FlashDB: Dynamic Self-tuning Database for NAND Flash

~ Suman Nath ~Aman Kansal
Microsoft Research Microsoft Research
sumann@ni crosoft. com kansal @i crosoft.com
ABSTRACT example includes sensor networks of mobile devices which have

significant local processing power [4, 12]. In these cases rather
than uploading the entire raw data stream, one may save energy
and bandwidth by processing queries locally at a cluster-head or a
more capable node and uploading only the query response or the
compressed or summary data. Storage centric networks have also
been discussed in [6, 7].

In most cases where the storage is part of the sensor network,
the storage device used is flash based rather than a hard disk due to

timal in many practical systems. FlashDB uses a novel self-tuning shock resistance, node size, and energy considerations. Addition-

index that dynamically adapts its storage structure to workload and &!lY: flash is also common in many mobile devices such as PDAS,

underlying storage device. We formalize the self-tuning nature of gellfphones,tr)nusifc_: ;:Iayers,han_d p$rsk?nal g);ergisel;nonitors. These
an index as a two-state task system and propose a 3-competitive evices can bene itirom ahaving ig tweig t atal ase.
Our objective is to design storage and retrieval functionality for

online algorithm that achieves the theoretical optimum. We also .) A . .
provide a framework to determine the optimal size of an index node flash storage. _A_S|mple m.e.thOd. Is to archive dz_ita without an in-
that minimizes energy and latency for a given device. Finally, we 46X and thatis in fact efficient in many scenarios. However, as
propose optimizations to further improve the performance of our W& Show in section 6, for scenarios where the number of queries
index. We prototype and compare different indexing schemes on IS more thap a S”?a" fraction(1%) of the number pf data items,
having an index is useful. Hence, we focus on indexed storage.

multiple flash devices and workloads, and show that our index- . :
ing scheme outperforms existing schemes umtlaworkloads and ~ 11or work on flash storage provides file systems (e.g., ELF [5])

: ; and other useful data structures such as stacks, queues and limited
flash devices we consider. . : ;

)) . . indexes (e.g., Capsule [14], MicroHash [22]). Our goal is to ex-
Categories and Subject DescriptorsH.2.4 [Database Manage- e the functionality provided by those methods to-Bee based
ment _Sys.temia Query processing H.3.1ontent Analysis and indexing to support useful queries such as lookups, range-queries
Indexing]: Indexing methods multi-dimensional range-queries, and joins.

General Terms: Algorithms, Design, Measurement, Performance. Existing database products are not well suited for sensor net-

Keywords: B*-tree, NAND Flash, indexing, log-structured index, ~Works due to several reasons. Firstly, existing products, including

FlashDB is a self-tuning database optimized for sensor networks
using NAND flash storage. In practical systems flash is used in dif-
ferent packages such as on-board flash chips, compact flad car
secure digital cards and related formats. Our experiments reveal
non-trivial differences in their access costs. Furthermore, dagabas
may be subject to different types of workloads. We show that ex-
isting databases for flash are not optimized dfirtypes of flash
devices or forall workloads and their performance is thus subop-

self-tuning index. ones that run on flash [15], are originally designed for hard disks
and are not optimized for NAND flash characteristics. Secondly,
1 INTRODUCTION existing products are not targeted to most sensor network work-

. . loads. Sensor network storage workload may be highly write in-
This paper presents a database for sensor networks using flashensjve: data may be added to the database more frequently than

based storage. There are many use cases where it is desirable tf i read. This is different from many traditional database appli-

store data within the sensor network, rather than transmit it all to ations where data is read more frequently than it is written. A

a central database. A first example are remote deployments wherqqg_siryctured B-Tree indexing method was proposed in [21] to ad-
an economical communication infrastructure is not available and yress these two problems.
an expensive low rate satellite or cellular connection is used, such yawever. all existing indexing schemes, including those in com-
as in polar regions or remote seismic deployments. Another ex- mercial products and research prototypes, suffer from the diwba
ample is the large class of applications for which the entire raw 4t they are not optimized fail available flash devices or realistic
data is seldom required. A third example includes mobile sensor \yqrkioads. They do not consider all factors in the design space and
nodes [10, 23], with sporadic and short lived connections. A fourth .o suboptimal in many situations. For example, as we will show
later, the log-structured design [21] performs well with a write-
Permission to make digital or hard copies of all or part of thawknfor intensive qukload onan on-board flash Fh'p’ but performs poorly
personal or classroom use is granted without fee providaddbpies are W_he_n run W'th a read'W“t_e Work|oad_0r with a compact flash card.
not made or distributed for profit or commercial advantage aatidbpies Similarly, disk-based designs are suitable for certain types of flash
bear this notice and the full citation on the first page. Toyaojherwise, to and workloads, but are suboptimal for others. This limits the use
republish, to post on servers or to redistribute to listguiees prior specific of existing schemes in practical system design, especially when the

permission and/or a fee. - . . . :
IPSN'07,April 25-27, 2007, Cambridge, Massachusetts, USA. §¥§tem is being o!esngned for multiple types of workloads and flex
ibility in flash devices.

Copyright 2007 ACM 978-1-59593-638-7/07/00085.00.

We address this in FlashDB with a self-tuning indexing method Device R (pJ) | W(pJ) | R(us) | W(us)
that can adapt itself to the dynamic behavior of multiple device and | Samsung 128MB 0.74 9.9 15 200
workload parameters that affect performance. Our current proto | Compact Flash 512MB 2970 | 6220 | 18000 | 29000
type can run on more capable sensor nodes such as iMotes [11] Mini SD 512MB 109 22292 | 1100 | 193000
ENSBox [8], XYZ [13], NIMS [17], or CarTel [10]; however, its 128MB+Micaz2 [14] 57.83 | 73.79 | 0.969 | 1081

simplicity and small memory footprin6g B for a database of 30,000

records, independent of record size) promises its use in more re-Table 1: Page read and write costs for some flash packages (R:

source constrained devices (such as motes). Read, W: Write). The CF card used is a Sandisk Ultra 1l and
We make the following contributions in this paper: the mini SD card used is from Kingston.

e We discuss the design space of factors that influence flash
based storage system design, through experiments with our When used in one of these packages, the interface to the flash
flexible flash test bed. chip is through an abstraction layer called Flash Translation Layer

e Indexing has an extra resource overhead compared to archiv-(FTL). The FTL provides a disk like interface, which includes the
ing the raw data. We evaluate when indexing is desirable. capability to read and write a page directly without worrying about
. . the erase-before-write constraint. The FTL also provides wear lev-
e We present a self-tuning Btree design that can adapt to the

; ; : - elling by distributing writes uniformly across the media. However,
dynamic behavior of the workload and the underlying device. FTL internally needs to deal with the characteristics of the underly-

o We formalize the self-tuning nature of the index as atwo state jnq flash device. Thus, even if a storage system uses a flash package
task system and propose an online algorithm that matches theyith g built-in FTL, it is prudent to consider the flash characteristics
theoretical lower bound of competitive ratio. in the storage design.

e We provide a framework to determine the optimal size of an 2.1.1 Experimental Observations
index node that minimizes energy and latency for a given ~ i) .
device. This framework is applicable not only to our storage Ve measure the behavior of different flash packages to guide our
system design but also to existing indexing methods. design decisions in FlashDB. We set up a testbed that allows us to

read and write pages directly to flash packages without using the

e We prototype and test our proposals on multiple flash de- file system. Testbed details can be found in [16].

vices such as compact flash and secure digital. Our evalu-)]
ation shows that our indexing scheme outperforms existing Read/Write Costs Table 1 shows the energy consumed and time
schemes undell workloads and flash devices we consider. taken for page read and write for various flash cards, as derived

The next two sections discuss the design space and the need for §0M our experiments. In addition, it also shows the costs for a
self-tuning database. Sections 4 and 5 discuss our system designf|ash chip interfaced to a mote [14] (row 4). As a comparison, we

Evaluation is presented in section 6. also include the same data for a flash chip [19] from its data sheet
(row 1), if it were to be interfaced in a manner that the chip itself
2 FLASH STORAGE DESIGN SPACE were to be the bottleneck in read-write operations.
) Our measurements show thaiad write costs and their ratios
2.1 Flash Characteristics differ significantly across flash packageSor example, a write is

Flash devices are primarily of two types: NOR and NAND. While = 200 times more expensive than a read for the mini SD card,
NOR devices have faster and simpler access procedures, their storVhil€ itis only~ 2 times more expensive for the CF card. ,
age capacity is lower and these are thus preferred for program stor- Moreover, in some instances, the data transfer bus used to inter-
age. NAND flash offers significantly higher storage capacity (cur- face th_e flash chip may not be fast enough to ta_lke full advantage of
rently 32Gb in a single chip) and is more suitable for storing large the chip speed, thus making the energy and time costs dependent
amounts of data. The key properties of NAND flash that directly in- O the bus speed rather than chip limitations [22].
fluence storage design are related to the method in which the mediaAccess Pattern Our measurements show that the energy and time
can be read or written, and are discussed in [22]. In summary, all to read and write a page on different flash packages follow a lin-
read and write operations happen at page granularity (or for someear model consisting of a fixed access cost and an incremental
devices up to 1/8th of a page granularity), where a page is typically (per page) access cost. The enefgy and E,, spent for read-
512-2048 bytes. Pages are organized into blocks, typically of 32 or ing and writing IV, consecutive CF card pages can be approxi-
64 pages. A page can only be written after erasing the entire block mated byFE, = 2884.53 + 92.41N,(uJ) andE,, = 6144.57 +
to which the page belongs. Page write cost is typically higher than 121.93N,(uJ). This model is based on extensive measurements
read, and the block erase requirement makes writes even more exfor N,, € [1,10000] and averaging over 10 random runs for each
pensive. A block wears out after 10,000 to 100,000 repeated writes,measurement. For the SD card, the modelsBre= 96.79 +
and so write load should be spread out evenly across the chip. 20.98N,(pJ) andE,, = 22350.40 + 21.41N,(p.]).

The above characteristics are those of basic flash chips. These A similar model for a flash chip interfaced to a mote was shown
chips are however available in various packages such as compactn [14]. Thus, accessing a large number of pages at once may be
flash (CF) cards, secure digital (SD) cards, mini SD cards, micro beneficial since that would amortize the fixed cost over a larger
SD cards, USB sticks, and even as composite chip modules thatnumber of pages.
provide a disk like ATA bus interface to the host node using the Another observation in our experiments is that re-writing to the
flash module. These packages are often preferred over raw chipssame (logical) page address is slower than writing to a new page
due to several advantages. For instance, in remote deployments acaddress in sequential order. The variation is small for read. The
cessed only infrequently, data may be retrieved simply by replac- average page write time, for the mini SD card, for re-writing to the
ing the flash cards. Moreover, the flash may be upgraded as highersame page address was observed to be four times that for writing
capacity flash becomes available without redesigning the node cir-to a subsequent page in sequential order. The reason for this comes
cuit board. Generic sensor node designs may already provide for afrom the page write constraint for flash devices mentioned earlier,
PCMCIA or CF interface to attach a flash card (e.g., Stargate). and the method used to cope with it in the card’s firmware. The

§!| non-leaf node. This requires reading all the nodes on the path from
the root node to the target leaf node. To search for keys within a
Hsllof His rangell, h], the leaf node containingis first located. Then sibling
pointers are used to read the next leaf node until the node contains
keys> h. Toinserta keyk, the leaf nodel that should contain

[Z772

77
i7]

HofsB-Hell B-goll F-Hre]] F-HsH2] k is first located. IfL contains less than items,k is inserted into
L. Otherwise, half ofL’s items are put into a new nodg&’ and
Figure 1: AB™-tree. k is inserted intaL or L’. Creation of the new nodé’ requires

» recursively adding a new entry intb's parent node. Finally, to
exact numbers observed are specific to the cards used and may vanjg|etea keyk, the leaf node. containingk is first located (via top-
across manufacturers. down traversing). If after deletion @f, L contains less than/2
2.2 \Workload Properties items, it is merged with the previous leaf node and pointers to it are
recursively deleted fronk.’s parent node. See [20] for details.

Two different B -tree designs exist for flash based indexes. The
first design, here referred to as"Bree(Disk), assumes that the

Read-write Ratio. While most sensor applications are write-intensivegiorage is a disk-like block-device. The second design, calfed B
they do experience varying read-write ratio over time. For exam- treg(Log), uses a log-structured index.

ple, in an acoustic sensing application [8], a sensor can store dataB+
frequently when birds chirp around it and can read data frequently
when scientists query sensors for different chirping instances. The
data access pattern may even change dynamically or vary for dif-
ferent segments of the stored data. For instance, certain data point
below an interesting threshold value may be rarely retrieved but
other data values may be frequently accessed.

Even when the application workload is mostly write-only, the
workload experienced by the index itself may not be so. As we
show in Sections 2.3 and 3, updating an index requires reading a
part of it to locate where to apply the update. Therefore, different
parts of the index can experience different read-write ratio; i.e.,
some part of the index can be read-intensive while some other part
can be write-intensive.

Two important workload properties can affect the performance
of a storage system.

-tree(Disk). This design is built upon a disk-like abstraction
(such as the one provided by FTL) over flash. A-Bee node, de-
pending on its size, is stored over multiple consecutive flash pages.
él’o read the node, corresponding pages need to be read. To update a
node, corresponding pages are read into RAM, modified, and then
written back. Microsoft SQL Everywhere [15] uses this design.

The advantage of B-tree(Disk) design is code portability: the
existing implementation for hard disks can be run on flash. The
disadvantage is that updates are expensive. Even if only a small
part of a B -tree(Disk) node is updated (e.g., a pointer is changed),
the whole node needs to be read into RAM and written back. If the
node is written to a new physical page, the old page needs to be
garbage collected. Therefore; Bree(Disk) is inappropriate with

. . write-intensive workload.
Data Pattern. The variation of data values to be indexed can affect

the reads/writes seen by different parts of an index. If the data to be
indexed are random in nature, different parts of the index structure
are likely to be updated with similar frequency. However, if the
data is correlated in nature, such as if data values measured over
short time period lie within a short range, some part of the index
may become more write-intensive than others at a given time. In
many situations, workload pattern may not be known a priori or
may change over time.

B't-tree(Log). This design, inspired by log-structured file sys-

tems [5, 18] and proposed in [21], avoids the high update cost of

B -tree(Disk). The basic idea behind Bree(Log) is to organize

éhe index as transaction logs. A write operation on‘atBze node

is encoded as a log entry and is placed in an in-memory buffer.

When the buffer contains enough data to fill a page, it is written to

flash. Another in-memory data structure maintains, for each node,

a linked list of page addresses where log entries for the node are

. stored on the flash.

2.3 Indexing Methods The advantage of B-tree(Log) is its small update cost since
To support database-style queries on stored data, we considethe page write cost is amortized over multiple updates. However,

BT -tree, a popular indexing data structure used in various incar- reading a node is expensive because many log entries, which may

nations in database systems. Powerful queries such as lookupspread over multiple pages, need to be read to construct the node.

range queries, multi-dimensional range-queries, and joins can be

efficiently supported by a B-tree. It supports efficient operations

to find, delete, insert, and browse the data. Typically, it is used as 3. THENEED TO SELF-TUNE

an external (outside of RAM) index to maintain large data sets. A We argue that existing indexing schemes are not optimizeallfor

BT -tree is a balanced tree in which every path from the root node flash devices call workloads discussed in the last section, limiting

to a leaf node has the same length. In eachtRe node, keys their performance, especially when the system is designed for mul-

(value field being indexed) and pointers are interspersed as a listtiple types of workloads and flexibility in flash devices. To address

< po, ko,p1, k1, ,pa >, where[n/2] < d < n (except the this shortcoming, an indexing scheme must be able to dynamically

root node) ana: is fixed for a particular tree. The elemeritsin adapt itself to underlying storage and workload properties. The fol-

the list represent keys to be indexed, in sorted order while the ele- lowing discussion uses some evaluation results given in Section 6.

mentsp; represent pointers to child nodes or to data records. The Which of the above two Btree designs should one us&he

leaf nodes store all the keys to be indexed. In a leaf node, a pointerdecision depends on the workload and device characteristics. B

pi points to the actual data record with kiey The last pointepg tree(Log) is optimized for write-intensive workload (e.g., where
points to its next sibling, which helps scanning a large range of data data is queried rarely) and for devices where writes are significantly
in sorted order. In a non-leaf node, a poingeipoints to the sub- more expensive than reads (e.g., SD card), becatisge®(Log)

tree whose leaf nodes contain kdy@ the ranget; < k < kiy1. reduces flash writes at the cost of increased flash reads. Our eval-
Figure 1 shows an example'Btree index. uation shows that B-tree(Log) is80% more efficient than B-

To searchfor a keyk in a B™-tree index, the tree is traversed top tree(Disk) with SD card and write-only workload. However, chang-
(root) to bottom, choosing the appropriate child pointer at every ing either device property or workload property can make- B

2 100 F T " T T s Database Applications Other Apps
L a—

) 80 | Sequential 1

é Random ---------- @ @

o 6o] Node Size Tuner Other

k= 40 | - - DBMS

=] NodeSwitch Algo. Elements

(% 20 r T Device Configuration

S L L L Index Manager
0.1 1 10 100 1000 10000
Read/Write Ratio @ File
System
. Garbage

Figure 2: Cumulative distribution of read/write ratio of differ- NTT Buffer Collector
ent nodes in a B -tree. The workload consists of 30K writes of :
random and sequential values. ’ Logical Storage ‘
tree(Log) perform worse than'Btree(Disk). For example, with a Storage Manager

CF card, whose read and write costs are comparabler@:(Log) JC It
performs32% worse than B -tree(Disk) (even with a write-only ‘ Flash Device and ETL ‘
workload), and with a read-intensive workload’ #ree(Log) can

be40% more expensive than'Btree(Disk). This happens because

the increased cost of additional reads ih-Bee(Log) does not get Figure 3: FlashDB Architecture.
compensated by the reduced cost of writes.

What if the workload or flash device used is unknown or can
change over time™Multiple applications with different workload
properties may use the same database. The same application ma
experience varying read/write ratio at different times (e.g., a write- .
intensive sensing application may become read-intensive when SeV_Database Management System that implements the database func-

eral queries follow an interesting event). The flash device may be tions including index management an_d_query compllatlo_n, an_d_ a
upgraded after the database has been designed. The database d%’gorage Manager t_hat implements eff|C|en_t storage functionalities
signer may not know which flash card the application user will plug Su‘?’?\ as c_iata blfJfferlngfatlﬂ_d garbage t(;ollec};otn. ina Index M

in. As discussed above, choosing an inappropriate design can incur € primary focus ot Inis paper IS the setl- u’nlng ndex Vianager
a high penalty in performance. This motivates a self-tuning in- (that uses a B-tree data structure) of _F_IashDBs database manage-
dexing scheme that dynamically adapts its storage structure to theMent system and related functionalities of the Storage Manager.

: . P In the rest of this section, we briefly describe the Logical Storage
workload and underlying storage device, thus optimizing energy
and latency foanyworkload or storage. component of Storage Manager. The Index Manager and the rest

The self-tuning aspect of an indexing scheme can further in- of the Storage Manager will be described in next two sections.

crease the performance beyond the best achievable by either B Logical Storage (LS) LS provides a logical sector address abstrac-
tree(Log) or B -tree(Disk), even if the workload and device are tion on top of physical flash pages. Components over LS access
fixed. Assume that the workload is write-intensive and the flash sectors through two APIReadSect or andW it eSect or, in

used has significantly higher write cost than read. We know that the granularity of aector typically of the same size as a physical

running on different flash devices or having different workloads

(e.g., with different read/write ratio or different data correlation)
ill choose different organization of data on the underlying physi-
al device. FlashDB consists of two main components (Figure 4): a

B -tree(Log) is better than B-tree(Disk), buis B*-tree(Log) op- flash page. Also, available addresses for writing may be obtained
timal? Consider the most favorable workload fof Bree(Log)— via Al | oc and unused sectors freed usiigee. LS hides flash-
insert-only workload. Note that even though the workload only specific complexities using:

inserts new keys to the Btree(Log), individual B -tree nodes see Out-of-place Update: As in-place update is expensive in all

both read and write operations (many Bree(Log) nodes are read flash devices, whew i t eSect or (addr, dat a) iscalled, LS

in order to locate the right nodes to insert keys). Figure 2 shows finds the next unused physical pagevritesdat a to it, and main-

the cumulative distribution of read/write ratio of different nodes of tains a mapping from logical addreaddr to p. The page previ-

a BT -tree constructed by a write-only workload. It shows that al- ously mapped byddr is marked dirty.

though most of the nodes of the tree have very small read/write ra- Garbage Collection: It cleans dirty pages produced by ee

tio, some nodes have very high read/write ratio. Generally, these andW i t eSect or operations. Since a page can not be erased
nodes are near the root node and are read to access leaf node#dependently, first, a flash block containing dirty pages is chosen.
Clearly, B -tree(Log) design is not suitable for these nodes; rather Then, valid pages of the block are copied to another block. Finally,
they should be structured as Bree(Disk) nodes. Thus, the index the block is erased.

should be able to tune its structure at a granularity finer than the en- The Storage Manager (SM) is configured with a partition of the
tire index; each node should be organized independently dependingphysical storage space; other applications bypassing SM, such as

on the workload it experiences. file systems, operate outside this partition. The SM partition can be
grown or shrunk dynamically. Growing the SM storage partition
4. FLASHDB does not affect existing data; subsequéintoc andW i t eSect or

] o)) operations take this additional physical space into account. Shrink-
FlashDB is a database optimized for flash devices. It is self- jng the partition requires remapping used sectors and copying their
tuning; after it is initially configured with the page read and write 4ata to pages within the new partition.
costs of the underlying storage device, it automatically adapts its
storage structure in a way that optimizes energy consumption and
latency for the workload it experiences. Thus, FlashDB instances

0 - (3) Log Entry Complete 5ne sector
forB Node A
o (D L
(&) © —('
\ BBBHH A [HDHED| - -
Logical
O @ @ @{ *4@ Address: 4 5 6

(a) A logical BT -tree(ST)

(b) Node Translation Table

(c) Flash storage

Figure 4: A logical B™-tree(ST), part of the Node Translation Table, and correspondig layout of data on flash storage. In (a), shaded
nodes are in Disk mode while the others are in Log mode. In (c), seatd contains the whole node A while sectors 4 and 6 contains

log entries for different nodes in Log mode.

5. SELF-TUNING INDEXING

In this section, we present our self-tuning Bree (hereafter re-
ferred to as B -tree(ST)) designed for NAND flash.

5.1 Bf-tree(ST) Design

The fundamental new feature of'Brree(ST) is the flexibility to
store an index node in one of two modésgor Disk. When a node

is in Log mode, each node update operation (e.g., adding or delet-

ing keys) is written as a separate log entry, similar totBee(Log).
Thus, to read a node imgmode, all its log entries (which may be

with id = with Log mode in the NTT. To read or update a nade

we first read its current mode froMi7'T'[z]. If z is in Disk mode,

we read the node from or update to the sectors giveiViiyT"[x].
Operations on: in Log mode are more involved. To updatewe
construct a log entry for the update operation and put it into the
Log Buffer. Later, when the Log Buffer has one sector worth of
data, all the log entries in the Log Buffer are written to an available
sector provided by thél | oc() API of Logical Storage and the
address of the sector is added at the beginning of the linked list at
NTT]z]. To readz, we read the Log Buffer and all the sectors in

spread over multiple pages) need to be read and parsed. When &he linked list atN'I'T’[z] to collect log entries for: and parse the

node is inDisk mode, the whole node is written together on con-

secutive pages (number of pages depends on the node size), an

logs to construct the logical node.

hence reading a node requires reading the corresponding sectors2-1-3 ~ Structure of Sector, NTT and Log Entries

At any point of time, some logical nodes of a"Bree(ST) may
be inLog mode while the others iDisk mode. Moreover, nodes

BT -tree(ST) data, before being written to a flash sector, is en-
capsulated with a small header that contains the following fields:

may change their modes dynamically as workload or storage devicel) Checksumto check for errors during read, andi¥)deMbde

change. Figure 4(a) shows a snapshot of a logicati@e(ST).
5.1.1 Storage Manager Components

BT -tree(ST) introduces two components in the Storage Manager

of FlashDB: a_og Bufferand aNode Translation Table (NTTJhe

Log Buffer, which can hold upto one sector worth of data, is used
only by the nodes currently inogmode. When a node irogmode

is modified, the corresponding log entries are temporarily held in
the Log Buffer. When a page worth of entries are collected, they
are written to flash together, to avoid expensive small writes.

For simplicity, FlashDB currently supports ACID semantics of
individual read/write operations only; more complex transactions
will be explored in our future work. To ensure this, all or none of
the log entries for an individual write operation are flushed from
the Log Buffer to flash. This is done by flushing the Log Buffer
to flashbeforea write operation if the Log Buffer does not have
enough space to hohll the log entries for the new operation.

The NTT maps logical B-tree(ST) nodes to their current modes

which can bd_og or Disk. NodeMbde enables identifying sectors
before applying optimizations for a specific mode (e.g., compaction
and garbage collection described in Section 5.3.1).

Each NTT entry contains the following fields: $gct or Li st
which points to sectors containing the node or its log entries, 2)
I sLeaf which is true if the logical node is a leaf node, and 3)
LogVer si on which is the latest version of log entries of the node.

Each log entry of a node ihog mode contains the following
fields. 1)Nodel D: it is the logical node id which distinguishes
log entries of different nodes. 2)ogType: it describes the op-
eration on the logical node and can be of three typd3D_KEY,
DELETE_KEY, and UPDATE_PO NTER. The first two types are
used to add and delete a (key, pointer) tuple frtBee nodes, while
the last type is required for updating the last pointer of a nonleaf
nodé or the sibling pointer of a leaf node. It is relatively easy to
convert a node into, or construct a node from, log entries of these
three types. 3pequenceNunber : it is incremented by one after
each log entry generated for the logical node. It helps in applying

and physical representations. Figure 4(b) shows a part of the NTT the log entries in the order they are generated.afVer si on: it

for the logical tree in Figure 4(a). For a nodeDisk mode (e.g.,

is the latest version of log entries, as logs can become stale due to

node A), the NTT records the addresses of the sectors (e.g., 5)our compaction mechanism described in Section 5.3.1.

where the node is written on flash. For a nodd.ag mode, the

The log entries contain enough information such that even if the

NTT maintains a linked list of addresses of all the sectors that con- application crashes and loses its in-memory NTT, the NTT can be
tain at least one valid log entry for that node. For example, in Fig- reconstructed by scanning the entire flash. This is an expensive op-
ure 4(b), node B has at least one log entry in sectors 4, 7, and 12.eration and can be avoided by periodically checkpointing the NTT
Note that a sector containing node B’s log entries can contain log into flash (Section 5.3.3).

entries for other nodes as well (e.g., in sector 4 in Figure 4(c)), as .

the Log Buffer may have log entries for many nodes when flushed. 5.2~ Self-tuning Issues

. To make B -tree(ST) efficient and self-tuning, the mode of a
5.1.2 Operations node must be decided and updated carefully. Further, the size of an

As described in Section 2.3, operations such as key search, addiindex node must be chosen optimally. The second issue can help
tion, and deletion on a B-tree translate to create, read, and update improve B'-tree(Disk) and B -tree(Log) designs also.

of tree nodes. Given the NTT, we perform these node-level oper-
ations as follows. To create a node withadwe create an entry

'Each node has one more pointers than keys.

Read/Write Operation
¢ ALGORITHM 1. : SWITCHMODE
(The following algorithm runs for each B-tree nodg

1. Initialize S < 0 when migrate to the current mode.
2. For every read-write operati@n
e Suppose; is the cost of servin@ in current mode
andcs is the cost of serving it in the other mode.

e S— S8+ (c1—c2)
3. Suppose)M; and M, are the costs for transition between
two modes. Then, switch to the other mode&Sit> M7 +

Figure 5: A B™-tree(ST) node switching between two modes.

Mo
5.2.1 Mode Switching Algorithm
At the heart of B -tree(ST), there is an algorithm that decides . .
when a node should switch betweBisk andLog modes. Switch- SWitch. We store the counter for nodéin NTT[x]. Suppose:,
ing between modes incurs costs. To switch a nedem Log to andc,, represent the co_sts of reading and writing one sector (i.e.,
Disk mode, the node is constructed by reading the log entries for ©N€ Page in the underlying flash). Also assume that ar@e(ST)
the node, and is written back Disk mode. To switch it fronDisk node inDiskmode takes:; sectors. Then, computing costsDisk

to Logmode, first, the node is readDiskmode, then, itis encoded ~ MOde is simple: each read and write operation on the node costs
into a set of log entries representing the node, and finally, the logs s - ¢ andks - ., respectively. ILog mode, if a write operation

are placed in Log BufferN'T'T'[z] is modified accordingly. generates log entries, an_d a flash page can con_tai_n ma>_<imum
We now address the switching algorithm. Since a nodBigk entries, the cost of the write operation isc., / k.. Similarly, if the

mode is optimized for reads and a nodd_iig mode is optimized 109 entries for a node are spread oyeflash pages, then reading

for write, intuitively, a node should be iBisk mode (or inLog the node costg - ¢, If the node is currently i.og mode, values

mode) when it expects to see a lot of read operations (or, write op- for » andl can be accurately determined. However, if the node is
erations respectively). Switching between modes incurs costs, andcurrently inDisk mode, these values can only be estimated. Our
so we need to ensure that nodes do not switch modes unnecessarilyvaluation shows that = 3 and! = 2 are reasonable estimates.
Moreover, since switching decisions must be made dynamically, : .
we need an online algorithm for switching. 5.2.2 Optimal Node Size
We can abstract the switching problem aBn-state Task Sys- Theoretically, the size of a Btree node can be of any number
temshown in Figure 5. A node can be in two modesgandDisk. of pages, such ds, = 1,2... or even a block Gray et al. [9], use
A read R or a writeW can be served by the node in either mode, @ utility-cost analysis to suggested that for disk-based systems, a
but the costs are different in different modes. The node can switch B™-tree node size of around 16KB provides the maximum utility-
from one mode to the other by paying a certain cost. The goal is to COSt ratio, based on disk access costthat B -tree node size is
find an online algorithm for the node to dynamically choose modes the optimal for flash?
to minimize the total cost of serving requests and switching modes. Intuitively, bigger nodes have the benefit of shortening the height
of the tree and thus reducing the number of nodes need to be read to
The above problem is a generalization of file migration on two reach from the root to the target leaf node. However, a bigger size
states [2] and a special case of metrical task system [3]. This prob- also increases the cost of retrieving an individual node: the bigger

lem has a known lower bound of 3 on the competitive o). the node, the more data needs to be read from the storage. These
Our online algorithm to make switching decisions inree(ST) ~ two competing factors lead to the following utility-cost analysis.
is shown in Algorithm 5.2.1. The algorithm is simple and practical: ~ Consider a B-tree indexingV items. The size of a B-tree

it only needs to be configured with the costs of reading and writing Node isNodeSize and a node can contaifintries Per N ode en-
a page and can be implemented with a single counter per node. Theries. Then, the height (in nodes) of the tree is given by:
algorithm is run independently for each node of the tree. Moreover,

its competitive ratio matches the theoretical lower bound, as stated Height ~ log>(N)/logs(EntriesPer Node) (@)
in Theorem 1. The utility on a B"-tree node measures how much closer the
. . . node brings an associative search to the destination data record leaf
THEOREM 1. Algorithm SwiTCHMODE is 3-competitive. node, and is defined by the divisor of Equation 1.
Proof: See [16]. NodeUtility = log2(EntriesPer N ode) 2

Note that the competitive ratio assumes worst case scenarios; our E le. if hind is 16 b h 1 KB ind
algorithm performs much better in practice. Our evaluation shows a or ﬁxam;) ?7’ If elac _"m X entr;k/) IS 24 ytesl, ¢ enSa h md ex
performance withiri.3 x of the optimal solutions with a real work- peget ati O_f’ ull will contain about _entrles. uch a node
load (Section 6F. with have a utility of 5.5, about half the utility of a 48K node. In-

tuitively, the bigger a node, the smaller the height of the index, and
the fewer the number of nodes required to touch before accessing a
key at a leaf node.

Now consider the cost of accessing a node. First, assume that all
2Competitive raticof an online algorithm is the worst case of the BT -tree operations are writes and all nodes ar®isk mode. A
ratio between the cost incurred by the algorithm and the best-casewrite operation requires reading all the nodes in the path from the
cost (possibly found by an offline optimal algorithm).
3We recently developed another 3-competitive algorithm that per- *Storing a node in a flash block simplifies the design of‘atBee,
forms within 1.05x of the optimal algorithm with real work- since we can do in-place update at block-level. However, it may
loads [1]. hurt performance.

Implementation. SwiITCHMODE implementation requires main-
taining one counter for every B-tree node, representing the accu-
mulated difference of costs of the two modes since the last mode

1

T 35

B'—Tree'(Disk)', 10x Read - 'B-Tree'(Disk) p— C()'st(Chi'p) —
B-Tree(Log) --------- 9 - Cost(CF) ----x----
% 01F B-Tree(Disk) -~ 1 S 307 a Utility -
o 3 k) O 1
= oot | 1 2 o251 5
2 TR S 2 N
> o001] 2 2} <
)
0.0001 A 15 o
0 20 40 60 80 100 120 140 0 5 10 15 20 25 30 0 20 40 60 80 100 120 140
Node Size (KB) Node Size (KB) Node Size (KB)
(a) Utility/cost for flash chip (b) Utility cost for compact flash card (c) Utilitpd cost

Figure 6: Utility/cost for B ™-tree nodes of different sizes. The B-tree has 30K 16 bytes index entries and each node 9% full.

root to a leaf node and then writing at least the leaf node. Thus, theto readz, since a large number of sectors are read. To overcome

amortized access cost for a single node is: these problems, we incorporate two types of log compaction. First,
Height 1 as done in [21], all the log entries farare read into memory and

Cost = ———2—— ReadCost+————WriteCost (3) then written back to a small number of new sectors. This is help-
Height + 1 Height + 1 ful, since log entries for: may share sectors with log entries of

We can now plug experimentally observed costs from section 2.1.1 other nodes, and hence provides the opportunity to be clustered into
into the above equation. Finally, the utility/cost ratio of a certain fewer sectors. However, it still cannot guarantee an upper bound of
node size is the ratio of Equation 2 and Equation 3. the number of sectors required for a node, since the number of log
We now relax some of the assumptions above. Foti&e(Log), entries for a node can grow indefinitely over time.

each individual node read operation requires reading multiple pages To address this concern, we proposeenantic compactiomech-
while each individual node write operation requires writing a frac- anism, where log entries having opposite semantics are discarded
tion of a page. For read-intensive workload, nodes will be read during compaction. For example, if the data iténis added to
more often than they are written. The above analysis can easily benodexz and then deleted from it later (e.g., during a node split op-

extended for these two cases by adjusting the weighfatlCost eration afterz becomes full),z will have log entriesADD_KEY
and WriteCost in Equation 3. The results of such analysis are k andDELETE KEY k. These two log entries cancel each other
shown in Figure 6(a). and are hence discarded. Similarly, multipeDATE_POl NTER

Figure 6(a) plots the utility/cost ratios for Samsung K9K1GO08ROB log entries forz can be replaced by the last entry. For such com-
(128MB) flash chip under various node sizes and for real work- paction, we must consider the sequence number of the log entries
loads (details in Section 6). It shows that, for all modes of a B-Tree such that we apply the logs in order. It is easy to show that if a
node DiskandLog) and for different workload (read-intensive and node can contain at mostdata items, it will have at most + 1
write-intensive) the utility/cost ratio is maximized when the node l0g entries, bounding the size of the linked listNI"T[z] to be
size is as small as possibldowever, in practice, the smallestgran- (n + 1)/Entries PerSector. Semantic compaction requires log
ularity of read/write operations in a flash is a page; therefore, the entries to have a version number which is incremented after each
utility/cost ratio is maximized when a node can be fit in exactly one semantic compaction. After compactioN7'7'[z] is updated with
flash page (typically 512 bytes). the current sector address list. During subsequent reads, log entries

Figure 6(b) shows the utility/cost ratio for the Sandisk CF card of order versions are ignored.

(512MB), and surprisingly, ratio is maximized when the node size ~ Semantic compaction introduces stale log entries (having older
is approximately 4KB. version numbers) and we use a Log Garbage Collection (LGC)

The difference can be explained by Figure 6(c). Suppode- component to reclaim the space. Note that LGC is different from
notes the ratio between fixed and incremental costs of accessing ¢he Garbage Collection (GC) in Storage Manager; GC reclaims
storage device, i.e, if the cost of accessinlgytes is approximated ~ spaces from dirty pages, while LGC reclaims spaces from dirty log
asa+bzx, r = b/a. For the compact flash card (CR) ~ 10*. Due entries. LGC is activated when the flash is low in available space
to this high value of-, the access cost is highly dominated by the (i.€., when Storage Manager fails to allocate a new sector.) It starts
fixed cost and the cost curve for CF is relatively flat in Figure 6(c); by scanning the whole flash. For each sector, LGC first looks at its
therefore, it converges to the logarithmic utility curve until the node header information to determine if the sector contains log entries.
size is around 4K. However, flash chips have a relatively smaller We call such sectorisog sectors. For eachog sector, LGC counts
value ofr ~ 102, and therefore the cost curve diverges from the the fraction of stale log entries in that sector. It it is above a thresh-
utility curve from the very beginning. Intuitively, the higher the old, the sector is selected for garbage collection. LGC then writes
value ofr, the higher the optimal node size. the fresh log entries to the Log Buffer, removes the sector address

FlashDB uses the above framework to compute the optimal node from the NTT, and returns the sector to Storage Manager. The Log
size for the flash it operates on. The above analytical results matchBuffer eventually flushes the log entries to flash and adds the new

FlashDB experiments [16]. addresses to the NTT.
5.3 Optimizations to B*-tree(ST) 5.3.2 Bigger Log Buffer

. . If available, FlashDB can use a large Log Buffer as writing a
5.3.1 Log Compaction and Garbage Collection large amount of data at a time has smaller per byte cost than writing

In building an index, a B-tree(ST) node can getupdated many smaller amounts at a time. In addition, when writing to flash, log
times, resulting in a large number of log entries potentially spread entries can be reorganized such that entries of the same node stay
over a large number of sectors on flash. This has two disadvantagesin as few sectors as possible. This reduces NTT memory footprint
First, it makesNTT[x] . Sect or Li st very long and increases and read cost, since fewer pages need to be read to collect all the
the memory footprint of the NTT. Second, it becomes expensive log entries for a node.

5.3.3 Checkpoint and Rollback

FlashDB also supports checkpointing and rollback of indices. 6 Arlcnr?i%: SE ,,,,,,,,,
Checkpointing allows a device to capture the state of an index, — o r Index, FlashChip -]
while rollback allows it to go back to a previously checkpointed z 10% pirehive, FlashChip - |
state. This helps deal with software bugs, hardware glitches, en- GE; 102 - + -
ergy depletion, and other faults possible in sensor nodes. 5 T »

Checkpointing requires making both in-memory states and in- 10° 4
flash data persistent. The NTT is less titdtiB as shown in Sec- 2 i x
tion 6.3, and storing it into flash is a negligible storage overhead. 10 100 1(I)1 162 163 164 108
However, simply storing the NTT is not sufficient due to Logical # Oueries

Storage and Garbage Collection functions in the Storage Manager.

First, the NTT keeps track of logical addresses of sectors and the

Logical Storage may change the mapping between logical to phys-

ical addresses over time. So, if the rollback operation loads a previ-

ously checkpointed NTT, physical pages currently mapped by sec-

tor addresses in the NTT may not be the same ones mapped duringhould be between that ofARDOM and SEQUENTIAL.

the checkpoint time. To address this, we replace the sector ad- | a|l figures in this section, the labels SEQ, RND, and LAB

dresses in a checkpointed NTT with their physical addresses. Secjenote $QUENTIAL, RANDOM, and LABDATA data respectively.

ond, garbage collection may copy the content of a pageanew The labels Disk, Log, and ST refer to an index usingBee(Disk),

locationp’ and erase. If p is part of a checkpointed version, fu- B*-tree(Log), or B -tree(ST) respectively.

ture rollback operation will fail to find the data fpr(which is now

in p'). To address this, during garbage collection, we update the 6.1 When is Indexing Useful?

checkpointed NTT withy'. Note that, we do not need to update the pifferent data management policies may be adopted for archiv-

whole NTT, only the page containingneeds update. Moreover, ing a data stream. In one extreme, data can be stored as an append-

garbage collection is an infrequent operation, so the amortized costony Jist (call it a List) with cheapet9(1)) data insertion and more

is small. Since updating in-flash NTT is expensive we prefer blocks expensive query operation (each query would require a sequentially

with no checkpointed data over the ones having checkpointed datascan of cost)(n)). On the other extreme, data can be indexed us-

for garbage collection. _ _ ing a B -tree, with slightly more expensive)(Log(n)) data in-
Rollback requires loading the NTT into memory, creating new sertion and cheapd(Log(n)) query operation. Here we evaluate

logical addresses in Logical Storage that map to the physical ad-these two policies to understand when building & Bee index is
dresses in in-flash NTT, and placing the logical addresses in the preferable over a List.

Figure 7: Comparison of energy costs for List archiving and
indexing. Both the axes are in Log scale.

restored NTT in memory. Figure 7 compares energy consumption of-Bee(ST) and List
under different query rates. The x-axis shows the number of caierie
6. EXPERIMENTAL EVALUATION made, and the y-axis shows the total energy consumed by first

archiving the laBDATA data (i.e., building B-tree(ST) or List)

Our current FlashDB prototype is written in .NET compact frame- 54 then querying the data. Each query asks for data within a ran-
work, a common language run time environment for embedded de'%jomly chosen small range.

vi(_:es such as Stargates. In this section we gvaluatt_e p_erfqrmance of \When the number of queries made is smadl@), List is more

this prototype. We enable the log compaction optimization (Sec- gnargy efficient than B-tree(ST). This is expected, since the ad-
tion 5.3.1);_ but use asm_all Log Buffer to hold logs worth one flash - yiional cost of building a B-tree(ST) is not compensated by a
page—a bigger buffer will provide better performance of FlashDB. - g number of queries processed. However, the total cost for List

In the re§tdof the sect!gn, we flrsbt tryf.to #nderstﬁnq ur(;der what oos fast as the number of queries increases. In contrast, addi-
situation indexing provides more benefit than archiving data in an 4qna queries incur much smaller cost with Bree(ST), demon-

appendtonly list. Second, we investigafé-Bee(sT)’s performance strated by relatively flat curves for'Btree(ST). Interestingly, the
under dlfferent. flash types and Wgrkloads. .Thll’dj we measure the ., rves for B -tree(ST) and List cross at a very small number of
memory footprint of B'-tree(ST). Finally, we investigate howSTCH- ¢ jaries: around 300 queries, for both types of flash in Figure 7.

MobE performs with real workload. This tells us thabuilding an index is useful when we expect that
Flash Devices We use the following types of flash in our eval- the number of queries on the archived data will be more th#n
uation: (1) EASHCHIP: Samsung K9K1G08ROB (128MB) flash of the total number of data items.

chip, (2) CapsULE a Toshiba flash chip interfaced to a mote [14] .-

(we used the cost numbers reported in [14] in our flash emuia- 6-2 Tunability of B+-tree(ST)

tor), (3) CoMPACT FLASH (CF): the Sandisk compact flash card In this section we evaluate how well"Btree(ST) adapts with
(512MB), and (4) 8CUREDIGITAL (SD): Kingston mini SD card different devices and workloads. First, we use different types of
(512 MB). We use EASHCHIP as the default flash type. The prop- flash with LABDATA as the default workload. Then, we use differ-
erties of the CF and mini SD cards were obtained from experiments ent workloads with EASHCHIP as the default flash device. Finally,

with our testbed (Section 2.1.1). we vary both flash devices and workloads.

Workloads. We use three different workloads. (1pRDATA: a Varying Flash Devices Figure 8(a) shows the energy consumed
stream of temperature data collected from 35 sensors in our of-for indexing the laBDATA data with different indexing schemes
fice building. It consists 080,000 data points. (2) RNDOM: over different types of flash. We see thatBree(Log) is40% and

a sequence 080,000 random data points. (3ERQUENTIAL: a 80% more efficient than B-tree(Disk) when used over ESHCHIP
sequence 080, 000 unique data points in increasing order. We and SSCUREDIGITAL respectively. On the other handf Bree(Disk)
use LABDATA as the default workload. We useaRDOM and is 38% and32% more efficient than B-tree(Log) for G\PSULE

SEQUENTIAL for sensitivity study; the cost with real workloads and GMPACT FLASH respectively. This supports our claim that

x 10

- 3 10 -
o| | M Oisk — I s I Oisk M
10" | | [Log 25 C_JLog | —
5 [st [Difference Wp[JsT
2 2 2
= 1%
5 10 15 g 10°}
10'}
10° J H 05 I
B W . 1l
Capsule FlashChip CF SD # Page Read # Page Written Capsule FlashChip CF SD
(a) Energy (b) Page reads and writes (c) Time

Figure 8: Energy and time with

none of these two schemes is flexible in terms of flash types. This
can be explained by Figure 8(b), that shows the number of pages
read and written by B-tree(Disk) and B -tree(Log). As shown,

BT -tree(Log) writes~ 28K fewer pages and reads 132K more
pages than B-tree(Disk). This increased number of reads is jus-
tified over the reduced number of writes if a page read is at least
~ 132/28 = 4.7 times cheaper than a page write. FeREHCHIP

and SECUREDIGITAL, reads are> 10x cheaper than writes, mak-
ing BT -tree(Log) more efficient than Btree(Disk) over these de-
vices. In contrast, for 82SULE and COMPACT FLASH, read and
write costs are comparable, implying that Bree(Disk) is better

for these devices. Similar conclusions holds for the time required
to build the index, as shown in Figure 8(c).

Further, B"-tree(ST) performs better than or as good as the best
of B*-tree(Log) and B -tree(Disk) for all flash packages. The rea-
sonis that in B -tree(ST), individual nodes stay in the mode which
is optimal in respect to the device and workload seen by the node.
With FLASHCHIP and SECUREDIGITAL, most of the index nodes
stay in theLog mode, giving a performance comparable t6-B
tree(Log). In fact, B-tree(ST) consumes less energy than-B
tree(Log), since some of the read-intensive nodes near the root of
the index stay in th®isk mode. Due to this finer granularity con-
trol of node mode, B-tree(ST) consumes, for examplé% less
energy than B-tree(Log) for FASHCHIP.

Varying workload . We now investigate whether'Btree(ST) can
tune itself to different workloads. We useeSUENTIAL, RAN-
DOM, and LABDATA data under two different scenarios. First, we
consider a write-intensive scenario where the index is built with no
gueries made. Second, we consider a read-intensive scenare wher
each data item is queried 10 times after the index is built. We use
FLASHCHIP as the storage device for this set of experiments.
Figure 9 shows the sum of energy consumed to build the index
and query it with different workloads. As discussed previously,
BT -tree(Log) better than B-tree(Disk) in the write intensive case
but worse with read-intensive workloads. This is explained by the
fact that retrieving a B-tree(Log) node typically requires reading
multiple flash pages where log entries for the node is stored. With
increasing query workload, this additional cost dominates. The fig-
ures also show thatBtree(ST) successfully tunes itself to perform
better than both B-tree(Disk) and B -tree(Log), under all work-
loads. The results for latency, omitted for brevity, are similar [16].

Sensitivity Analysis We now investigate how sensitive different
indexing schemes are to varying workload and device properties.
We vary two properties in our experiments: (1) R/W frequency:
this is the ratio of read counts to write counts in theslDATA
workload, with the number of writes being fixed to 30,000, and
(2) WIR cost: this is the ratio of write cost to read cost of the
device, with the read cost being fixed taJ. Figure 12 shows

different storage devices.

the energy consumed by different indexing schemes under differ-
ent workload and device properties. As shown, with increasing
R/W frequency, the cost for Btree(Log)increases slightlyvhile

that for B -tree(Disk) decreases significantlyIn contrast, with
increasing W/R cost, the cost for'Biree(Log)decreases signifi-
cantlywhile that for B" -tree(Disk)decreases slightlyAs a result,

the graphs for B-tree(Disk) and B -tree(Log) orient in different
directions and intersect, implying the benefits of different schemes
in different regions of the working space. Note that the line of in-
tersection between two planes would have been different if we used
RANDOM or SEQUENTIAL, instead of lABDATA.

x10°

_ B+Tree(Log)

B+Tree(Disk)

Energy (uJ)

B+Tree(ST)

\\\/o
2 4 6 8 0.5

Write / Read Cost 10 1 Read/Write Workload

Figure 12: Sensitivity of indexing schemes to read/write ratio
of workload and read/write cost of flash.

Again, note that, B-tree(ST) always performs better than both
B -tree(Disk) and B -tree(Log).

6.3 Memory Footprint

The NTT used by B-tree(ST) has one of the biggest footprints
of FlashDB implementation. The NTT needs to maintain infor-
mation for each index node, and therefore its size increases with
the number of index nodes. Figure 10 shows the size of the NTT
as a function of the number of data items being indexed. Increas-
ing the number of data items increases the number of index nodes,
and hence increases the size of the NTT. However, the footprint is
reasonably small even with large number of data items, showing
the feasibility of using our indexing mechanism in a cluster-head,
gateway, or more capable sensor node. MoreovertrBe(ST) has
a smaller footprint than B-tree(Log), explained by the fact that
the Disk mode nodes in B-tree(ST) do not require to maintain the
addresses of pages containing log entries of the nodes. The graph

25

15

I oisk

21 |[CJiog
0 [_Jst &
8 1.5 X
> 2
g 1 g

[=4

w (3}
0.5 =

Optimality

SEQ RND LAB SEQ RND LAB
Insert only workload 10x query workload

Figure 9: Energy and time with different
workloads.

QUENTIAL data.

also shows that, interestinglyESUENTIAL data requires a larger 8.
NTT. This is due to the fact that a'Btree has more index nodes [
if the data is inserted in increasing (or decreasing) order, instead of

random order. With BQUENTIAL, items are always inserted into 2]

the latest leaf node and leaf nodes remain unused after they are split
into half. Since leaf nodes have the smallest possible size, the to-

.) 13]
tal number of nodes increases. The other in-memory data structure
used is the Log Buffer, which has a very small overhead (one page, [4]
~ 512B, in our implementation).

6.4 Performance ofswitcHMobe [5]
As proved, our 8/1TCHMODE algorithm is 3-competitive, i.e., 6]

it incurs at most 3 times the cost of an optimal algorithm in the

worst case scenario. To understandiScHM ODE's behavior with [

a real workload, we build a B-tree(ST) over the ABDATA data

and capture the read/write sequendds,,, on 10 random logi- 18]

cal BT -tree nodes, their transition sequeGgy itch r0de DEtWEEN

Disk and Log modes, and the average eney.itchrmode CON- (0]

sumed by reading/writing only these nodes. We then use the traces
Wi Off-line to compute the optimal transition sequeriEepr [10]
of the same 10 nodes. Finally, we compute the average energy
Eopr consumed by these nodes had they folloWegsr. Fig- [11]
ure 11 shows the optimality rati's.witcharode/ Eopr. Clearly,
the optimality ratio is far better than 3 in practice. For all types of [12]
flash, SVITCHMODE's cost is within1.25x the optimal cost. We
observed the same bound in experiments with other workloads.

[13]

7. CONCLUSION

We discussed the design space of database design for flash baseld4]
storage in sensor networks. In addition to the flash characteristics,
we also considered the influence of storage and retrieval workload ;5
that affects design choices such as whether to use indexing an
which data structures to use for indexing. We showed that while
existing log based designs proposed to address flash characteristicE®!
help improve performance, they are neither optimal, nor universally [17]
applicable across all workloads and flash devices. Our proposed
self-tuning design can adapt itself to various combinations of sys-
tem parameters to not only achieve the best of the performance of
existing methods that are applicable in different regions of the de-
sign space but in fact improve the performance over and above the
specialized methods for most regions. An analysis of the algorithm [19]
used for self-tuning was presented to evaluate its optimality. Ex-
periments with real world data and our embedded implementation [,
demonstrate the multiple advantages of our design.

(18]

Acknowledgement. We thank Goetz Graefe, Jim Gray and David (2]
Lomet for their valuable inputs on FlashDB design. Yossi Azar
and Uri Feige helped in competitive analysis of thelScHM ODE [23]

algorithm.

Keys (x1000)

Figure 10: Memory footprint of NTT in
BT -tree(Log) and Bt-tree(ST) built over
different lengths of LABDATA and SE-

CF SD

Capsule

FlashChip

Figure 11: Node switching algorithm is
within a factor of 1.3 of the optimal algo-
rithm under real workload.

REFERENCES
AZAR, Y., FEIGE, U., AND NATH, S. On the work function algorithm for two
state task systems. Tech. Rep. MSR-TR-2007-20, Microsoft Corporation,
February 2007.
BLACK, D. L., AND SLEATOR, D. D. Competitive algorithms for replication
and migration problems. Tech. Rep. CMU-CS-89-201, Carnegie Mellon
University, 1989.
BORODIN, A., LINIAL, N., AND SAKS, M. An optimal online algorithm for
metrical task systems. WCM STO((1987).
BURKE, J., ESTRIN, D., HANSEN, M., PARKER, A., RAMANATHAN , N.,
REDDY, S.,AND SRIVASTAVA, M. B. Participatory sensing. lACM Sensys
Workshop on World-Sensor-WED06).
Dal, H., NEUFELD, M., AND HAN, R. ELF: an efficient log-structured flash
file system for micro sensor nodes.ACM SenSy&004).
DESNOYERS P., GANESAN, D., AND SHENOY, P. TSAR: A two tier sensor
storage architecture using interval skip graphsA@M Sensy§2005).
DiAa0, Y., GANESAN, D., MATHUR, G., AND SHENOY, P. Re-thinking data
management for storage-centric sensor network$hird Biennial Conference
on Innovative Data Systems Research (CIDR), Asilof@@nuary 2007).
GIROD, L., LUKAC, M., TRIFA, V., AND ESTRIN, D. The design and
implementation of a self-calibrating distributed acoustic sensing platform. In
ACM SenSy&006).
GRAY, J.,AND GRAEFE, G. The five-minute rule ten years later, and other
computer storage rules of thunfBlGMOD Rec. 264 (1997), 63—-68.
HuLL, B., BYCHKOVSKY, V., ZHANG, Y., CHEN, K., GORACZKO, M., MIu,
A., SHIH, E., BALAKRISHNAN, H., AND MADDEN, S. CarTel: A Distributed
Mobile Sensor Computing System. 4th ACM SenSy&006).
INTEL. Intel mote 2ht t p:
/1 www. i nt el . con resear ch/ downl oads/ i not e_over vi ew. pdf .
KANSAL, A., X1A0, L., AND ZHAO, F. Relevance metrics for coverage
extension using community collected cell-phone camera imageACM
Sensys Workshop on World-Sensor-Web: Mobile Device Centric Sensor
Networks and Application®ctober 2006), pp. 12-16.
LYMBEROPOULOS D., AND SAVVIDES, A. Xyz: A motion-enabled, power
aware sensor node platform for distributed sensor network applicatiof®Shh
SPOTYApril 2005).
MATHUR, G., DESNOYERS P., GANESAN, D., AND SHENOY, P. Capsule: An
energy-optimized object storage system for memory-constrained sensor
devices. IPACM SenSyg006).
MICROSOFT. "sql server 2005 everywhere edition”.
http://ww. m crosoft.contsql/
ct p_sql server 2005ever ywher eedi ti on. mspx.
NATH, S.,AND KANSAL, A. Flashdb: Dynamic self-tuning database for nand
flash. Tech. Rep. MSR-TR-2006-168, Microsoft Corporation, 2006.
PON, R., BATALIN, M., GORDON, J., KANSAL, A., LIU, D., SHIRACHI, L.,
KAISER, W., SUKHATME, G., AND SRIVASTAVA, M. Networked
infomechanical systems: A mobile wireless sensor network platform. In
IEEE/ACM IPSN-SPOT@\pril 2005).
ROSENBLUM, M., AND OUSTERHOUT J. K. The design and implementation
of a log-structured file systemMACM Transactions on Computer Systems1.0
(1992).
SAMSUNG. Samsung K9K1G08ROB 128M x 8 bit NAND Flash Memeory.

] SILBERSCHATZ, A., KORTH, H. F.,AND SUDARSHAN, S.Database Systems

ConceptsMcGraw Hill, 2002.

Wu, C.-H., CHANG, L.-P.,AND Kuo, T.-W. An efficient b-tree layer for
flash-memory storage systems RTCSA2003).

ZEINALIPOUR-YAZTI, D., LIN, S., KALOGERAKI, V., GUNOPULOS D.,
AND NAJJAR, V. MicroHash: An efficient index structure for flash-based
sensor devices. IISENIX FAST(2005).

ZHANG, P., S\DLER, C. M., LYON, S. A.,AND MARTONOSI, M. Hardware
design experiences in zebranetAGM SenSyg&004).

