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ABSTRACT

We address a critical deployment issue for network systaaragly
motivating people to install and run a distributed servibieis work

is aimed primarily at peer-to-peer systems, in which thdsiec
and effort to install a service falls to individuals rathbamn to a
central planner. This problem is relevant for bootstragystems
that rely on the network effect, wherein the benefits are atit f
until deployment reaches a significant scale, and also fplogie
ing asymmetric systems, wherein the set of contributor#fesrdnt
than the set of beneficiaries. Our solution is the lottery (lattree),

a mechanism that probabilistically encourages both ppatiion in
the system and also solicitation of new participants. Wendetfie
lottree mechanism and formally state seven propertiesetiaiur-
age contribution, solicitation, and fair play. We then prasthe
Pachira lottree scheme, which satisfies five of these sevmpepr
ties, and we prove this to be a maximal satisfiable subsetgUsi
simulation, we determine optimal parameters for the Padboir-
tree scheme, and we determine how to configure a lottreersyste
for achieving various deployment scales based on expecstal
lation effort. We also present extensive sensitivity asesy which
bolster the generality of our conclusions.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Opera-
tions—network managemenH.5.3 [Information Interfaces and
Presentatior]: Group and Organization Interfacesellaborative
computing J.4 [Social and Behavioral Sciencds economics, psy-
chology, sociologyK.5.2 [Legal Aspects of Computing: Gov-
ernmental Issues+egulation
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Algorithms, Economics, Human Factors, Legal Aspects, Theo
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1. INTRODUCTION

Network protocols, distributed systems, and communioatiger-
lays require several critical qualities to achieve deplegtn They
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must be effective at their intended goal, compatible witisting
infrastructure, robust to failures, secure against attacemen-
tally deployable, scalable, and so forth. Yet in additiorthese
much-studied aspects, networked systems must also betiatira
to the people who are needed to deploy them.

For a central planner, the end goal itself may be sufficient mo
tivation to deploy; for example, an AS may be motivated to de-
ploy a new intra-domain routing protocol that promises tpiiave
resource efficiency. However, many of the most interestieg n
worked systems proposed in recent years are intended to-be de
ployed on end hosts, which are under the control of indivislua
Some of these systems are asymmetric, in the sense thatrtiee pa
ipants contribute resources or effort to the system buiveceth-
ing directly in return. Other systems, although symmemngofar
as the contributors are also the benefactors, rely on thgonet
effect [20] to make the benefit of the system significant.

Symmetric network-effect systemsch as recommendation net-
works [13], file-sharing services [12], social forums [1hem data-
bases [24], or collaborative reference works [3], can bexesif-
sustaining when the scale becomes large enough for the behefi
participation to outweigh the cost. However, such systemsato-
riously difficult to bootstrap, as evidenced by the humerdesel-
oped peer-to-peer systems [5], few of which have becomelaopu

Asymmetric distributed systeprmich as BOINC [4], GPU [25]
and Folding@Home / Genome@Home [21], are even more prob-
lematic. Because potential contributors are asked to geowom-
putation, storage, or bandwidth toward a goal that doesinetttly
benefit them, they have little or no incentive to join the eyst
Evidently, some people do choose to contribute, for vari@as
sons including a selfless desire to help [10], a hope that thr& w
may eventually benefit them [17], the “geek chic” associatét
high contribution levels displayed on public ranking sifés and
even the meager value of looking at pretty pictures on a seree
saver [30]. Once such systems reach a threshold of popu liduéty
seem able to sustain substantial ongoing contributionlowoig
the principle of “a crowd draws a crowd,” the media attentom
buzz that accompanies a large congregation can inspiresothe
join. In most cases, however, potentially useful systemguah in
unpopularity [7], having never managed to inspire a critinass
of participants.

The key problem that prevents a large number of symmetric and
asymmetric networked systems from ever becoming populterds
strapping, i.e., attracting a sufficiently large initiakubase. Two
motivational challenges confront bootstrapping suchesyst First,
participants might reasonably expect their investmenftfofteand
resources to return some palpable value, which neither mggm
ric systems nor small network-effect systems provide. Timple
expedient of monetarily compensating early adopters mapeaa



practical option, particularly for small research grougsoge lim-
ited budgets may be vastly insufficient to compensate dmrtois
at a level that many would find satisfactory.

Second, participants have little or no incentive to persuaeir
friends and acquaintances to join. Even for network-efigstems,
wherein the value of the system grows as the population grows
the marginal benefit provided by each new participant isidéfy
spread among the entire pool of participants, rather tharuangy
significantly to the person who solicited the new member. sThu
there is no inherent incentive that fosters system propagat

This paper addresses these two challenges with a generat mec
anism for motivating bootstrap deployment of networkedeys.
The mechanism, which we cddittery treeg(lottreeg, employs the
leverage of lottery psychology [29] to disproportionallyotivate
people to contribute to a developing system. In additiotirdes
employ a mechanism similar to a multilevel marketing sch¢@he
to motivate participants to solicit other people to conttéas well.
Consequently, lottrees can significantly increase theafatetwork
deployment and/or reduce the financial investment requoesh-
sure rapid and eventually self-sustaining growth.

Our impetus for developing lottrees is an asymmetric disted
system we are currently building, which involves partitipa from
a large number of geographically dispersed home computetisl
not take us long to realize that the lack of direct benefit to pa
ticipants, the severe limitations of our budget, and theeabs of
effective and economical advertising would call for a dreaso-
lution to motivate participation, particularly when we ebged the
lackluster fate of so many similar projects [7].

Interestingly, there exists little or no literature in thetworking
community that addresses incentive mechanisms for miiailt
deployment. Previously researched incentive mechaniSmsl],
18, 19, 23, 27, 28, 31, 32, 36] operate on the premise thatigpeop
participate in a networked system if thuility they receive from
the system is higher than theost of joining the system. Such
mechanisms are inherently unsuited for bootstrapping asstnic
or small-sized systems from which the users get little ohimgt in
return. Our lottree mechanism thus marks a fundamentaltlepa
from existing incentive mechanisms in that it incentivizestic-
ipation even in these systems. Consequently, neither aurafo
definitions nor our theoretical proofs rely at all on the mitosly
hard-to-define notion aftility. Even our simulation studies employ
only a weak notion of comparative value, namely the “timeugal
of money.” We further note that our theoretical results gpplthe
full lottree mechanism, not merely to an abstracted or dfreg!
model.

The following section describes the general lottree meishan
including definitions we will use throughout the paper. lici8m 3,
we formally state seven desirable properties for a lottsbéch col-
lectively encourage participation, propagation, and fitay. Sec-
tion 4 introduces some simple lottree schemes that illtestifze
challenges involved in achieving our desired propertie=ctin 5
then presents Pachira, which is the strongest lottree seherhave
developed. Although Pachira satisfies only five of our degirep-
erties, Section 6 proves that these five constitute a maxdatafi-
able subset, insofar as any scheme satisfying these fiveniep
cannot also satisfy the remaining two. Section 7 uses stionlto
determine optimal parameters for the Pachira lottree sehente-
rive configuration parameters for specific lottree deplaytaeand
to evaluate the sensitivity of our results to our various eliogdj as-
sumptions. Section 8 addresses the relevant legal issualsed
in using lottree schemes for motivational deployment ofuoeked
systems. Finally, Sections 9 and 10 present related workoand
conclusions.

2. LOTTERY TREES

A lottery tree(lottre€) is a mechanism that employs a lottery to
probabilistically compensate people who participate ietavorked
system and/or who successfully encourage others to joisystem
as well and contribute to it. Depending on the specific netedr
system under consideration, contributing to or partidgiygain this
system can mean such different things as performing cortipnfa
storing information, transmitting data, testing a softvapplica-
tion, providing recommendations, and so forth.

Regardless of the specific nature of the contributionsrdett
work as follows. Assume that there is executive entitya person,
company, or research group) whose goal it is to deploy a mkago
system for which it needs to attract a large number of paditis
with sufficiently high contribution. We further assume thas ex-
ecutive entity of a network is willing and able to invest ataer
amount of money (or any other item of value)—which we term the
payout—for attracting a sufficient user base of this network. The
function of the lottree is then, after a certain amount ofetihas
passed, to select one contributor of the network as theiestipf
the payout. Ideally, a good lottree performs this selection in such
a way that encourages high participation, contribution, swlici-
tation among participants.

More precisely, consider the network to be initialized wétkin-
gle root node which represents the executive entity. Whenever a
new person joins the network, he does so as a child of somerpers
that is already a node in the system. For example, peopletmigh
sign up their computers to the network by visiting a web dita t
records information and installs an application. If somewisits
the site on his own, his computer joins as a child of the rooiceO
a member, he is able to send solicitations, perhaps in time &br
coded email links, to friends and associates. Anyone wHovisl
the coded link to the web site will join as a child of the member
who sent the link, whom we call themlicitor. After the system has
grown to a size that the executive entity judges to be sulfficghe
farms out work units to the nodes and records each node’sicont
bution. The lottree then selects a winner based on the tneetste
and on nodes’ contributions.

The challenge in designing a lottree scheme is how to defme th
rules of selecting a winner in such a way that encouragesdusth
tribution and system growth. Simple schemes that readdyige
some benefits tend to fail to provide others. For example,ban o
vious scheme is employ a simple lottery that randomly selact
winner in proportion to its contribution to the network. Adugh
this encourages contribution, it discourages particgpfmnm solic-
iting others, since any new member decreases the curreniberem
chances of winning. What we require is a scheme that encesrrag
contribution, solicitation, and fair play.

2.1 Definitions

Each participant that joins a lottree is represented aeade,
and a directed edge from a nodeo nodew indicates that: was
v's solicitor. LetT,. denote a tree rooted at node Formally, we
represent a tre@' as a set containing nodesand ordered node-
pairs (p, ¢) that indicate parent-child edges. This representation
allows trees to be partially ordered using subset and sepeka-
tions. Standard tree properties are assumed to hold. Weajizee
the notation for a foresk’r, constructed as a union of independent
trees, whereiR? is the set of roots of the trees.

The following operators on trees are used in the pageb (7", n)
is the subtree oI’ rooted at node:; Path(T,n) is the set of nodes

1Alternatively, a lottree may periodically select a winnermay opt for
choosing multiple winners in each period. All these mecémsi fall into
the realm of possible lottery-tree strategies.



on the path from node to the root of tred” following edges back-
wards, including the root, but excluding and Parent(T,n) in-
dicates nodex’s parent inT". The set of nodes in treE is denoted
by NV (T') and the set of edges [&(T').

A crucial ingredient of lottrees is that every participaasta cer-
tain amount of measurable contribution. Formally, we madbi
contribution using a contribution functiorC(n) that maps each
noden to the non-negative sum of its accumulated contribution;
larger values o' (n) indicate greater contributions of resources to
the system (e.g., more recommendations submitted, morputem
ing cycles offered, etc.). For a set of nod®¥s we use the nota-
tional shortcutC(N) := Y C(n), and for a treeC(T) :=
C(N(T)).

Although different lottrees may differ in both functiorngliand
implementation, they have in common that they select oneasem
lottery winners based on the topology of the tree (solicitet) as
well as the contribution by individual participants. Henbased on
these commonalities, we formalizéoétreeas a functior.(T', C, n)
that for each node € A/ (T') in a treeT and a contribution func-
tion C, determines node’s expected valuei.e., the value that it
gains from the lottery in expectation. In the sequel, it isv@mnient
to normalize these values such that, .y L(T,C,n) = 1.
Finally, throughout the paper, we denote the entire lottitee so-
calledsystem tregby T's, and the root of the system tree is called
Sys.

neN

3. DESIDERATA

As alluded to at the end of Section 2, a lottree scheme should

achieve diverse, and sometimes opposing, goals. Whildradd
main objective is to provide incentive to contribute and dticit
new participants, it should also maintain a notion of fasshand be
robust against various forms of strategic behavior by pgdits.
With these goals in mind, this section formalizes seven gntigs
that are desirable in a lottery tree. Collectively, thesmpprties en-
courage contribution to the system, encourage solicitatfonew
nodes, inhibit certain forms of gaming the system, and axdre
practical considerations. We begin with a very simple prypthat
expresses that every participant should have an intereshimibut-
ing more resources to the system.

Continuing contribution incentive (CClI):

A lottree L satisfies CCI if it provides nodes with increasing ex-
pected value in response to increased contribution. Tluisweages
nodes to continue contributing to the system.

If nodem is in the system treen € N'(Ts)

andm’s contribution increases®’(m) > C(m)

and all other nodes maintain the same level of contribution:
Vn #m:C'(n) = C(n)

Thenm's expected value increases:
L(Ts, Cl, m) > L(Ts, C, m)

Value proportional to contribution (VPC):

Intuitively, we believe that participants are more likedycontribute

to the system if they perceive the payout distribution todierkl-
ative to their contributions. We say that a lottilesatisfiesp-VPC

for somey > 0 if it ensures that each node’s expected value is at
leasty times the relative contribution made by that node.

If m is in the system treen € N (Ts)

andm contributes fractiomr,,, of all contribution:
em = C(m)/C(Ts)

Then: L(Ts,C,m) > ¢ cm

Strong solicitation incentive (SSI):

To encourage system growth, participants should have amiive

to solicit new participants. Formally, we say that a lottfesatis-
fies SSlif a node’s expected value increases when that nodg ga
a contributing descendent. This encourages nodes totsodiai
nodes to join their subtrees, which is key in ensuring thevthiof
the overall system.

If nodem is in the system tre€el’,, C Ts
andm's subtree includes some nogep € N (T',)
and there is a new node n ¢ N'(Ts) with C(n) > 0
and which joins the system as a childyof

Ts =TsU{n, (p,n)}
Then m's expected value increases:

L(Ts,C,m) > L(Ts,C,m)

Weak solicitation incentive (WSI):

Because SSil is difficult to satisfy, we introduce a slightlgaker
solicitation property, WSI. This property is satisfied byodtiee

L if, when a new contributing node joins the system, an exgstin
node’s expected value is greater if the new node becomeg-its d
scendent than if the new node joins elsewhere in the trees Thi
property promotes competition for new descendent nodeghwh
encourages solicitation.

If nodem is in the system tre€l’,, C T's, C(m) > 0
andm's subtree includes some nogep € N (T',)
but does not include some other nadey € N (Ts \ Tr)
and there is a new node n ¢ N'(Ts) with C(n) > 0
and which in case 1 joins the system as a chilg:of
Té‘ =TsU {nv (pv n)}
and which in case 2 joins the system as a chilg:of
Té'l =TsU {n7 (q7 n)}
Then m's expected value is greater in case 1:
L(Ts,C,m) > L(T¢,C,m)

Unprofitable solicitor bypassing (USB):

Besides attracting contribution and providing incentif@ssolic-
itation, lottrees must also be secure against differenionstof
strategic behavior of its participants. If, for instanceywnodes
tend to join the system not as children of the nodes thatisadic
them, then participants will lose interest in solicitinganaodes.

We thus introduce USB, which a lottrdesatisfies if a new node
can never gain expected value by joining as a child of someone
other than its solicitor.

If nodesm andp are in the system tredm, p} C N (Ts)
and there is a new nodethat may eventually solicit its own

subtree of nodesl;, N Ts = 0
and which in case 1 joins the system as a chilehof
T =Ts UT, U{(m,n)}
and which in case 2 joins the system as a chilg:of
Ts =Ts UT, U{(p,n)}
Then n’s expected value is no greater in case 2:
L(Ts,C,n) > L(T§,C,n)
which, by symmetry, impliesL(Ts,C,n) = L(T§, C,n)

Unprofitable Sybil attack (USA):
An equally important property is that no participant carréase its
odds by pretending to have multiple identities. That is,tade L
satisfies USA if a node does not gain expected value by joithiag
system as a set of Sybil nodes [14] instead of joining sin@is
formalism employs Hilbert's operatorez : P(x) means “choose
somez that satisfiesP(z).”)

If the system tree contains nogdand node sef):

{p}UQ C N(Ts)
and there is a new node n ¢ N (Ts)
which can appear as a new node Sets " N (Ts) = 0



whereinS’s aggregate contribution does not exceesl
contribution:C'(S) < C(n)
andn may eventually solicit a foredty of other nodes:
FanTs=10
and in case 1 joins the system as a child pf
T =TsU{n,(p,n)} U{(n,h):h€ H}UFn
and in case 2§ joins as descendents ¥
T =TsUSU{(eq: g€ QUS,s):se S}
U{(es:s€ S,h):h€ HYUFgy
Thenn's expected value is no greater in case 2:
L(Té‘v Cyn) > Eses L(TS,‘,7 C,s)
Zero value to root (ZVR):
A lottree L satisfies ZVR if the expected value to the root of the
system tree is zero. In a practical lottree, the prize vahaulsl
be disbursed to participants and contributors, not retaimethe
system:L(Ts, C, Sys) = 0. (Clearly, ZVR is impossible to satisfy
in the degenerate case in which the root has no children.)

Discussion:Each of the above seven properties captures a specific
important characteristic that an ideal lottree scheme Ighiofill

in order to robustly motivate significant participation. \ether
believe (but cannot prove) that these properties collelstigharac-
terize a lottree that would be ideal for practical use.

As a possible criticism of our formal statement of these prop
ties, one might argue that when a person decides whetheinta jo
specific lottree system or whether to solicit an acquairgahe is
unlikely to be guided by a rigid and detailed verification ofjper-
ties such as SSl or USB. However, we believe that strictigfyag
these properties is of real importance for practical dapleyts, for
the simple reason that lottrees involve the transfer of moimeany
such system, issues of trust and security are of utmost teupoe.
There should be no way of increasing one’s odds by circumvent
ing the rules. Solicitation properties like SSI and WSI angcial
as well, especially as we consider deployment scenariosiohw
purely altruistic motivations for joining have often beesiifficient
to yield large deployments.

4. SIMPLE LOTTREE SCHEMES

It might seem that the properties enumerated in Section @dho
be fairly trivial to satisfy. To demonstrate that this is mlo¢ case,
this section constructs two fairly simple lottree schenzs we
show that they fail to satisfy several important properties

4.1 The PS (proportional selection) lottree

We first consider a very simple lottree scheme, which does not
account for any solicitation structure and simply selectsraning
node based on its own contribution. TR& (proportional selec-
tion) lottree scheme selects each participarg A (7s) to be the
winner with odds ob,, = C'(n)/C(Ts), regardless of the solicita-
tion structure.

While providing optimal fairnessl¢VPC) and robustness against
various forms of gaming (satisfying USB and USA, for instandt
fails to provide any incentive for nodes that have alreadygd the
lottree to solicit new members. It thus clearly violateshbhateak
and strong solicitation-incentive properties (WSI and)SSI

4.2 The Luxor lottree

We next present the Luxor lottree scheme, which—unlike the
PS scheme—provides a solicitation incentive to nodes inrée
Although it is more involved than the PS scheme, it is a reddi
straightforward extension wherein each node passes soitse\if
odds up to its parent.

Algorithm 1 The Luxor lottree - Winner Selection

Input: A lottreeT’s with N peers.C'(n) denotes the
contribution of a peen € NV (Ts).
Two parameters < u,p < 1.

Output: A winnera € N (Ts) that wins the lottery.

1: A= 0.

2: Setw(n) := C(n)/C(Ts) for eachn € N (Ts).

3: Randomly select one peer from N (T’s) such that the proba-

bility of selecting peer is w(n).

4: With probability 1, setn := m andstop.

5. cur := Parent(Ts, m).

6: whilen = 0 and cur # Sys do

7. With probability p, seti := cur andstop.

8.

9

10

cur := Parent(Ts, cur);
: end while
2 if A :=0 then 7 := Sys.

Winner selection in the Luxor lottree, characterized by paca-
metersu andp, proceeds in two passes. First, it randomly selects a
nodem € N (Ts) in proportion to its contribution, just as in the PS
lottree scheme. However, is merely acandidate it only becomes
the winner with probability.. With probability1 — u, the winner
is one ofm’s ancestors. As shown in Algorithm 1, Luxor moves
incrementally up the patfPath(Ts, m) from Parent(Ts, m) to
the rootSys, letting each successive candidate: win the lottery
with probability p. Upon selection of a winnet, the process stops.

The parameter can be used to tune the tradeoff between solici-
tation incentive and fairness. Increasimgncreases fairness at the
expense of decreasing solicitation incentive.

Algorithm 1 procedurally describes the Luxor scheme. We can
also describe Luxor by formally defining its lottree functib;, as

Z w(2)Pnz,

2eN(Ty),
z#n

wherep.,, := P[h = u|lm = v] denotes the probability that node
u wins the lottery conditioned on the event that nadet v was
initially selected as the candidate. Lettidg, be the hop-distance
between two nodes andv, p.. is defined by

- { (1— @)1= p)¥v=1p  u e Path(Ts,v)

Li(Ts,C,n) = - win) +

0 , otherwise.

The Luxor lottree scheme satisfies several desirable preper
as stated in Theorem 4.1. The proof is omitted due to lackadesp

THEOREM 4.1. The Luxor lottree scheme satisfies properties
CCl, WSI, USB, ang-VPC for o = u. The scheme also satis-
fies SSI unless for some nadghere exists a node € N (T,) for
whichp,. > L(Ts \ {(Parent(Ts, z),z)},C,n).

The previous theorem characterizes scenarios for whidhuker
scheme satisfies the SSI property. We will later present Theo
rem 6.1, a consequence of which is that there must exist scena
ios for which the Luxor scheme does not satisfy SSI. In adijti
the following theorem states that this scheme fails to fyatigo
additional properties.

THEOREM 4.2. The Luxor scheme violates USA and ZVR.

PROOEF ltis clear that ZVR is violated because there is a non-
zero probability that the root is selected as the winner. ifitezest-
ing property is USA. Consider Figure 1 and assume nodeapa-
ble of contributing a total of’(z) and joins as a child of. Its ex-
pected value is therefoge C'(z)/C(Ts). In contrast, ifz launches



Figure 1: The Luxor scheme is vulnerable to Sybil attacks.z
increases its expected value by splitting its contributioramong
Sybil nodesz, . .., zn.

a Sybil attack by splitting itself up into two (or more) nodasand
z2 and divides its contribution such th@(z,) + C(z2) = C(n), it
can increase its expected value. Specificallyjoins as a child of
n andz, becomes a child of;. That way, the combined expected
valueL(Ts,C, z1) + L(Ts, C, z2) exceeds (Ts, C, z), because
of p.,., > 0. In the extreme case, a new nodeould split it-
self up into a large number of Sybil nodes, . . ., zx, arranged in
form of a large chain, and hav@(z1) = ... = C(zk—1) = 0
andC(z) = C(z). In this case, the cumulated expected gain of
reaches”(z)/C(Ts), which is by a factod /i larger than if it had
joined as a single node.[]

The fact that Luxor does not satisfy USA and is thus not robust
against Sybil attacks is particularly problematic, beesdtiencour-
ages gaming behavior, which can significantly undermingleéo
trust in the system. Since lottrees distribute money inrrefar
participation, this lack of trust could decrease peoplélingness
to participate. We address this problem in the followingtisec
by presenting th@achiralottree scheme, which is provably robust
against Sybil attacks.

5. THE PACHIRA LOTTREE

This section introduces a general and practical lottreeraeh
called Pachira, which satisfies all properties satisfiechieyliuxor
scheme, but additionally satisfies the USA property, whiakdr
fails (Theorem 4.2).

5.1 Theoretical Underpinnings

The Pachira lottree has two input parametfendé that trade
off solicitation incentive against fairness. In its genemsion, the
Pachira lottree is defined using a functiefic) defined on[0, 1]
with the following characteristics:

) #(0) =0, (1) =1

) Yee[0,1]: L& >4

Iy vee[0,1]: df;;;” >0 (strictly convex)

The following two inequalities directly follow from the $tt con-
vexity of w(c). First, for anyc; > ¢ ande > 0,

(minimum slope of3)

m(c1 +€) —m(c1) > w(ca +€) — m(c2). 1)
Secondly, it holds that
ﬁ(Zci) 2 Zﬂ'(ci). (2)
c; eC c, €C

In principle, the Pachira lottree can be defined using angtfan
« that follows the above mentioned properties. In the sequel,
are going to use the following particularly convenient amtaitive
function with these characteristics:

m(c)=Bc+ (1 - p)c, ®)

Algorithm 2 The Pachira lottree - Winner Selection

Input: A lottreeT’s with N peers.C'(n) denotes the
contribution of a peen € NV (Ts).
Two parameterd < 3,6 < 1.
Output: A winnera € N (Ts) that wins the lottery.
: ComputeC'(T's) = 3, cnr(rg) C(M)
: for eachn € N (Ts) in post-order ofl's do
ComputeC'(Sub(Ts,n)) by summing upC'(n)
andC'(Sub(Ts, m)) for all childrenm of n.
ComputeWW (T's, C, Sub(Ts, n)) using (3) and (4).
ComputeL p(Ts, C,n) according to (5).
. end for
. Selectn randomly such that every node is selected with prob-
ability Lp(Ts, C, n).

WN P

where3 and§ > 0 are the input parameters of Pachira. Our
scheme makes use of this function in the following way: Each
node in the tree computes itgeight as the functionr applied
to the node’s proportional contribution. Formally, forer€ and
contribution functionC, the weightW (T, C,n) of a noden is
W(T,C,n) = w(C(n)/C(T)). Also, the weight for a subtree
Sub(T, n) is defined as

C(Sub(T,n))
o) ) '

Finally, notice that for any leaf node, it holds thatW (T',C, n) =
W (T,C, Sub(T,n)) = n(C(n)/C(T)).

The Pachira lottree scheme proceeds as follows. Eachmete
N (Ts) is assigned an expected valuez, defined as the weight of
the subtree rooted atminus the weights of all child subtrees:of
Formally,

LP(T, C, n)

W(T,C,Sub(T,n)) == ( 4)

W (T, C, Sub(T,n))

W (T, C, Sub(T, m)).
(n,m)€&(T)

Notice that in generalLr(T",C,n) # W(T,C,n), i.e., a node’s
expected value is different from its weight.

As we show in the following section, this theoretical foraidn
of the Pachira lottree scheme easily lends itself to effidiaple-
mentation, which renders the scheme a good candidate fctiqakh
use in a variety of networked systems.

5.2 Implementation

The Pachira lottree scheme can be implemented and its winner
computed in a straightforward way. Besides summing up ait co
tributions, a single post-order traversal of the tree sefito assign
winning probabilities to each node. The details of the ti&ac
scheme are presented in Algorithm 2.

The algorithm first sums up the contributions of all nodethén
performs a post-order traversal of the tree, considering eade
only after computing results for the node’s children. Farteaode
n, Pachira first computes the total contributiofiSub(Ts,n)) of
n’s subtree. Next, it computes theeight W (T’s, C, Sub(Ts, n))
of the subtree rooted at by applying the functionr to the ratio
C(Sub(Ts,n))/C(Ts). And last, it computes’s expected value
Lp(Ts, C,n) by taking the subtree weight' (T's, C, Sub(Ts, n))
and subtracting from it the weight efs children’s subtrees (cf (5)).
Once all expected valuelp(Ts, C, n) are computed, the winner
is selected in proportion to the expected values.

Because Pachira’s winner-selection mechanism requirgsaon
single bottom-up traversal of the tree, its running timedrnsér in

©)



the number of participating nodes. Computational compfeisi
thus not a significant impediment to practical use of a Padbir
tree. We address other practical issues in Sections 8 and 10.

5.3 Rescaling

The Pachira lottree does not satisfy ZVR, because the rat# no
Sys may be selected as the winner. A deceptively simple solution
to this problem is to re-run the winner-selection algorithmiil a
non-root node is selected. This is equivalentascalingthe lot-
tree by distributing the root’s winning probability amorgetother
nodes in proportion to their winning probabilities. Forigalet-
ting 1,, refer to the expected valuep (7’s, C,n) for any noden,
the win oddso,, thus become

O’!L:{O ,TZ:SyS

In/(1 —1ls) , otherwise.
However, if the win odds are thus rescaled but the payoutfts le
unchanged, the modified lottree will violate the USB propefio
see why this is so, note that when a new node joins the system,
although its location in the tree does not affect its own etgx
value, its location does affect the root’s expected valeeabse if
it joins a heavily weighted subtree, it will pull more weighvay
from the root than if it joins a lightly weighted subtree, doecon-
vexity of the weight functionr. Because rescaling distributes the
root’'s expected value among the other nodes, a node can pame t
system by deliberately joining a lightly weighted subtrée ex-
ample, joining as a child of the root), rather than joiningaazhild
of its solicitor. This leaves more win probability for theotpwhich
when distributed among all other nodes, increases the rjeinly
ing node’s expected value.

This violation of USB can be avoided by rescaling the payout
amount to keep the expected values unchanged. This is achigv
multiplying the payout by a factor dfl — Is). The practicality of
this approach is limited by whether the payout is somethsuglf
as money) that can be arbitrarily rescaled, and by otheessas
described in Section 8.

5.4 Analysis

We begin by proving an important lemma that states that the
weight W (T, C,n) of a noden is a lower bound for its expected
value.

LEMMA 5.1. It holds for all T, C, andn € N(T) that
Lp(T,C,n) > W(T,C,n).

PROOF The property follows fromr(c)’'s convexity. First, it
follows from the definition (5) ofL (T, C,n) that if n is a leaf in
T, thenLp(T,C,n) = W(T,C,n). For everyn, it holds

Lp(T,C,n)= W(T,C, Sub(T,n)) =y  W(T,C, Sub(T,m))

(n,m)e&(T)
= () - = ()
== (8).

where the inequality follows from the convexity Inequalf) and

C(Sub(Tyn)) __ C(Sub(Tym)) | C(n)
the fact that==ce== = X myceer) —cmm— + oy
This concludes the proof.

Based in part on this lemma, we can now precisely charaeteriz
the set of desirable desiderata properties that are sdtisjighe
Pachira lottree scheme. We begin with the simplest one amd sh
that Pachira always incentivizes increasing contribution

LEMMA 5.2. Pachira satisfies CCI.

PrROOF Assume a node: increases its contribution, while all
other contributions in the tree remain the same. The relatn-
tribution C'(Sub(Ts,n)) increases and, becausér) has positive
slope (property Il ofr’s definition), the weight ofn’s subtree in-
creases. Conversely, the weightsrek children’s subtrees (if it
has any) decrease. It then follows by the definitionZgf that
LP(Ts,Cl,m) >LP(TS7C,m). O

The following lemma follows immediately from Lemma 5.1 and
shows that Pachira achieves provable fairness bounds.

LEMMA 5.3. Pachira satisfiesp-VPC forp > 3

PROOF Letc,, = C(m)/C(Ts). By Lemma 5.1 and the defi-
nition of 7(c), we obtain

LP(TS,O,’ITZ) 2 W(T7 C7m) = 7T(C”’L) 2 ﬂcm- I:‘

LEMMA 5.4, Pachira satisfies WSI.

PrROOF Recalling the definition of the WSI property, let be
a node and let: be one ofm’s children (if any exist, otherwise,
a = m). Suppose that there is a nodehat newly joins the lot-
tree, either as a child of a nogec N (T,) or as a child of a node
q € N(Ts \ T) that is not inm’'s subtree. T andT§ denote
the resulting trees when the new nodegoins as a child ofp or
q, respectively. Finally, we use the following notationabegdvia-
tions:

e letc, := C(n)/C(Ts) andc,, := C(m)/C(T%)

o letca := C(T,)/C(Ts)

o letcy :=C(T \ ({m}UTy))/C(Ts); thatis,cz is the total
contribution of all nodes in those subtreesmothatn doesnot
join

e let Z be the set ofn’s children other tham; formally, Z :=
{z| (m,z) € E(Ts) Nz # a}

o letwz =%, n(C(1:)/C(Ts)) be the total weight of all
subtrees rooted at children of other tharl,

With these definitions, we can now express the expected wlue
m both in caser joins a subtree of, and otherwise. In both cases,
we use Equality (5) and plug in (4).

LP(Té',C, m) = w(em +cn+ca+cz)

—7(en +ca) —wz

Lp(Tg,C, m) = w(em +ca+cz)—7(ca) — wz.
Clearly, it holds thaC(Ts) = C(T¢). Hence, when substituting
c1 = cn+ca,co = ca, ande = ¢,, +co, we can write the increase

A of m's expected value ip joins its own subtree (as opposed to
someone else’s subtree) as

A = Lp(T§,C,m)— Lp(Tq,C,m)
= 7(c1+e€) —m(c1) — (m(ca +€) — w(c2))-
From (1), it follows thatA > 0 and henceLp(Ts,C,m) >
Lp(TE,C,m). O

LEMMA 5.5. Pachira satisfies USB.

PROOF The claim can easily be verified by observing that for
anyn € N (Ts), the expected valuep (T, C, n) is independent of
the structure of tre@ outside ofn’s subtre€el’,,. Hence, the initial
position in the tree is irrelevant. O

Unlike the Luxor scheme, the Pachira lottree is robust again
Sybil attacks:



LEMMA 5.6. Pachira satisfies USA.

PrROOF We must show that a node does not increase its ex-
pected value by joining as multiple nodes, even when thebd Sy
nodes form subtrees among each other and join as such (ke th
chain in Figure 1). Assume that a new nadpins the lottree. Al-
ternatively, z can join as a set of Sybil nodés = {z1,...,2x}
such thaty”, ., C(z) < C(z). LetTs andTg be the resulting
trees in the former and latter cases, respectively. If alesanZ
join as independent nodes, the expected valueisf

1448
L(T5,Cz) = By cxu+(1=P)| D s
2, €Z z,€Z
> By e +(1-8) Y al
2, €Z 2, €Z
- Z L(Té7c7 21)7
z;€Z

which proves the lemma in this case.

It remains to prove the case when node£ijoin as a fores¥'x
with root setH instead of independent nodes. The key ingredient
in the proof is that the cumulated expected value of all nades
a subtre€l’,. with root r is always equivalent to the weight @f..
Formally, this can be derived as

Y LTs,Cs) = Y (W(TS,C,Sub(Ts,s))
SEN(T) SEN(T)
— Y W, Sub(Ts, )
(s.5")EE(Ts)

W(Ts,C, Sub(Ts,r)), (6)

where the second equality stems from the fact that all teemcept
for the one at, cancel out. From this, it follows that the cumulated
expected value of nodes #iis

> L(Ts,Coz) = Y W(Ts, C, Sub(Ts, h)).

2, €Z heH

In other words, we can shrink each trg consisting of nodes;

into a single node;, that has the same contribution as the entire
tree before changing the expected value of nodés. iBince these
shrunkz;, are now independent nodes, the proof is finished analo-
gously to the case in which all nodes are independent. [l

It is instructive to consider the above proof in relationtie £x-
ample given in Figure 1 in which the Luxor lottree proved to be
vulnerable to Sybil attacks. In Luxor, the sum of the expecta-
ues of nodes in a tréE not only depends on the relative total con-
tribution of nodes if” compared to the entire contributio’(7s).
Instead, it also depends on ttopologyformed by nodes ifl". The
combined expected value of two nodgsandz- joining the lottree
as siblings{(n, z1), (n, z2) } of a parent: is smaller than the same
nodes joining the tree as child and grandchil@lz, z1), (21, 22)}
of n. Instead, Equality (6) proves that in Pachira the total etque
value of nodes is always equal to the weight of the subtreghts
additional property that prevents Sybil attacks.

6. IMPOSSIBILITY RESULTS

The Pachira lottree scheme satisfies the five desirable ipiepe
CClI, VPC, WSI, USB, and USA, thereby providing incentives to
contribute to the system, to solicit new contributors, amévoid
attempts at gaming. However, Pachira fails to achieve b&h S

and ZVR, which would also be desirable. An ideal lottree $thou
simultaneously satisfy all mutually achievable desiderat

In this section, we prove that Pachira does, in fact, sasifyu-
tually achievable desiderata, in the sense that no lotaresatisfy
any additional property without violating at least one o frop-
erties that Pachira satisfies, which implies that these fiopapties
constitute a maximal satisfiable subset.

The following theorem states that satisfying VPC precluskgs
isfying SSI.

THEOREM 6.1. Given an arbitrary topologyT’s, there is no
lottree that simultaneously satisfies both SSI ardPC, for any
p>0,0nTs.

PrROOF Consider an arbitrary tre€s, and assume for contra-
diction that there is a lottree scheme that satisfies SSLaM&C
on Ts. The theorem holds for any distribution of the contribu-
tions among the nodes ifs. Letm;, i = 0, ...,z be a sequence
of nodes joiningT's. Nodem, joints at an arbitrary node and
each subsequent new nodg joins as a child ofn;_1. We define
P. := Path(Ts,z) and denote by’o := 3> 1o\ p.) C(R)
the total contribution of all nodes node on the p&th be?ine the
contribution of noden; to be2’ - C(T's). It follows from the fair-
ness property that the first new node needs to get an expected
valueL(Ts, C,mo) of atleastp/2 becaus&'(mo) = C(Ts). For
the same reason, each subsequent new nodalso must have an
expected valud (Ts, C,m;) > /2. As each new node is added
as a child of the same path, the SSI property implies thatthe e
pected value of nodes on the padthth(Ts, z) or anym; must not
decrease. Hence, after inserting nede for x = [2Co/¢] + 1,
the total expected value of nodeso, ..., m, must be at least
([2Co/¢] + 1) - ¢/2 > Co. SinceCo was the total expected
value of nodes il (Ts \ P;), this implies that there must be at
least one new node or a node Bn whose expected value has de-
creased, which contradicts the SSI property. O

One might conceivably argue that SSI is a more important-prop
erty than VPC, and so a preferable lottree would be one thigt sa
fies the former at the expense of the latter, unlike Pachiraw-H
ever, the simulations in Section 7—specifically, Figureight)—
demonstrate that the absence of SSI can be ameliorated weith e
a moderately sized initial set of participants. By contrast-ig-
ure 2 (middle), as fairness (lower bounded By decreases, the
effectiveness of the lottree also decreases. (This is napparent
in the curves for small values @f, because for smali, Pachira
satisfiesp-VPC forp > 3.)

The Pachira scheme also fails to satisfy ZVR, as does therLuxo
scheme. This turns out to be unavoidable for both.

THEOREM 6.2. There is no lottree that can guarantee the si-
multaneous satisfaction of WSI, USB, and ZVR.

PrROOF A simple counterexample suffices for the proof. Con-
sider the two system%s = {Sys,a,b, (Sys,a),(Sys,b)} and
T = {Sys,a,b, (Sys,a), (a,b)}, and take any contribution func-
tion C for which C(a) > 0 andC(b) > 0. Assume for contra-
diction a lottree schemé that satisfies WSI, USB, and ZVR. As
shorthand, for any node, leti,, refer toL(Ts, C,n) andl,, refer
to L(Ts, C, n).

By construction, the expected values of each lottree mumstteu
one,iel, +1, +1ls =1, + 1y +1s. ByZVR,ls = ls = 0, so
I, +1, =1q +1p. By USB,l;, = I, sol,, = l,. However, by WSI,
I, > 1., which is a contradiction. O

The unavoidable absence of ZVR is not a major problem. As
described in Section 5.3, it is often possible to rescalddtieee



to ensure that a non-root node wins, without changing the &yl
values to each node. In this case, the root has non-zerotexipec
value because it retains a fraction of the payout that isudésal to
the winning node.

We can now state and easily prove our main theorem, which cap-
tures the optimality of the Pachira lottree scheme.

THEOREM 6.3. Pachira achieves a maximal satisfiable subset
of desirable properties.

PrROOFR By Lemmas 5.2-5.6, Pachira satisfies all desiderata ex-
cept SSland ZVR. By Theorem 6.1, SSl is incompatible with YPC
and by Theorem 6.2, ZVR is incompatible with WSl and USH.]

7. EVALUATION

In order to gain a better understanding of the solicitatiod a
participation generated by the Pachira lottree scheme onduct
extensive simulations. Our goals are:

e to derive good choices for the parametgrandé

[ ]
ployment scale and expected participation effort

to determine the required count of initial participants voiel
problems from the absence of SSI

to analyze the sensitivity of our evaluation to our modelisg
sumptions and hidden parameters

7.1 Simulation framework

We use a frame-based simulator with a finite population of-com
puter users, each frame representing one day of simulatesl ti
The simulation procedure is presented in Algorithm 3. Irioat
the simulator first establishes a small subset of the pdpulas an
initial set (IS) of participants. Then, on each frame, each partic-
ipant decides whether to solicit other users: If the peemtigain
from soliciting outweighs the cost of sending a solicitatithe par-
ticipant solicits a subset of acquaintances. Each sdligigrson
first decides whether to even consider joining; if he doesictan
it, he evaluates the perceived gain from joining relativéhi cost
of joining, and joins if the gain outweighs the cost.

7.1.1 Challenges

Because human behavior is notoriously difficult to modeh-si
ulating a system involving humans is tremendously chalkeng
The above simulation description implies the need for answue
the following behavioral questions:

1) Which people are acquainted with which other people?
1) How do people perceive the benefit from the lottery?

III) Does each solicitor consider other solicitors to be ampeti-
tion for new participants?

IV) How do people perceive the cost of soliciting others alnel t
cost of joining the system?

V) How likely are people to even consider a solicitation?
VI) How much will each person contribute to the system?

7.1.2 Models
In our simulation, we deal with the above challenges by emplo

. . 11
to determine an appropriate payout amount based on target de

Algorithm 3 Simulation procedure
Input: ParameterSTC JTC, SAF initSize andr,
Undirected social network graph,
Lottree schemd. and payout amound p,
Valuation models for payodi p and timeQr,
Diffusion model® and contribution modet..
Output: Lottery tredl’s.
1: Initialize T's to {Sys}
2: Select random node sub$8tof sizeinitSizefrom NV (&)
3: for eachn € N(IS): addn toTs as child ofSys
4: for each simulation framedo

5: foreachn € N(Ts) \ {Sys} do

6: UsingL, Ap, andy p, evaluate absolute and
relative perceived gains from successfully
soliciting new participants

7: UsingSAF, compute overall perceived gain

8: UsingUr, evaluate solicitation time coSITC

9: if perceived gain> solicitation costhen

10: Set) = neighbors ofr in & s.t. 0 NN (Ts) = 0

Setr = min(|0|, 7)

12: Select random subsf of sizer from 6

13: for eachm € M do

14: Using®, decide whethem considers joining

15: if m considers joininghen

16: UsingL, Ap, U p, ande, evaluate
perceived gain from joining system

17: UsingUr, evaluate join time cosiTC

18: if perceived gain> join costthen

19: Addm to Ts as child ofn

20: end if

21: end if

22: end for

23: end if

24:  end for

25:  advance simulation time by one day

26: end for

evolving networks. The general consensus is that a modeicfor
cial networks should exhibit short average path lengthh loigis-
tering, broad degree distribution, and community struetu©ur
default model, which satisfies these properties, is an ewplvet-
work model proposed by Toivonen et al. [33]. In this model; ne
work growth is governed by two processes: (1) attachmerdne r
dom existing nodes and (2) attachment to the neighborhodigeof
selected random node. The model is characterized by three pa
metersplnit, Range, andSeed, for which our default values are
those specified by Toivonen et al. This yields an averagecegegfr
roughly five.

II) Payout Valuation Model U pr: To evaluate how people per-
ceive the lottree payout, we use a model based on the cognitiv
psychology of lotteries and sweepstakes [29]. The geryesal
cepted economic model that has replaced expected utiétyryhis
prospect theoryproposed by Tversky and Kahnemann [34]. Based
on empirical studies, it describes how individuals evauasses
and gains in lotteries. It applies a nonlinear transforamatf the

ing a set of theories and models that have been used and WideWprobabiIity scale, which over-weights small probabikitend under-

accepted in literature on economics and cognitive psygyolo

1) Social Network Model &: We model the acquaintanceship of
people using a social network model. Many such models have
been proposed [26], broadly classifiable as either randamphgror

weights moderate and high probabilities. For the modelts ey
parametersq (power) andy (probability weighting), we use the
values derived by Tversky and Kahnemann in their refinemént o
prospect theory known asimulative prospect theof5].



11l) Solicitation Assumption Factor SAF: When a person eval-
uates the gain from soliciting an acquaintance, there aceaiw
ternatives the person might imagine would result from nokimg
the solicitation. First, the non-member might remain nat joé

the system; second, the non-member might join the system as a

child of someone else. The distinction between these twsssre
tially the distinction between the SSI and WSI properties] the
person’s assumption about what would happen if he does Rot so
licit has an effect on how he values the gain from the solicita

We model this assumption with $olicitation Assumption Factor
(SAF), which expresses the believed likelihood that an aitgu
tance will join the tree even without a solicitation from therson
making the evaluation. Our default value ®AFis 0.5.

IV) Time Valuation Model Ur: As a simple estimate for the costs
of soliciting others and of joining the system, we charaztethe
efforts by the temporal cost of performing the task. The thee
quired to send a solicitation is tHgolicitation Time Cos{STC),
and the time required to join the system is floén Time Cos(JTC).
For comparison against perceived values obtained thrdwegpay-
out valuation model, we must convert these temporal valogs i
monetary values. For this, we employ a probability distittou of
income per minutéor each person, using the US income distribu-
tion in 2005 [2].

V) Diffusion Model ©: To determine whether a person considers
each solicitation, we employdiffusion modelwhich characterizes
the flow of influences through a social network. These models a
built on the premise that a person’s tendency to accept an(ie

in our case, to consider joining a lottree) increases marncaty

as it receives more recommendations (or solicitations).detault
model is thandependent cascade mod#6], wherein each solici-
tation succeeds with a certain fixed probabifityin our sensitivity
analysis, we also consider two other models: diminishing cas-
cade mode[6], wherein the success probabilitydecreases by a
factor of ¢ < 1 with each repeated solicitation, and a model de-
rived from empirical data [6] of LiveJournal community joig.
For all our diffusion models, once a person decides to censad
solicitation, she will never consider it again.

VI) Contribution Model ¢: To model how much each person con-
tributes to the system, our default model is based on thetaitibn

of computer availability [15], which would be appropriate 6ys-
tems in which the contribution is related to machine timeoulm
sensitivity analysis, we also consider a random uniforrritigtion
and a constant uniform distribution.

7.1.3 Parameters

Most of the above models come with a rich set of parameters
that can be set to tune the model behavior. Table 1 shows eur de
fault values for these parameters (wherever possible takenthe
corresponding literature). All our evaluations are perfed us-
ing these values unless stated otherwise. Our valugsaofdd in
Pachira are derived in Section 7.2.2, and sensitivity cdéhalues
with regard to changes in the other parameters and envinataine
factors is evaluated in Section 7.2.6.

7.2 Results

In order to reduce variance, all our simulation results were
peated 20 times and the respective average values aredpldtte
all cases, the experienced variance is small (within 10%)earor
bars are therefore omitted. We call the number of peopleghdt
up joining the lottree, after simulating one year of depleyrm the
penetration

Solicitation Assumption Factor (SAF) 0.5

Payout 1000
Solicitation Time Cost (STC) 30 seconds
Join Time Cost (JTC) 30 minutes
Population Size 107
Diffusion Probabilityp 0.1
Diminishing Cascade Factqr 0.9

Toivonen et al.
0.95, 3, 30 [33]
0.88, 0.61 [35]
USA 2005 [2]

Social Network Model:
pInit, Range, Seed
Prospect Theorye, v
Income Distribution Model

Contribution Model: b=0.3;c=2T7,
Availability parameters g=9.2;r=11[15]
Pachira Parameter Settings:J 0.5,0.08

Table 1: Baseline simulation configuration

7.2.1 Population effects

Before reporting actual results, we first show that the simé |
tations of our simulation are not an issue. Our simulatedifzop
tion is ten million people, which is significantly smallerath the
population that could be reached in the real world. Howelvigy;
ure 2 (left) shows that the penetration substantially et as the
population increases. By the time we reach a populatioh06f
there is little additional penetration from increasing plagion.

7.2.2 Optimals ands

Our first order of business is to determine optimal valuestfer
Pachira lottree parametefsand . Figure 2 (middle) shows the
penetration as a function of these parameters. Only a sarajler
of § values is shown because higher and loweesults in signifi-
cantly reduced penetration. The plots show that, althobglopti-
mal choice of3 andé depends upon specific environmental factors,
the curves exhibit a regular shape. Based on these and ethéts:;
we select default values ¢f = 0.5 andé = 0.08. Although not
optimal in every setting, our sensitivity analysis in Seucti7.2.6
shows that these settings exhibit good behavior even asmyé¢he
different model parameters.

7.2.3 Deploymenttuning

A key question for an executive who wishes to use a lottree
for system deployment is how much money to offer as a payout.
The answer is a function of the desired penetration and the ex
pected effort of sending solicitations and of joining thestsyn.
Figures 3 (left) and (middle) show how the penetration ddpen
on the selected payout, the JTC and STC. As an example, tmobta
100K participants in a system with a STC of 30 seconds and a JTC
of 30 minutes, Figure 3 (left) shows that we should offer acpay
of 5000 dollars.

Discussion: We can see that expected penetration increases with
increasing payout and decreasing JTC; and high values of STC
have a negative impact on penetration. However, it is istarg to
compare the impact of the STC for different values of JTCTIEJ

is 10 minutes, the achieved penetration nearly doubles Bfi&his
reduced from 1 minute to 30 seconds. Conversely, for JTC of 10
minutes, the penetration is virtually equal regardless béther
STC is higher or lower. The reason for this behavior is that in
the former case, because JTC is so low, the bottleneck thasli
growth are solicitations. In contrast, if JTC is large, peogtop
becoming new participants because their perceived vakaiqied

by Prospect theory becomes too small faster than soliwitsitbe-
coming a bottleneck. The plot shows that the equilibriummpoi

in which joining and solicitations start become limitingfars at
roughly the same size is reached at about JTC of 30 minutes.



Penetration in 1000

7.2.4 Distribution of nodes and wins

It is insightful to view the tree structure and its inducechwi
probability distribution resulting from the Pachira lettr. For our
default parameters, the lottree grows in average up to dgf®Bb.
Figure 2 (right) shows the distribution of nodes and win prob
bilities relative to the different levels of the tree (thetdevel is
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These observations lead to the conclusion that Pachiral&tion
of SSI weighs particularly heavy when the number of partioig
in the tree is small. Empirically, this shows that while Fazlis
not guaranteed to satisfy SSI, such violations occur ortlgeavery
initial state of the lottree’s growth. This shortcoming ¢harefore
be circumvented by starting the lottree-based motivatidaploy-

0). These CDFs show that Pachira generates a bell-shaped dis/ment of a networked system with a sufficiently large IS.

tribution in which the majority of the nodes are containedtin
middle levels. Relative to the distribution of nodes, th&trifbution

of win probability is shifted slightly towards the highewéds, re-
flecting the effect of the solicitation incentive that redemodes
with many descendents. The figure shows that our default para
meters of3 = 0.5 and§ = 0.08 strike a subtle balance between
fairness (probability curve follows the node distributimmrve) and
solicitation incentive (left shift of the probability cusy.

7.2.5 WSIvs. SSI: Stunting and initializing

In the sensitivity analysis of Section 7.2.6, we will showattla
Pachira lottree’s penetration is not significantly affelcby vary-
ing the solicitation assumption factor SAF, which indicatieat the
absence of SSI is not a critical weakness for Pachira. Haweve
SAF does have an impact on lottree deployment; specificiiéy,
SSI property can be violated when the lottree is very smallpw
values of SAF can lead to stunted deployment that never dscee

small factor over the initial set size.

Figure 3 (right) shows the probability of stunting with difent
values of SAF and different sizes of IS. What we see is that the
probability of achieving sustained growth becomes unityafeuf-
ficiently large initial set. At aninitSize of 20, no run was ever
stunted. What is particularly interesting to observe i$ tha criti-

cal initial set size required to guarantee sustained growtbially
depends on the given SAF. The higher this value, the highicpa
ipants weigh their marginal perceived gain in terms of Wthea
than SSI, the smaller an IS suffices. In the extreme case iohwhi

SAF equals one, stunting never occurs.

7.2.6 Sensitivity analysis

Through the above experiments, we have derigeg 0.5 and
0 = 0.08 as our default values for the two Pachira parameters. In
order to verify these choices, we conducted an extensivatisaty
analysis with regard to all our model parameters and enmigotial
assumptions. We also evaluated these parameters by stibgtit
entire model blocks.

The sensitivity analysis is based on the following methogyl
We pick a specific environmental factor (for instance JVT paa
rameter from prospect theory) and vary its value. For eanipka
point, we determine (1) the average penetrafiton,. for this set of
parameters when using Pachira with our own choicg afidd, and
(2) the average penetratid?,: when using the optimal values 6f
and/ for this particular point in the parameter space, which we de
noted by3’ ands’. We then define theompetitive ratiaP, .., / Popt
as the fraction of penetration achieved By= 0.5 andj = 0.08
compared to the optimum choice@findd for that specific setting.

Because findings’ andd’ operation involves a complex search
over a two-dimensional parameter space in which each random
sample point may experience variance, finding optimal \&foes
andd given a set of configuration parameters is a computationally
intensive task. For this reason, we have conducted ourtsensi
ity analysis with a reduced population size if®. Resorting to
this smaller population is justified by Figure 2 (left). Ounple-
mentation of the search procedure itself is based on alhitbing
algorithm with decreasing step-size.

A few examples of our sensitivity results are shown in Figlire
and a summary of our main results is presented in Table 2. The
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Figure 4: Sensitivity Analysis for SAF, JTC, and STC.
SAF O-g_ 1'9) 0.949 in the system. This is the reason behind the “no purchase nec-
gfli)(/:om (1)0 5—10 ggg essary” disclaimers that typically accompany commercigep-
— S minutes : stakes. The potential impact on a lottree deployment isgbiate
JTC 10 — 150 minutes| 0.702 Il fracti f "participants” t actually b birting i
Tovonen: CInit 00=10 0939 small fraction of “participants” may not actually be cobtiting in
Tovonen: CRange T=10 0.967 any way to the system. Second, promotion law generallyldisal
Contribution Models Uniform Random | 0.972 variable prize pools, which precludes use of the rescatiogriique
Uniform Constant| 0.976 described in Section 5.3.
Prospect Theory 04-1 0.82 The main issue involving tax law is that any payment in excess
Prospect Theory 04-1 0.886 of the 1099 threshold requires the filing of a 1099-MISC taxrfo
Independent Cascage 0.05-1 0.958 This threshold is set for each tax year and is 600 dollars&r t
B:m:g:iﬂ:gg g::g:gg =01 825__11 838; year 2007. The impact on lottree deployment is that a payinent
Diminishing Cascade: p=02 05T 0.9274 exces?_ of 602 ?r?ll?rtst may l_Je more burdensome for both thersyst
Diffusion Model LifeJournal [6] | 0.993 execulive and e 107ree winner.

Table 2: Sensitivity analysis—competitive ratios

table shows the worst competitive ratio achieved by ouragsobf

(B andd across the simulated range. With one exception, our choice
of 5 andé achieves a competitive ratio of at le@sTY for all para-
meter sweeps. The exception is STC as shown in Figure 4 )right
the competitive ratio of our parameters starts droppingiagntly

as STC increases. In all other cases, our choices were rabust
changes in model settings. Interestingly, this holds ewerve
substituted entire model blocks (social network modeffudibn
model, etc...) by other models. For instance, our choices afd

0 achieve a competitive ratio of more thar® when replacing the
availability-based contribution model [15] by a uniformntabu-
tion model, or when replacing the independent cascadestbffu
model with a model that is based on real diffusion data reididr

the LiveJournal community in [6].

8. LEGAL ISSUES

This sectioh applies only to laws of the United States; laws in
other countries may differ considerably.

There are three classes of law that have technical bearitigeon
lottree mechanism as presented in this papeomotion law tax
law, and theCAN-SPAM Acbf 2003.

Two aspects of promotion law impact lottree deploymentstEir
depending on the effort required, the installation and ingrof
a distributed-system component may be judged to be “corsside
tion”, meaning that it is legally regarded as a transfer afjiale
value from the participant to the executive. If so, the exgeus
obligated to provide aalternate means of entAMOE) by which
a person can become eligible for the payout without padiaig

2AIthough we address only those legal issues with directrieahimpact,
it exceedingly important to respect all applicable laws whieploying a
lottree system. It is a misdemeanor to run any system in wéiche form
of value is distributed randomly, if not constructed in actzmce with ap-
plicable laws.

The CAN-SPAM Act of 2003 was designed to legally inhibit
companies from sending unwanted commercial email. It aso r
stricts the degree to which a company can encourage othsesntb
commercial email on the company’s behalf. This law impaaots |
tree deployments in two ways: First, the lottree must nobanc
age email solicitations in preference to other modes otiation.
Second, the lottree should limit the number of solicitasi@ach
participant can issue per day; in our simulations, we lichites
number to three.

We believe that the Pachira scheme, which we plan to employ to
spur deployment of our own networked system, complies with a
the above laws.

9. RELATED WORK

There exists a vast literature on incentive mechanismsestd t
nigues in the networking literature. However, most pridiesnes
are relevant only to symmetric systems in which every nodesha
rational interest in participating or contributing. As pted out in
the introduction, such mechanisms are unsuited to be ereplay
a means for motivational deployment to bootstrap asymmsys-
tems or symmetric systems that require a sufficiently lasgeork
effect to become self-sustained. Much of this work, foranse,
is tailored to specific peer-to-peer applications, inabgdile shar-
ing [32], routing [8], content distribution [31], and mudéist [27].
There has also been research into application-generic symem
incentives such as bartering [11], economic systems [86fort
tat [23] as in BitTorrent, or robustness in BAR models [22h |
the context of asymmetric systems, CompuP2P [18] is a peer-t
peer system that constructs decentralized markets fongugmd
selling computing resources. CompuP2P assumes the dlibjilab
of a electronic payment mechanism to scalably and secuaaigt
fer funds from the system’s beneficiaries to its contribsitan ex-
change for use of the contributors’ resources. Kanetaal [19]
consider a pay-per-transaction file-sharing system, vitngreers
are in competition for the opportunity to profit by providimg-
quested file content. They show that such competition cahttea
non-cooperation, similar to a lottree without the WSI prtye



10. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the question of how to motivaie pe
ple to join or contribute to a networked system that does aot (
not yet) offer them inherent participation benefit. In answee
proposed a lottery tree, a mechanism that probabilisgicalvards
each participant in a manner dependant on its contribusonel
as on the contributions of others whose participation itudisited.

Lottrees are most effective at spurring deployment whetesys
are small or medium-sized, which are the scales at whichvaoti
tional deployment is most challenging. As the system saale i
creases, the lottree’s effectiveness begins to wane, justeaself-
sustaining aspects of the networked system can be expeched t
come active.

We formally defined seven desirable properties for lottiaeds
constructed the Pachira lottree scheme, which simultahecat-
isfies a maximal satisfiable subset of these properties. Vieeiu
showed relatively straightforward work-arounds for the rop-
erties that Pachira does not satisfy.

We then conducted extensive simulations, with which weveelri
good choices for the Pachira lottree’s parameters, detexdnan
appropriate payout amount based on target deployment andle
expected participation effort, and determined the requiaint of
initial participants to preclude stunted deployment. Wegber-
formed a wide range of simulation experiments to analyzeséme
sitivity of our evaluation to our modeling assumptions aidtlbn
parameters.

We conclude that Pachirais a practically ideal candidateiés
ploying real networked systems, and we plan to employ thisise
as part of an ongoing distributed-systems project reqgiciontri-
butions of CPU and bandwidth from a large number of PC users.

A looming open problem iauditing The lottree mechanism is
inherently based on the assumption that each participeosibu-
tion can be reliably and securely measured and reportee textrc-
utive entity. Depending on the properties of the system &stjan,
this may be anywhere from thoroughly straightforward toesxt
ingly challenging.

It may be interesting to consider generalized versions tbfele
systems, such as those not constrained to a tree structuris. T
could be relevant, for example, in cases in which a potepéetic-
ipant is concurrently solicited by more than one active mend§
the system.
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