ˆ
log

1
 

 

 ,_

i

MMIESME Od  

   

    



iS iii

iii

SPSOP

SPSOP

ˆ
ˆˆ

log  

 ,_

i

MCESME Od  
)),(exp(1

1
1

 


ii Oh
 

 

 ,_

i

MPESME Od  

     
   







i

i

S iii

S iiii

SPSOP

ScuracyRawPhoneAcSPSOP

ˆ

ˆ

ˆˆ

ˆˆˆ

 

 

D. Solutions to SME 

In this section, two solutions to SME are proposed. One 

solution is to optimize the soft margin and the HMM 

parameters jointly. The other is to set the soft margin in 

advance and then find the optimal HMM parameters. We will 

show in theory there is little difference between these two 

methods. And the experiment results in Section V.A will also 

demonstrate it. 

 

1) Jointly optimize the soft margin and the HMM parameters: 

In this solution, the indicator function  UOI i  in Eq. (3) is 

approximated with a sigmoid function. Then Eq. (3) becomes: 
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


 ,  (6) 

where  is a smoothing parameter for the sigmoid function. Eq. 

(6) is a smoothing function of the soft margin  and the HMM 

parameters  . Therefore, these parameters can be optimized 

by iteratively using the generalized probabilistic descent 

(GPD) algorithm on the training set as in [26], with t and 

t as step sizes:  
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Similar to the solution to soft margin SVMs [10], we need to 

preset the coefficient  , which balances the soft margin 

maximization and the empirical risk minimization. 

 

2)  Presetting the soft margin and optimize the HMM 

parameters:  Let  ̂,̂  be the solution to SME with 

  ˆ,ˆ
ii Odd . Here  ̂,iOd  can be any separation measure 

defined in Table II. Then ̂ minimizes the following quantity: 
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
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Equivalently, ̂ is a solution to the following: 
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Next, we show that there is a correspondence between   and 

̂ .  

There exist nonnegative constants, i and i , such that 

̂ also minimizes 

 ii
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Eq. (7) is the Lagrange form [27] for SME, and is known to 

be equivalent to the original optimization problem. The first 

order condition implies that 

0
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Incorporating the derivatives in Eqs. (8) and (9) into Eq. (7), 

we have ( ,̂ ̂ ) as the solution to  

2
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be the solution to 
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Then, the solution to the original problem is 
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On the other hand, ̂  minimizes 

  
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iOdL
1
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From Eq. (10), we see a direct mapping relationship between 

  and ̂ . For a fixed  , there is one corresponding ̂ . 

Instead of choosing a fixed   and trying to get the solution of 

 ̂,̂  as in the first solution, we can directly choose a ̂  in 

advance and get ̂ by minimizing Eq. (11) because of the 

mapping relationship between   and ̂ . There is no explicit 

knowledge what   should be, so it is not necessary to start 

from   and get the exact corresponding solution of ̂ . In 

contrast, we will show in the section of experiments that it is 

easy to draw some knowledge of the range of ̂ . Setting ̂  in 

advance is a simple way to solve the SME problem. 

Because of a fixed ̂ , only the samples with separation 

smaller than the margin need to be considered. Assuming that 

there are a total of NC utterances satisfying this condition, we 

can minimize the following with the constraint   ̂, iOd : 

  

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cN

i

i

sub OdL
1
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Now, this problem can be solved by the GPD algorithm by 

iteratively working on the training set, with t as a step size: 

t

sub
ttt L   |)(1  . 

E. Margin-Based Methods Comparison 

In this section, SME is compared with two margin-based 

method groups. One group is LME [17], [18], [28], and the 

other is large margin GMM (LM-GMM) [21] and large margin 

HMM (LM-HMM) [22]. LM-HMM and LM-GMM are very 

similar, except that LM-HMM measures model distance in a 

whole utterance while LM-GMM measures in a segment. The 

difference of these margin-based methods is listed in Table III 

and is discussed in the following.  

 Training sample usage: Both LM-GMM/LM-SVM and 

SME use all the training samples, while LME only uses 

correctly classified samples. The misclassified samples 

are important for classifier learning because they carry the 

information to discriminate models. Except for LME, DT 

methods usually use all the training samples (e.g. [1]-[7]). 

 Separation measure: It is crucial to define a good 

separation measure because it directly relates to margin.  

LME uses utterance based LLR as a measure; while in 

SME it is carefully represented by a normalized LLR 

measure over only the set of different frames. With such 

normalization, the utterance separation values can be 

more closely compared with a fixed margin than an 

un-normalized LLR without being affected by different 

numbers of distinct units and length of the utterances. 

LM-GMM and LM-HMM use Mahalanobis distance [23], 

which makes it hard to be directly used in the context of 

mixture models. In [21] and [22], approximation to the 

mixture component with the highest posterior probability 

under GMM is applied.  

 Segmental training: Speech is segment based. Both 

SME and LME use HMMs, while LM-GMM uses frame 

averaged GMM to approximate segmental training. As an 

improvement, LM-HMM directly works on the whole 

utterance. It sums the difference of the Mahalanobis 

distances between the models in the correct and 

competing string, and compares with a Hamming 

distance. That Hamming distance is the number of 

mismatched labels of recognized string. Although similar 

distance (raw phone accuracy) has been used in MPE [7] 

for weighting the contribution different recognized 

strings, it is not clear whether Hamming distance is 

suitable to be directly used to compare with the 

Mahalanobis distance because these two distances are 

very different types of measures (one is for string labels 

and the other is for Gaussian models).  

 Target function: SME maximizes the soft margin 

penalized with the empirical risk as in Eq. (2). This 

objective directly relates to the test risk bound shown in 

Eq. (1). LME only maximizes its margin, assuming the 

empirical risk is 0. The idea of LME is to define the 

minimum positive separation distance as a margin and 

then maximize it. Because of this, the technology dealing 

with misclassified samples by making usage of a soft 

margin or slack variable can not be easily incorporated in 

LME. LM-GMM/LM-HMM minimizes the summation of 

all the traces of Gaussian models, penalized with a 

Mahalanobis distance based misclassification measure.  

 
TABLE III 

COMPARISON OF MARGIN BASED METHODS 

 LME LM-GMM [21] 

LM-HMM [22] 

SME 

Training  

Samples 

correctly classified 

samples 

all samples 

 

all samples 

 

Separation 

Measure 

utterance LLR Mahalanobis 

distance 

LLR with frame 

selection 

Segmental 

Modeling 

HMM frame averaged 

GMM [21] 

HMM [22] 

HMM 

Target 

Function 

margin 

maximization 

penalized trace 

minimization  

penalized 

margin 

maximization  

Convex 

Problem 

No [17], [18]  

Yes [28] 

Yes  No 

 

 Convex problem: LME has several different solutions. In 

[17], [18], the target function is non-convex. By using a 

series of transformations and constraints [28], LME can 

have a convex target function. Also, LM-GMM and 

LM-HMM formularize their target function as a convex 

one. The convex function has the nice property that its 

local minimum is global minimum. This will make the 
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parameter optimization much easier. To get a convex 

target function, it needs to approximate the GMM with a 

single mixture component of the GMM.  In contrast, the 

target function of SME is not convex. Therefore, SME is 

subject to local minima like most other DT methods. In 

future, we will investigate whether SME can also get a 

convex target function with the cost of approximation and 

some transformations. 

IV. SME FOR LVCSR 

The key issue for using SME in LVCSR is to define 

appropriate model separation measures. One method is to 

directly use  ,_

i

utterSME Od
i

 in Table II, and solve for HMM 

parameters by minimizing the quantity in Eq. (3). However, 

most successful DT methods on LVCSR use lattices to get a 

rich set of competing candidate information. The advantage 

can also be explained by the test risk bound in Eq. (1) since 

lattices provide more confusion patterns (i.e., more data). As 

discussed in Section II. B, this will result in a reduced 

generalization term, which makes the test risk bound tighter. In 

the following, two solutions are provided for lattice-based 

separation measure definition for LVCSR. 

A. Utterance Level Separation Measure  

The first solution is similar to lattice-based MMIE [3], [29], 

MCE [30], and MPE [7]. We then define distances, 

 ,_

i

MMIESME Od ,  ,_

i

MCESME Od , and   ,_

i

MPESME Od , as 

shown in Table II. We can now take advantage of optimization 

algorithms adopted in lattice-based DT methods to obtain 

statistics at the utterance level and then use extended Baum- 

Welch algorithms to optimize parameters. However, due to its 

focus on utterance level competition, it is possible to lose the 

advantage of the frame-level discrimination power in the SME 

separation measures as discussed in the previous section.  

B.  Word Level Separation Measure 

SME separations can also be defined at the word segment 

level. The first step is to align the utterance with the correct 

transcription and get the timing information for every word. 

The second step is to find competing words for every word in 

the lattice. This is done by examining the lattice to get words 

falling into the time segment of current correctly transcribed 

words. A frame overlapping threshold is set not to consider 

words with too few overlapping frames as competing words. 

For example, for the lattice in Figure 2, the competing words 

are listed in Table IV. For the pth overlapping word pair, we 

denote the number of overlapped frames as nop, the jth 

overlapping frame as Ooj, set of overlapping frames as Fop, and 

the target and competing words as Wtarget and Wcomp. A word 

level separation can be defined as: 

 
 

 opoj

j oj
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op

i

wordSME

op FOI
WOP

WOP

n
Od 
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1

),( ,   (13) 

where  targetWOP oj  and  compWOP oj  are the likelihood scores 

for Wtarget and Wcomp. 

For any word pair Wtarget and Wcomp, we compute Eq. (13), 

and plug all of them into the following formula:   
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SME
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L
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11
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


 ,  (14) 

where npi denotes the number of overlapping word pairs in 

utterance Oi. 

It should be noted that the indicator functions for frame 

selection in Eqs. (4) and (13) are discontinuous. Therefore, it is 

possible that a change in  to improve separation may lead to a 

different model label sequence for the strings, which may in 

fact lead to a worsening of separation. In Eq. (6), the indicator 

function for utterance selection is approximated by a sigmoid 

function. This may be applied for the indicator function of 

frame selection in future study to ensure continuousness. 

We found the word level separation ( ),(_ i

wordSME

o Od with 

word pairs in lattices) to be better than the utterance level 

measure (  ,_

i

utterSME Od
i

with only the correct and most 

competitive strings), because it uses more confusion patterns. 

For usage in SME, ),(_ i

wordSME

o Od may also have an advantage 

over other separation measures defined above, which have only 

one value for each utterance. This is because in SME we will 

plug this separation value into Eq. (3), and the utterances with 

values greater than the value of the margin will not contribute 

to parameter optimization. However in some cases, there may 

be some word pairs in lattices that still have distances less than 

the value of the margin. The word level separation measure 

),(_ i

wordSME

o Od makes use of those word pairs to get more 

confusion patterns. 

 

 
Figure 2. A lattice example: the top lattice is obtained in decoding, and the 

bottom is the corresponding utterance transcription. “sil” stands for silence. 

 

TABLE IV 

CORRECT AND COMPETING WORDS FOR LATTICE EXAMPLE 

Correct Word Competing Words 

the that 

world wood, it, dig 

is it, dig, did, wonderful 

wonderful want, full, foul, order, dig, did, wander, for 

 

V. SPEECH RECOGNITION EXPERIMENTS 

The proposed SME framework was evaluated on two 

sil 

sil 

world wonderful sil 

sil 

world it 

that wood wonderful 

want full 
sil 

sil 

sil dig 

did 
wander 

order 

for 

foul 

sil is the 
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different tasks: the TIDIGITS connected digit and 5k-WSJ0 

LVCSR tasks. Using 12-state digit models, SME achieves a 

string accuracy of 99.43% on the TIDIGITS database. In 

5k-WSJ0 LVCSR task, SME gets around 10% relative word 

error rate reductions from the MLE baselines. 

A. TIDIGITS 

For the TIDIGITS database, the same experimental 

configuration was used as that in [18]. There are 8623 digit 

strings in the training set and 8700 digit strings for testing. The 

hidden Markov model toolkit (HTK) [31] was first used to 

build the baseline MLE HMMs. There were 11 whole-digit 

HMMs: one for each of the 10 English digits, plus the word 

“oh”. Each HMM has 12 states and each state observation 

density is characterized by a mixture Gaussian density. GMM 

Models with 1, 2, 4, 8, 16, and 32 mixture components were 

trained. The input features were 12MFCCs + energy, and their 

first and second order time derivatives. MCE models were also 

trained for comparison. N-best incorrect strings were used for 

training. The performance of this choice was better than the 

implementation with the top incorrect string. Different 

smoothing parameters were tried and the results were with the 

best one. SME models were initiated with the MLE models. 

This is in clear contrast with the LME models [17], [18], [28], 

which are typically built upon the well-performed MCE 

models. Digit decoding was based on unknown length without 

imposing any language model or insertion penalty.  

 
TABLE V 

MARGIN VALUE ASSIGNMENT 

1-mix 2-mix 4-mix 8-mix 16-mix 32-mix 

5 6 7.5 8.5 9 11 

 

 ,_

i

utterSME Od  was used as the separation measure, which 

means that only the most competitive string was used in SME 

training. Various soft margin values were set corresponding to 

different model complexities as shown in Table V. These soft 

margin values were empirically chosen as the mode of all the 

separation distances obtained from the MLE model. For 

example, in Figure 4, the mode of the separation distance of the 

1-mixture MLE model is about 5. Therefore, the soft margin 

value for the 1-mixture SME model was set as 5. Slightly 

changing values in Table V only made very little difference on 

final results. While this setting produced satisfactory results, 

we believe it is too heuristic and suboptimal, and will 

investigate in future work whether there is any plausible theory 

underlies it.  

Figure 3 shows string accuracy improvement of SME in the 

training set for different SME models after 200 iterations. 

Although the initial string accuracies (got from MLE models) 

were very different, all SME models ended up with nearly the 

same accuracies of 99.99%. As discussed in Section II, the test 

risk is bounded by the summation of the empirical risk and the 

generalization term, which is related with margin. The training 

errors are nearly the same for all of these different mixture 

models, and the margin plays significant role in the test risk 

bound, resulting in different test risks that are listed in Table 

VI, and to be discussed later.  

Figures 4 and 5 compare histograms of the measure defined 

in Eq. (4) with the normalized LLR for the case of 1-mixture 

GMM before and after SME. Usually, the larger the separation 

value, the better the models are. We observe in Figure 5 a very 

sharp edge around a value of 5, which is the soft margin value 

for the 1-mixture model update shown in the leftmost column 

of Table V. It is clear that when SME finishes parameter 

update, most samples which have separation values less than 

the specified margin move to the right side of histogram, 

resulting in separation values greater than the margin value. 

This demonstrates the effectiveness of the SME algorithms. 

We can also see the effect in Figure 6, the histogram separation 

for the 32-mixture case after SME update. The sharp edge now 

is around 11, the margin shown in the rightmost column in 

Table V. With a greater margin, the 32-mixture model can 

attain a string accuracy of 99.43% in the testting set while the 

1-mixture model can only get 98.76%, although both models 

have nearly the same string accuracy in the training set. This 

observation is greatly in consistent with the test risk bound 

inequality of Eq. (1).  

 

 
Figure 3. String accuracy of SME for different models in TIDIGITS training. 

 

 
Figure 4. The histogram of separation distance of 1-mixture MLE model in the 

TIDIGITS training set. 
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Figure 5. The histogram of separation distance of 1-mixture SME model in the 

TIDIGITS training set. 

 

 

Figure 6. The histogram of separation distance of 32-mixture SME model in 

the TIDIGITS training set. 

TABLE VI 

TESTING SET STRING ACCURACY COMPARISON WITH DIFFERENT METHODS. 

ACCURACIES MARKED WITH AN ASTERISK ARE SIGNIFICANTLY DIFFERENT 

FROM THE ACCURACY OF THE SME MODEL (P<0.025, PAIRED Z-TEST, 8700 

D.O.F. [32]). 

 MLE MCE LME [18] SME SME_joint 

1-mix 95.20%* 96.94%* 96.23%* 98.76% 98.74% 

2-mix 96.90%* 97.40%* 98.30%* 98.95% 98.92% 

4-mix 97.80%* 98.24%* 98.76%* 99.20% 99.11% 

8-mix 98.03%* 98.66%* 99.13% 99.29% 99.26% 

16-mix 98.36%* 98.87%* 99.18% 99.30% 99.32% 

32-mix 98.51%* 98.98%* 99.34% 99.43% 99.40% 

 

Table VI compares different training methods with various 

numbers of mixture components. Only string accuracies are 

listed in Table VI. At this high level of performance in 

TIDIGITS, the string accuracy is a strong indicator of model 

effectiveness. For the task of string recognition, the interest is 

usually in whether the whole string is correct. Therefore, string 

accuracy is more meaningful than the word accuracy in 

TIDIGITS. Two different solutions of SME are compared in 

Table VI. The column labeled SME presets the soft margin 

with values defined in Table V. The column labeled 

SME_joint solves SME by optimizing the soft margin and 

HMM parameters jointly. For the purposed of comparison, the 

final margin values got by SME_joint are listed in Table VII. 

These values are similar to those margin values preset in Table 

V. There are only very small differences between the 

performance of SME and SME_joint in Table VI. This again 

demonstrates our opinion in Section III.D that the two 

proposed solutions are nearly equivalent because of the 

mapping relationship between   and ̂ . Because there is 

some knowledge about the range of ̂ as in Figure 4 but no 

explicit knowledge of  , we prefer setting ̂  in advance as a 

simple way to solve SME. In the following sections, unless 

stated, SME uses the solution that presets the soft margin value. 

 
TABLE VII 

MARGIN VALUES GOT BY JOINT OPTIMIZATION  

1-mix 2-mix 4-mix 8-mix 16-mix 32-mix 

5.2 5.9 7.1 7.4 9.6 10.6 

 

In [4], MCE reduced string error rate from 1.4% (MLE) to 

0.95%, using a 10-state 64-mixture whole word models. The 

MCE performance of our 12-state 32-mixture whole word 

models is similar to the results in [4], reducing string error rate 

from 1.49% (MLE) to 1.02%. Clearly SME outperforms MLE 

and MCE significantly, and is consistently better than LME. 

For 1-mixture SME models, the string accuracy is 98.76%, 

which is better than that of the 32-mixture MLE models. The 

goal of our design is to separate the models as far as possible, 

instead of modeling the observation distributions. With SME, 

even 1-mixture models can achieve satisfactory model 

separation. The excellent SME performance is attributed to the 

well defined model separation measure and good objective 

function for generalization. 

We believe the string accuracy of 99.43% listed in the 

bottom row of Table VI represents the best result ever reported 

on the TIDIGITS task with similar configuration. In [33], 

99.45% string accuracy was reported with 32-mixture models 

by using a grammar and word insertion penalty. In [28], 

99.47% string accuracy was obtained with the constraint that 

the maximum string length is 7 [34]. These decoding 

constraints typically improve string accuracies. However, they 

were not used in our experiments. 

 

 
Figure 7. The histogram of separation distance of 32-mix model of MLE, 

MCE, and SME in the TIDIGITS testing set. The short dashed curve, line 

curve and dot curve correspond to MLE, MCE, and SME models. 
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To compare the generalization capability of SME with MLE 

and MCE, we plot the histograms of the separation measure for 

the testing utterances in Figure 7 for the 32-mixture MLE, 

MCE and SME models. As indicated in the rightmost curve, 

SME achieves a significantly better separation than both MLE 

and MCE in the testing set, due to direct model separation 

maximization and better generalization. 

B. 5k WSJ0 

The 5k-WSJ0 task was used to evaluate the effectiveness of 

SME on LVCSR. The training material is the SI-84 set, with 

7077 utterances from 84 speakers. Testing is performed on the 

Nov92 evaluation set, with 330 utterances from 8 speakers. 

Baseline HMMs were within-word triphone models trained 

with MLE using HTK. There were a total of 2329 shared states 

obtained with a decision tree, and each state observation 

density was modeled by an 8-mixture GMM. The input features 

were 12MFCCs + energy, and their first and second order time 

derivatives. The bigram and trigram language models (LMs) 

within the 5k-WSJ0 vocabulary were used for decoding. The 

baseline WERs were 8.41% with bigram LM and 6.13% with 

trigram LM, respectively. Both the bigram and the trigram LMs 

were provided by the original WSJ0 corpus. We note that other 

studies have reported better results than our baseline systems 

by using different configurations (ex. in [30]). In this paper, we 

do not have access to those baseline configurations, so we only 

attempt to improve over our best available setups. Our 

HTK-trained baselines are comparable with the HTK-trained 

within-word triphone results reported in [35] and recent results 

in [36]. In [37], the WER of 7.87% was reported with 

cross-word triphone models. Our baseline is also comparable 

with this result, considering the different within-word and 

cross-word settings. The proposed SME algorithm is expected 

to improve over better baseline systems as well. 

The bigram LM was used to obtain seed lattices for all of the 

training utterances. These lattices were generated only once. At 

each iteration, the recently updated HMMs were incorporated 

to generate new lattices by using seed lattices as decoding word 

graphs. Following this, SME was used to update HMM 

parameters. The method, denoted by SME_word, is based on 

the word level separation measure, ),(_ i

wordSME

o Od , defined in 

Eq. (11). The soft margin value was set to 5. 

MCE model was trained with the similar implementation as 

[30]. The bigram LM was used to generate lattices and unigram 

was used to rescore them. The correct path was removed from 

the decoded word graph, and the smoothing constant was set to 

0.04 as in [30]. However, since the relative WER rate of this 

MCE realization is worse than that reported in [30], there may 

be some implementation issues we need to investigate.  

In Table VIII, the WERs obtained with MLE, MCE and the 

SME method are compared. The SME method achieved lower 

WERs than those obtained with the MLE and MCE models. 

SME_word decreased WERs significantly from MLE, with 

relative WER reductions of 12% for bigram LM and 9% for 

trigram LM, respectively. These relative WER rates are 

comparable to that reported in [30]. Therefore, we believe 

SME can also work on LVCSR as well as other DT methods.  

 
TABLE VIII 

PERFORMANCE COMPARISON ON THE 5K-WSJ0 TASK 

WER Bigram Trigram 

MLE 8.41% 6.13% 

MCE 7.85% 5.83% 

SME_word 7.38% 5.60% 

 

It should be noted that the current implementations of MCE 

and SME are different. Therefore, there is no safe conclusion 

whether the formalization of SME is really better than MCE. 

For the purposed of fair comparison, it is desirable to share 

most implementations for MCE and SME, differing only with 

their distinguished algorithm parts. In [38], we formalized 

SME in string level and shared the most realizations with MCE, 

and the difference was only on margin-based utterance and 

frame selection for SME. The results clearly showed SME 

outperformed MCE with the help of margin. That work is out 

of the scope of the current paper, please refer [38] for detail. 

VI. CONCLUSION AND DISCUSSION 

We have proposed a novel discriminative training method, 

called SME, to achieve both high accuracy and good model 

generalization. This proposed method utilizes the successful 

ideas of soft margin in SVMs to improve generalization 

capability. It directly maximizes the separation of competing 

models to enhance the testing samples to approach a correct 

decision if the deviation from training models is within a safe 

margin. Frame and utterance selections are integrated into a 

unified framework to select the training utterances and frames 

critical for discriminating competing models. From the view of 

statistical learning theory, we show that SME can minimize the 

approximate risk bound on the test set. The choice of various 

loss functions is illustrated and different kinds of separation 

measures are defined under a unified SME framework.  

Tested on the TIDIGITS database, even 1-mixture SME 

models can better separate different words and produce better 

string accuracy than 32-mixture MLE models. The 

performance of SME is consistently better than that of LME, 

and significantly better than those of MLE and MCE. The 

experiment coincides with the inequality of the test risk bound, 

showing that even though all the models have the same training 

errors, the test string accuracies differ because of different 

margin values associated with various models. SME was also 

applied to LVCSR by defining separation measures at the word 

levels. Tested on the 5k-WSJ0 task, SME achieves about 10% 

relative WER reductions over our best MLE baselines. 

This paper represents an initial study; we are now working 

on a number of related research issues to further complete the 

theory of SME. The first is to expand the framework of SME. 

Different options can be integrated into current framework. For 

example, the current frame selection procedure gives equal 

weight to all the different frames in the correct and competing 

strings. Some frames in an utterance may be more critical to 

measure the separation of models. A strategy to select these 
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critical frames will be investigated. More elaborate definitions 

of margin functions will also be explored to tightly couple them 

with the definition of the empirical risks.  

The second research item is to design a better solution to Eq. 

(3). Two solutions to SME are proposed in this study. One 

solution is to obtain HMM parameters by presetting the soft 

margin, and the other is to optimize the soft margin and HMMs 

together. Because there is a correspondence between the soft 

margin and the balance coefficient  , these two solutions are 

nearly equivalent. The solution of jointly optimizing soft 

margin and HMM parameters needs to work under a fixed  . 

How to select a satisfactory   is still an open problem in 

machine leaning. Determining how to obtain the soft margin 

value in advance for the presetting margin solution is another 

important problem, although the histogram such as Figure 4 

gives good indication. We will explore what the true margin 

should be and its relationship with the HMM parameters. We 

will also investigate the theory for better selection of  . Better 

performance is expected with more precise selection of the 

margin value or the balance coefficient  . 

The third item is to implement a better optimization method. 

As discussed in Section III.E, with some approximation, LME 

and LM-GMM/LM-HMM convert the original problem into a 

convex optimization problem. The sacrifice of precision gives 

a nice convex target function. We will explore this tradeoff, 

and see whether SME can also be cast into a convex problem. 

Finally, we will continue to work on LVCSR. We believe the 

current WSJ0 performance is far from optimal. We will study 

the usage of LM in SME training. Currently, LM is only used to 

generate lattices for utterances and not used for SME parameter 

update. The relationship between SME and LM will be 

evaluated in future studies. Another research direction is to 

take advantage of the other successful DT algorithms by using 

their corresponding separation measures defined in Table II. 
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