
TrueSkillTM: A Bayesian Skill Rating SystemRalf HerbrichMicrosoft Research Ltd.Cambridge, UKrherb@microsoft.com Tom MinkaMicrosoft Research Ltd.Cambridge, UKminka@microsoft.com Thore GraepelMicrosoft Research Ltd.Cambridge, UKthoreg@microsoft.comAbstractWe present a new Bayesian skill rating system which can be viewed as ageneralisation of the Elo system used in Chess. The new system tracksthe uncertainty about player skills, explicitly models draws, can deal withany number of competing entities and can infer individual skills from teamresults. Inference is performed by approximate message passing on a factorgraph representation of the model. We present experimental evidence onthe increased accuracy and convergence speed of the system compared toElo and report on our experience with the new rating system running in alarge-scale commercial online gaming service under the name of TrueSkill.1 IntroductionSkill ratings in competitive games and sports serve three main functions. First, they allowplayers to be matched with other players of similar skill leading to interesting, balancedmatches. Second, the ratings can be made available to the players and to the interestedpublic and thus stimulate interest and competition. Thirdly, ratings can be used as criteriaof quali�cation for tournaments. With the advent of online gaming, the interest in ratingsystems has increased dramatically because the quality of the online experience of millionsof players each day are at stake.In 1959, Arpad Elo developed a statistical rating system for Chess, which was adopted bythe World Chess Federation FIDE in 1970 [4]. The key idea behind the Elo system [2] is tomodel the probability of the possible game outcomes as a function of the two players' skillratings s1 and s2. In a game each player i exhibits performance pi � N (pi; si; �2) normallydistributed around their skills si with �xed variance �2. The probability that player 1 winsis given by the probability that his performance p1 exceeds the opponent's performance p2,P (p1 > p2js1; s2) = ��s1 � s2p2� � ; (1)where � denotes the cumulative density of a zero-mean unit-variance Gaussian. After thegame, the skill ratings s1 and s2 are updated such that the observed game outcome becomesmore likely and s1+s2 = const. is maintained. Let y = +1 if player 1 wins, y = �1 if player2 wins and y = 0 if a draw occurs. Then the resulting (linearised) Elo update is given bys1  s1 + y�, s2  s2 � y� and� = ��p�| {z }K�Factor�y + 12 ���s1 � s2p2� �� ;where 0 < � < 1 determines the weighting of the new evidence versus the old estimate.Most currently used Elo variants use a logistic distribution instead of a Gaussian becauseit is argued to provide a better �t for Chess data. From the point of view of statistics the



Elo system addresses the problem of estimating from paired comparison data [1] with theGaussian variant corresponding to the Thurstone Case V model and the logistic variant tothe Bradley-Terry model.In the Elo system, a player's rating is regarded as provisional as long as it is based on lessthan a �xed number of, say, 20 games. This problem was addressed by Mark Glickman'sBayesian rating system Glicko [5] which introduces the idea of modeling the belief about aplayer's skill as a Gaussian belief distribution characterised by a mean � and a variance �2.An important new application of skill rating systems are multiplayer online games thatgreatly bene�t from the ability to create online matches in which the participating playershave roughly even skills and hence enjoyable, fair and exciting game experiences. Multiplayeronline games provide the following challenges:1. Game outcomes often refer to teams of players yet a skill rating for individual playersis needed for future matchmaking.2. More than two players or teams compete such that the game outcome is a permu-tation of teams or players rather than just a winner and a loser.In this paper we present a new rating system, TrueSkill, that addresses both these challengesin a principled Bayesian framework. We express the model as a factor graph (Section 2)and use approximate message passing (Section 3) to infer the marginal belief distributionover the skill of each player. In Section 4 we present experimental results on real-world datagenerated by Bungie Studios during the beta testing of the Xbox title Halo 2 and we reporton our experience with the rating system running in the Xbox Live service.2 Factor Graphs for RankingFrom among a population of n players f1; : : : ; ng in a game let k teams compete in a match.The team assignments are speci�ed by k non-overlapping subsets Aj � f1; : : : ; ng of theplayer population, Ai \ Aj = ; if i 6= j. The outcome r := (r1; : : : ; rk) 2 f1; : : : ; kg isspeci�ed by a rank rj for each team j, with r = 1 indicating the winner and with thepossibility of draws when ri = rj . The ranks are derived from the scoring rules of the game.We model the probability P (rjs; A) of the game outcome r given the skills s of the partic-ipating players and the team assignments A := fA1; : : : ; Akg. From Bayes' rule we obtainthe posterior distribution p (sjr; A) = P (rjs; A) p (s)P (rjA) : (2)We assume a factorising Gaussian prior distribution, p(s) :=Qni=1N (si;�i; �2i ). Each playeri is assumed to exhibit a performance pi � N (pi; si; �2) in the game, centred around theirskill si with �xed variance �2. The performance tj of team j is modeled as the sum of theperformances of its members, tj :=Pi2Aj pi. Let us reorder the teams in ascending orderof rank, r(1) � r(2) � � � � � r(k). Disregarding draws, the probability of a game outcome ris modeled as P (rj ft1; : : : ; tkg) = P �tr(1) > tr(2) > � � � > tr(k)� ;that is, the order of performances generates the order in the game outcome. If draws arepermitted the winning outcome r(j) < r(j+1) requires tr(j) > tr(j+1)+" and the draw outcomer(j) = r(j+1) requires jtr(j)�tr(j+1) j � ", where " > 0 is a draw margin that can be calculatedfrom the assumed probability of draw.1We need to be able to report skill estimates after each game and will therefore use an onlinelearning scheme referred to as Gaussian density �ltering [8]. The posterior distribution isapproximated to be Gaussian and is used as the prior distribution for the next game. If the1The transitive relation �1 draws with 2� is not modelled exactly by the relation jt1 � t2j � ",which is non-transitive. If jt1 � t2j � " and jt2 � t3j � " then the model generates a draw amongthe three teams despite the possibility that jt1 � t3j > ".
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Figure 1: An example TrueSkill factor graph. There are four types of variables: si forthe skills of all players, pi for the performances of all players, ti for the performances ofall teams and dj for the team performance di�erences. The �rst row of factors encode the(product) prior; the product of the remaining factors characterises the likelihood for thegame outcome Team 1 > Team 2 = Team 3. The arrows indicate the optimal messagepassing schedule: First, all light arrow messages are updated from top to bottom. In thefollowing, the schedule over the team performance (di�erence) nodes are iterated in theorder of the numbers. Finally, the posterior over the skills is computed by updating all thedark arrow messages from bottom to top.skills are expected to vary over time, a Gaussian dynamics factor N (si;t+1; si;t; 
2) can beintroduced which leads to an additive variance component of 
2 in the subsequent prior.Let us consider a game with k = 3 teams with team assignments A1 = f1g, A2 = f2; 3gand A3 = f4g. Let us further assume that team 1 is the winner and that teams 2 and 3draw, i.e., r := (1; 2; 2). We can represent the resulting joint distribution p (s;p; tjr; A) bythe factor graph depicted in Figure 1.A factor graph is a bi-partite graph consisting of variable and factor nodes, shown in Figure 1as gray circles and black squares, respectively. The function represented by a factor graph�in our case the joint distribution p (s;p; tjr; A)�is given by the product of all the (potential)functions associated with each factor. The structure of the factor graph gives informationabout the dependencies of the factors involved and is the basis of e�cient inference algo-rithms. Returning to Bayes rule (2), the quantities of interest are the posterior distributionp (sijr; A) over skills given game outcome r and team associations A. The p (sijr; A) arecalculated from the joint distribution integrating out the individual performances fpig andthe team performances ftig,p (sjr; A) = Z 1�1 � � �Z 1�1 p (s;p; tjr; A) dp dt :



Factor f(�) = I(�> ") (win) Factor f(�) = I(j � j � ") (draw)
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Figure 2: Update rules for the the approximate marginals for di�erent values of the drawmargin ": For a two-team game, the parameter t represents the di�erence of team perfor-mances between winner and loser. Hence, in the �win� column (left) negative values of tindicate a surprise outcome leading to a large update. In the �draw� column (right) anystark deviation of team performances is surprising and leads to a large update.3 Approximate Message PassingThe sum-product algorithm in its formulation for factor graphs [7] exploits the sparse con-nection structure of the graph to perform e�cient inference of single-variable marginalsby message passing. The message passing for continuous variables is characterised by thefollowing equations (these follow directly from the distributive law):p (vk) = Yf2Fvk mf!vk (vk) (3)mf!vj(vj) = Z � � �Z f (v)Yi6=jmvi!f (vi) dvnj (4)mvk!f (vk) = Y~f2Fvknffgm ~f!vk (vk) ; (5)where Fvk denotes the set of factors connected to variable vk and vnj denotes the componentsof the vector v except for its jth component. If the factor graph is acyclic and the messagescan be calculated and represented exactly then each message needs to be calculated onlyonce and the marginals p(vk) can be calculated from the messages by virtue of (3).As can be seen from Figure 1 the TrueSkill factor graph is in fact acyclic and the majorityof messages can be represented compactly as 1�dimensional Gaussians. However, (4) showsthat messages 2 and 5 from the comparison factors I(�> ") or I(j � j � ") to the performancedi�erences di in Figure 1 are non Gaussian�in fact, the true message would be the (non-Gaussian) factor itself.Following the Expectation Propagation algorithm [8], we approximate these messages aswell as possible by approximating the marginal p(di) via moment matching resulting ina Gaussian p̂(di) with the same mean and variance as p(di). For Gaussian distributions,



Factor Update equationxN (x;m; v2)mf!x �newx  �x + 1v2�newx  �x + mv2x yN (x; y; c2)mf!x �newf!x  a (�y � �f!y)�newf!x  a (�y � �f!y)a := �1 + c2 (�y � �f!y)��1mf!y follows from N �x; y; c2� = N �y;x; c2�.x y1 yn� � �I(x= a>y)mf!x �newf!x  0@ nXj=1 a2j�yj � �f!yj1A�1�newf!x  �newf!x �0@ nXj=1 aj � �yj � �f!yj�yj � �f!yj 1Ax y1 yn� � �I(x= b>y)mf!yn x y1 yn� � �I(yn = a>[y1; � � � ; yn�1; x])mf!yn a = 1bn �2664 �b1...�bn�1+1 3775xI(x > ")mf>!x xI(jxj � ")mfj�j!x �newx  c1�Wf (d=pc; "pc)�newx  d+pc � Vf (d=pc; "pc)1�Wf (d=pc; "pc)c := �x � �f!x ; d := �x � �f!xTable 1: The update equations for the (cached) marginals p(x) and the messages mf!x forall factor types of a TrueSkill factor graph. We represent Gaussians N (�;�; �) in terms oftheir canonical parameters: precision, � := ��2, and precision adjusted mean, � := ��. Themissing update equation for the message or the marginal follow from (6).moment matching is known to minimise the Kullback�Leibler divergence. Then, we exploitthe fact that from (3) and (5) we havep̂ (di) = m̂f!di (di) �mdi!f (di) , m̂f!di (di) = p̂ (di)mdi!f (di) : (6)Table 1 gives all the update equations necessary for performing inference in the TrueSkillfactor graph. The top four rows result from standard Gaussian integrals. The bottom ruleis the result of the moment matching procedure described above. The four functions arethe additive and multiplicative correction term for the mean and variance of a (doubly)truncated Gaussian and are given by (see also Figure 2):VI(�>") (t; ") := N (t� ")� (t� ") ; WI(�>") (t; ") := VI(�>") (t; ") � �VI(�>") (t; �) + t� "� ;



VI(j�j>") (t; ") := N (�"� t)�N ("� t)� ("� t)�� (�"� t) ;WI(j�j>") (t; ") := V 2I(j�j>") (t; ") + ("� t) � N ("� t) + ("+ t)N ("+ t)� ("� t)�� (�"� t) :Since the messages 2 and 5 are approximate, we need to iterate over all messages that areon the shortest path between any two approximate marginals p̂(di) until the approximatemarginals do not change anymore. The resulting optimal message passing schedule can befound in Figure 1 (arrows and caption).4 Experiments and Online Service4.1 Halo 2 Beta TestIn order to assess the performance of the TrueSkill algorithm we performed experimentson the game outcome data set generated by Bungie Studios during the beta testing of theXbox title Halo 22. The data set consists of thousands of game outcomes for four di�erenttypes of games: 8 players against each other (�Free for All�), 4 players vs. 4 players (�SmallTeams�), 1 player vs. 1 player (�Head to Head�), and 8 players vs. 8 players (�Large Teams�).The draw margin " for each factor node was set by counting the fraction of draws betweenteams (�empirical draw probability�) and relate the draw margin " to the chance of drawingby drawprobability = �� "pn1 + n2����� �"pn1 + n2�� = 2�� "pn1 + n2��� 1 ;where n1 and n2 are the number of players in each of the two teams compared by a I(�> ")or I(j � j � ") node (see Figure 1). The performance variance �2 and the dynamics variance
2 were set to the standard values (see next section). We compared the TrueSkill algorithmto Elo with a Gaussian performance distribution (1) and � = 0:07; this corresponds to aK factor of 24 on the Elo scale which is considered a good and stable dynamics (see [4]).When we had to process a team game or a game with more than two teams we used theso-called duelling heuristic: For each player, compute the �'s in comparison to all otherplayers based on the team outcome of the player and every other player and perform anupdate with the average of the �'s. The approximate message passing algorithm describedin the last section is extremely e�cient; in all our experiments the runtime of the rankingalgorithm was within twice the runtime of the simple Elo update.Predictive Performance The following table presents the prediction error (fraction ofteams that were predicted in the wrong order before the game) for both algorithms (column2 and 3). This measure is di�cult to interpret because of the interplay of ranking andmatchmaking: Depending on the (unknown) true skills of all players, the smallest achievableprediction error could be as big as 50%. In order to compensate for this latent, unknownvariable, we arranged a competition between ELO and TrueSkill: We let each system predictwhich games it considered most tightly matched and presented them to the other algorithm.The algorithm that predicts more game outcomes correctly has a better ability to identifytight matches. For TrueSkill we used the matchmaking criterion (7) and for Elo we usedthe di�erence in Elo scores, s1 � s2.ELO full TrueSkill full ELO �challenged� TrueSkill �challenged�Free for All 32.14% 30.82% 38.30% 35.64%Small Teams 34.92% 35.23% 42.55% 37.17%Head to Head 33.24% 32.44% 40.57% 30.83%Large Teams 39.49% 38.15% 44.12% 29.94%It can be seen from column 4 and 5 of this table that TrueSkill is signi�cantly better atpredicting the tight matches (the �challenge� set was always 20% of the total number ofgames in each game mode).2Available for download at http://research.microsoft.com/mlp/apg/downloads.htm



Match QualityOne of the main applications of a rating system is to beable to match players of similar skill. In order to com-pare the ability of Elo and TrueSkill on this task, wesorted the games based on the match quality assignedby both systems to each game. If the match was trulytight then it would be very likely to observe a draw.Thus, we plot the fraction of draws (out of all possibledraws) accumulating over the match quality order as-signed by each system. In the graph on the right we seethat TrueSkill is signi�cantly better than Elo for boththe �Free for All� and �Head to Head� game mode butfails in �Small Teams�. This is possibly due to the vio-lation of the additive team performance model as mostgames in this mode are Capture-the-Flag games. 0 20 40 60 80 100
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Convergence PropertiesFinally, we plotted two exemplary convergence trajec-tories for two of the highest rated players in the �Freefor All� game mode (Solid line: TrueSkill; Dashed line:Elo). As can be seen, TrueSkill automatically choosesthe correct learning rate whereas Elo only slowly con-verges to the target skill. In fact, TrueSkill comes closeto the information theoretic limit of n log(n) bits to en-code a ranking of n players. For 8 player games, theinformation theoretic limit is log(n)= log(8) � 5 gamesper player on average and the observed convergence forthese two players is � 10 games!4.2 TrueSkill in Xbox 360 LiveXbox Live is Microsoft's console online gaming service. It lets players play together acrossthe world in hundreds of di�erent titles. As of September 2005 Xbox Live had over 2million subscribed users who had accrued over 1.3 billion hours on the service. The new andimproved Xbox 360 Live service o�ers automatic player rating and matchmaking using theTrueSkill algorithm. The system processes hundreds of thousands of games per day makingit one of the largest applications of Bayesian inference to date.In Xbox Live we use a scale given by a prior �0 = 25 and �20 = (25=3)2 corresponding to aprobability for positive skills of approximately 99%. The variance of performance is given



by �2 = (�0=2)2 and the dynamics variance is chosen to be 
2 = (�0=100)2. The TrueSkillskill of a player i is currently displayed as a conservative skill estimate given by the 1%lower quantile �i� 3�i. This choice ensures that the top of the leaderboards (a listing of allplayers according to �� 3�) are only populated by players that are highly skilled with highcertainty, having worked up their way from 0 = �0 � 3�0. Pairwise matchmaking of playersis performed using a match quality criterion derived as the draw probability relative to thehighest possible draw probability in the limit "! 0,qdraw ��2; �i; �j ; �i; �j� :=s 2�22�2 + �2i + �2j � exp � (�i � �j)22 �2�2 + �2i + �2j �! : (7)Note that the matchmaking process can be viewed as a process of sequential experimentaldesign [3]. Since the quality of a match is determined by the unpredictability of its outcome,the goals of matchmaking and �nding the most informative matches are aligned!As a fascinating by-product we have the opportunity to study TrueSkill in action with playerpopulations of hundreds of thousands of players. While we are only just beginning to analysethe vast amount of resulting data, we have already made some interesting observations.1. Games di�er in the number of e�ective skill levels. Games of chance (e.g., singlegame Backgammon or UNO) have a narrow skill distribution while games of skill(e.g., semi-realistic racing games) have a wide skill distribution.2. Matchmaking and skill display result in a feedback loop back to the players, whooften view their skill estimate as a reward or punishment for performance. Someplayers try to protect or boost their skill rating by either stopping to play, bycarefully choosing their opponents, or by cheating.3. The total skill distribution is shifted to below the prior distribution if players new tothe system consistently lose their �rst few games. When a skill reset was initiated,we found that the e�ect disappeared with tighter matchmaking enforced.5 ConclusionTrueSkill is a globally deployed Bayesian skill rating algorithm based on approximate mes-sage passing in factor graphs. It has many theoretical and practical advantages over the Elosystem and has been demonstrated to work well in practice.While we speci�cally focused on the TrueSkill algorithm, many more interesting modelscan be developed within the factor graph framework presented here. In particular, thefactor graph formulation is applicable to the family of constraint classi�cation models [6]that encompass a wide range of multiclass and ranking problems. Also, instead of rankingindividual entities one can use feature vectors to build a ranking function, e.g., for web pagesrepresented as bags-of-words. Finally, we are planning to run a full time-independent EPanalysis across chess games to obtain TrueSkill ratings for chess masters of all times.Acknowledgements We would like to thank Patrick O'Kelley, David Shaw and Chris Butcherfor interesting discussions. We also thank Bungie Studios for providing the data.References[1] A. H. David. The Method of Paired Comparisons. Charles Gri�n and Company, London, 1969.[2] A. E. Elo. The rating of chess players: Past and present. Arco Publishing, New York, 1978.[3] V. V. Fedorov. Theory of optimal experiments. Academic Press, New York, 1972.[4] M. E. Glickman. A comprehensive guide to chess ratings. Amer. Chess Journal, 3:59�102, 1995.[5] M. E. Glickman. Parameter estimation in large dynamic paired comparison experiments. AppliedStatistics, 48:377�394, 1999.[6] S. Har-Peled, D. Roth, and D. Zimak. Constraint classi�cation: A new approach to multiclassclassi�cation and ranking. In NIPS 15, pages 785�792, 2002.[7] F. R. Kschischang, B. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm.IEEE Trans. Inform. Theory, 47(2):498�519, 2001.[8] T. Minka. A family of algorithms for approximate Bayesian inference. PhD thesis, MIT, 2001.


