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ABSTRACT 
 

We extend our previous work on soft margin estimation (SME) to 

large vocabulary continuous speech recognition in two aspects. 

The first is to use the extended Baum-Welch method to replace the 

conventional generalized probabilistic descent algorithm for 

optimization. The second is to compare SME with minimum 

classification error (MCE) training with the same implementation 

details in order to show that it is indeed the margin component in 

the objective function with margin-based utterance and frame 

selection that contributes to the success of SME. Tested on the 5k-

word Wall Street Journal task, all the SME methods work better 

than MCE. The best SME approach achieves a relative word error 

rate reduction of about 19% over our best baseline performance. 

This enhancement can only be demonstrated because of our use of 

margin-based objective function and the extended Baum-Welch 

parameter optimization method. 

 

Index Terms— soft margin estimation, hidden Markov 

model, discriminative training, extended Baum-Welch, lattice 

1. INTRODUCTION 

Discriminative training (DT) methods have been extensively 

studied to boost the automatic speech recognition (ASR) system 

accuracy [1-3]. The most successful methods are maximum mutual 

information estimation (MMIE) [1], minimum classification error 

(MCE) [2], and minimum word/phone error (MWE/MPE) [3]. 

MMIE training separates different classes by maximizing 

approximate posterior probabilities. On the other hand, MCE 

directly minimizes approximate string errors, while MWE/MPE 

attempts to optimize approximate word and phone error rates. If 

the acoustic conditions in the testing set match well with those in 

the training set, these DT algorithms usually achieve very good 

performance when tested. However, such a good match can not 

always be expected for most practical recognition conditions. To 

avoid the problem of over-fitting on the training set, regularization 

is achieved by using “I-smoothing” [3] in MMIE and MWE/MPE 

while MCE exploits a smoothing parameter in a sigmoid function 

for regularization [4]. 
Inspired by the great success of margin-based classifiers, there 

is a trend to incorporate the margin concept into hidden Markov 

model (HMM) for ASR. In contrast to the above conventional DT 

methods, margin-based techniques treat the generalization issue 

from a perspective of statistical learning theory [5]. Several 

attempts based on margin maximization were proposed recently 

and have shown some advantages over DT methods in some ASR 

tasks [6-10]. Among them, soft margin estimation (SME) [9] was 

proposed to make a direct use of the successful ideas of soft margin 

in support vector machines [11] to improve the generalization 

capability and decision feedback learning in DT to enhance model 

separation in the classifier design.  

In [10], SME was shown to work well on the 5k-word Wall 

Street Journal (5k-WSJ0) task. However, two potential areas for 

improvement need to be addressed. The first is that the generalized 

probabilistic descent algorithm [12] was used for HMM parameter 

optimization. Although it is easy to work in a small task [9], we 

had a hard time getting suitable step sizes in a large vocabulary 

continuous speech recognition (LVCSR) task. The second is that 

SME improves over models initialized with maximum likelihood 

estimation (MLE), but fails to demonstrate its advantage over 

conventional DT models, such as MCE-trained models, in the 

same experimental configuration [10].  

This study addresses the two abovementioned issues. For 

optimization, extended Baum-Welch (EBW) is adopted to update 

HMM parameters with statistics obtained from lattices. For 

comparison, MCE will be compared fairly with SME by sharing 

most of the implementation details. In addition, we build a baseline 

with cross-word triphone models, as opposed to the within-word 

models in [10], to show that SME indeed also makes significant 

improvements over this better baseline.  

In summary, the proposed SME modification, with utterance 

and frame selection using EBW optimization, performs better than 

MCE and MLE. Above all SME with frame selection works better 

than SME with utterance selection because of the use of more 

confusion patterns. The best SME model achieves a relative word 

error rate (WER) reduction of 19% from our best MLE baseline. 

2. SOFT MARGIN ESTIMATION 

In this section, the theory of soft margin estimation is first briefly 

reviewed. Then we focus on how to design SME on an LVCSR 

task. Both utterance-based and frame-based SME methods are 

proposed. To make a fair comparison with MCE, these SME 

methods share most implementations with MCE. 

2.1 Original SME Formulation 

Here, we briefly introduce SME. Please refer to [9][10] for 

detailed discussion. According to the statistical learning theory [5], 

a test risk is bounded by the summation of two terms: an empirical 

risk (i.e., the risk on the training set) and a generalization function. 

The generalization function is a monotonic increasing function of 

Vapnik & Chervonenkis dimension, or VC dimension (VCdim) [5]. 

Usually a classifier generalizes better with a small VCdim. It can be 

shown that VCdim is bounded by a decreasing function of the 

margin [5]. Hence, VCdim can be reduced by increasing the margin. 



This is the key idea of the margin-based method. 

As analyzed, there are two targets for optimization: one is to 

minimize the empirical risk, and the other is to maximize the 

margin. These two targets are combined into a single SME 

objective function for minimization: 
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 denotes the set of HMM parameters,  ,iO  is a loss function 

for utterance Oi, and N is the number of training utterances.   is a 

constant soft margin, and   is a coefficient to balance soft margin 

maximization and empirical risk minimization. 

The key component of SME is a proper definition of the loss 

function,  ,iO . This loss should be related to the margin,  . 

In the original formulation of SME [9], margin is used for 

utterance selection with a hinge loss function. This usage will be 

discussed in Section 2.2. As an extension, margin-based frame 

selection will be discussed in Section 2.3. Margin-based utterance 

and frame selection allow the loss in Eq. (1) to focus on samples 

important to model separation instead of using all the samples. 

2.2 SME with Utterance Selection 

SME with utterance selection is formularized as: 

      UOIOdO iii  ,,  .  (2) 

I is an indicator function and selects the utterances that are in set U 

for the contribution of the empirical risk.  ,iOd is the separation 

measure between the correct and competing candidates for Oi.  

In the original formulation of SME, this utterance selection is 

realized via a hinge function as: 
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This means that if the separation measure  ,iOd is greater 

than the margin, this utterance is good enough and the parameters 

inside it need not update. Otherwise, this utterance causes some 

losses and contributes to the empirical risk computation of Eq. (1). 

Outlier utterances may cause trouble for model training. 

Hence, another loss function for utterance selection is defined as: 
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where the hinge loss function in Eq. (3) is modified to have an 

additional threshold. The utterance that has too small value of 

 ,iOd will not contribute to the loss computation because it can 

be an outlier.  

Now, it is critical to define the separation measure  ,iOd . 

To make a fair comparison between SME and MCE, the following 

separation measure is defined:  
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where Gi is a decoded lattice, Si is the correct transcription for 

utterance Oi and Ŝ  denotes the transcription of words in the 

decode lattice, Gi. The quantity in Eq. (5) measures the separation 

between the correct path and competing paths. In MCE, Eq. (5) is 

further embedded into a sigmoid function as in [13]. That sigmoid 

function can also be considered as an utterance selection function. 

This is because the sentences with sigmoid values close to 0 or 1 

have their derivatives near 0 and will not contribute to parameter 

update. SME does not use a sigmoid function because there is 

already an utterance selection item  UOI i  in Eq. (2).  

By plugging Eq. (5) into Eq. (3) or Eq. (4) to compute the loss 

in Eq. (1), SME with utterance selection is realized.  

2.3 SME with Frame Selection 

Since the utterances that are not selected in Eq. (3) or Eq. (4) may 

still have key local discriminative information from individual 

frames, SME with frame selection is proposed as: 
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where Oij is the jth frame for utterance Oi, and Fi is the frame set in 

which the frames contribute to the loss computation. SME now 

selects the frames that are critical to discriminative separation. We 

realize it with the frame posterior probability via computing the 

posterior probability for a word w (in the correct transcription Si) 

with starting time tws and ending time twe, which is got by summing 

the probabilities of all the lattice paths, R, in which w lies in: 
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The frame posterior probability is then computed by summing 

the posterior probabilities of all the correct words that pass time j: 
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Frame selection for SME is done by comparing the frame posterior 

probability with the margin  . Using similar selection styles as in 

Eqs. (3) and (4), the frame loss function has the following form: 
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Eqs. (9) and (10) select the frames that are critical for parameter 

updating. Eq. (9) focuses on confusion patterns and ignores good 

samples. Eq. (10) works on confusion patterns and removes the 

influence of noisy frames with too small posterior probabilities 

because they may be unreliable for parameter update due to wrong 

time alignment. As what will be demonstrated in the experiments 

section, Eq. (10) is critical for the success of frame-based SME.  

The last step is to define frame level separation measure 

 ,ijOd  with similar computational steps as Eq. (8): 
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Similar to Eq. (5), the correct transcription is removed from the 

denominator in Eq. (11) because it is a measure of the correct 

versus the incorrect transcriptions. By plugging Eq. (11) into Eq. 



(9) or (10) to compute the loss functions in Eq. (6) and Eq. (1), 

SME with frame selection is implemented.  

2.4 Implementation with EBW 

The EBW formulation with the proposed separation measure in 

Eqs. (5) and (11) is implemented as follows. First, an MLE model 

and a bigram language model (LM) were used to decode all 

training utterances and generate corresponding word lattices. Then 

a unigram was used to rescore the decoded lattices. In all the DT 

methods experimented in this study, a factor of 1/15 was used to 

scale down the acoustical model likelihood as used in the other DT 

studies [3][13][14]. As noted in Eqs. (5) and (11), the probabilities 

of the correct transcriptions are subtracted in the denominators as 

in [13]. Updating statistics were obtained from the lattices with a 

forward backward algorithm. Then, EBW was used to update the 

HMM parameters as in [14]. Because SME directly works on 

generalization, no I-smoothing was used. SME and MCE share 

these steps, and only differ in the definition of objective functions. 

3. EXPERIMENTS 

We used the 5k-WSJ0 task to evaluate the effectiveness of SME on 

LVCSR. The training set is the SI-84 set, with 7077 utterances 

from 84 speakers. All testing is conducted on the Nov92 evaluation 

set, with 330 utterances from 8 speakers. Baseline HMMs are 

trained with MLE using the HMM toolkit (HTK). The HMMs are 

cross-word triphone models. There were 2818 shared states 

obtained with a decision tree and each state observation density is 

modeled by an 8-mixture Gaussian mixture model. The input 

features were 12MFCCs + energy, and their first and second order 

time derivatives. A trigram LM within the 5k-WSJ0 corpus was 

used for decoding. The baseline WER was 5.06% for MLE models. 

This performance is much better than our previously baseline with 

within-word triphones reported in [10].  

Then the MCE model was trained with the implementation in 

Section 2.4. The smoothing constant in the sigmoid function was 

set to 0.04 as in [13]. EBW was used for HMM parameters update. 

The WER of the MCE model was 4.60%, getting 9% relative WER 

reduction over the MLE baseline. This improvement percentage is 

similar to that reported in [13]. 

For the purpose of a fair comparison, all the proposed SME 

methods were modified on the basis of MCE implementation. This 

means that the implementations are similar, only the individual 

algorithm parts are different. SME_u and SME_uc indicate the 

SME models with utterance selections of Eqs. (3) and (4). SME_f 

and SME_fc are the SME models with the frame selections of Eqs. 

(9) and (10).  All SME models are initiated from MLE model. 

The evolutions of WERs of MCE, SME_u, and SME_fc are 

plotted in Figure 1. The minimum WERs of MCE, SME_u, and 

SME_fc were reached at iteration 12, 6, and 10, respectively. All 

the other methods also reached their minimum WERs within 15 

iterations. The WERs of SME_fc were less than those of MCE and 

SME_u in every iteration.  

Table 1 compares the resulting WERs and relative WER 

reductions of MCE and all the SME methods from MLE. All the 

proposed SME methods worked better than MCE, achieving about 

12%-19% relative WER reduction from MLE baseline. The best 

was obtained by SME_fc, with the frame selection of Eq. (10).  

Figure 2 compares the histograms of separation measure, d(.), 

in Eq. (5) for MLE and SME_u models. No significant difference 

for the d values greater than 10 was observed. However, SME_u 

model moved the samples with d values less than -10 significantly 

to the right (resulting in bigger d values, which correspond to a 

better model separation), with 13% relative WER reduction. This 

demonstrates the optimization strategy of SME which focuses on 

confusion patterns. SME_uc achieved nearly the same result as 

SME_u. This shows that outlier is not a critical issue for SME with 

utterance selection because the utterance level information is 

stable. All the SME methods with utterance selection work better 

than MCE, showing that the utterance selection strategy in Eqs. (3) 

and (4) is more effective than the sigmoid function in this task. 
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Figure 1: Evolution of testing WER for MCE, SME_u, and 

SME_fc models on the 5k-WSJ0 task. 

 

Table 1: Performance comparison on the 5k-WSJ0 task 

 WER Relative Improvement 

MLE 5.06% - 

MCE 4.60% 9% 

SME_u 4.41% 13% 

SME_uc 4.39% 13% 

SME_f 4.46% 12% 

SME_fc 4.11% 19% 
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Figure 2: The histogram of the separation measure d in Eq. (5) of 

MLE (left) and SME_u (right) models on training set. 

 

A closer look at Table 1 shows that SME_f, the SME model 

with hinge loss as the frame selection function, works slightly 

worse than SME_u. The power of using more confusion patterns 

did not come out clearly in this case. The reason can be well 

illustrated in Figure 3 by observing the histogram of the frame 

posterior probabilities of the MLE model (left figure). Different 

from the utterance separation measures in Figure 2, the distribution 

of posterior probabilities has two strong modes: one is around 1, 



and the other is around 0. The reason that too many frames have 

zero posterior probability indicates that the time alignment of 

transcription is not precise. Therefore, given some misalignment 

information, the posterior probabilities are 0. These noisy frames 

degrade the power of using more confusion frame patterns. 

As a solution, SME_fc removed the noisy frames that have 

too small posterior probabilities by using the loss function defined 

in Eq. (10). The margin and threshold of that loss function are set 

to be 0.8 and 0.1, respectively. Only a small amount of frames is in 

this range to be selected by SME_fc for parameter update. The 

effect is obvious: SME_fc achieved the best result, with a relative 

19% WER reduction from the MLE baseline. It should be noted 

that the loss function in Eq. (10) is used to deal with the noisy 

frames for SME with frame selection because the statistics for 

frames is not stable. For SME with utterance selection (SME_uc), 

it makes little difference. As shown in the right figure of Figure 3, 

the SME_fc  histogram of frame posterior probabilities has very 

few samples lying between the range of [0.1, 0.8], which is the 

range defined for frame selection. Most the previous samples in 

that range of the initial MLE model were moved to the region, 

[0.8, 1]. This means that SME_fc increases the model separation 

distances of all these confusion patterns. For the frame samples 

that have the posterior probability less than 0.1, SME_fc did not 

work on them, which is consistent with what’s defined in Eq. (10).  
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Figure 3: The histogram of the frame posterior probabilities of 

MLE (left) and SME_fc (right) models on training set. 

4. CONCLUSION 

In this study, we treated SME thoroughly on the WSJ task. As an 

improvement over the work reported in [10], EBW was used to 

update HMM parameters with the statistics collected from 

recognition lattices. SME realizations based on utterance selection 

and frame selection are realized. In contrast to SME with utterance 

selection, SME with frame selection uses more confusion patterns. 

For a fair comparison with MCE, the implementation of SME and 

MCE shares the same core components. Tested on the 5k-WSJ0 

task, all the four proposed SME methods achieved about more than 

12% relative WER reductions over MLE baseline. All SME 

methods also outperformed MCE. The SME model with frame 

selection achieved 4.11% WER, with 19% relative WER reduction 

from MLE, and 10% more relative WER reduction than MCE. Due 

to the successful frame selection strategy and powerful EBW, the 

result in this study is much better than the WER of 5.60% reported 

in our previous work [10] with only within-word triphone models. 

The effectiveness of SME over MCE is also well demonstrated. 

Four research issues need to be addressed in the future. The 

first is to investigate a margin-based sample selection between the 

frame and utterance level. The utterance level selection discards 

the whole utterances with the danger of losing some helpful local 

discriminative information. On the other hand, the frame level 

selection has to deal with the noisy frames. Therefore, the unit 

between frame and utterance (e.g. at phone and word levels) may 

be a good choice because of the advantage of locality and stability. 

The second is to investigate whether SME can also be better than 

MMIE and MPE by sharing most implementations when applying 

the core components of SME. The third is to extend this study to 

feature extraction on an LVCSR task. SME already demonstrated 

its success in jointly optimization of features and HMM parameters 

on the TIDIGITS task [15]. The fourth is to apply SME to even 

larger LVCSR task than the 5k-WSJ0 task.  
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