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ABSTRACT
FlashDB is a self-tuning database optimized for sensor networks
using NAND flash storage. In practical systems flash is used in dif-
ferent packages such as on-board flash chips, compact flash cards,
secure digital cards and related formats. Our experiments reveal
non-trivial differences in their access costs. Furthermore, databases
may be subject to different types of workloads. We show that ex-
isting databases for flash are not optimized forall types of flash
devices or forall workloads and their performance is thus subop-
timal in many practical systems. FlashDB uses a novel self-tuning
index that dynamically adapts its storage structure to workload and
underlying storage device. We formalize the self-tuning nature of
an index as a two-state task system and propose a 3-competitive
online algorithm that achieves the theoretical optimum. We also
provide a framework to determine the optimal size of an index node
that minimizes energy and latency for a given device. Finally, we
propose optimizations to further improve the performance of our
index. We prototype and compare different indexing schemes on
multiple flash devices and workloads, and show that our index-
ing scheme outperforms existing schemes underall workloads and
flash devices we consider.

Categories and Subject Descriptors:H.2.4 [Database Manage-
ment Systems]: Query processing H.3.1 [Content Analysis and
Indexing]: Indexing methods

General Terms: Algorithms, Design, Measurement, Performance.

Keywords: B+-tree, NAND Flash, indexing, log-structured index,
self-tuning index.

1. INTRODUCTION
This paper presents a database for sensor networks using flash

based storage. There are many use cases where it is desirable to
store data within the sensor network, rather than transmit it all to
a central database. A first example are remote deployments where
an economical communication infrastructure is not available and
an expensive low rate satellite or cellular connection is used, such
as in polar regions or remote seismic deployments. Another ex-
ample is the large class of applications for which the entire raw
data is seldom required. A third example includes mobile sensor
nodes [10,23], with sporadic and short lived connections. A fourth
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example includes sensor networks of mobile devices which have
significant local processing power [4, 12]. In these cases rather
than uploading the entire raw data stream, one may save energy
and bandwidth by processing queries locally at a cluster-head or a
more capable node and uploading only the query response or the
compressed or summary data. Storage centric networks have also
been discussed in [6,7].

In most cases where the storage is part of the sensor network,
the storage device used is flash based rather than a hard disk due to
shock resistance, node size, and energy considerations. Addition-
ally, flash is also common in many mobile devices such as PDA’s,
cell-phones, music players, and personal exercise monitors. These
devices can benefit from a having light weight database.

Our objective is to design storage and retrieval functionality for
flash storage. A simple method is to archive data without an in-
dex, and that is in fact efficient in many scenarios. However, as
we show in section 6, for scenarios where the number of queries
is more than a small fraction (≈ 1%) of the number of data items,
having an index is useful. Hence, we focus on indexed storage.
Prior work on flash storage provides file systems (e.g., ELF [5])
and other useful data structures such as stacks, queues and limited
indexes (e.g., Capsule [14], MicroHash [22]). Our goal is to ex-
tend the functionality provided by those methods to B+-tree based
indexing to support useful queries such as lookups, range-queries,
multi-dimensional range-queries, and joins.

Existing database products are not well suited for sensor net-
works due to several reasons. Firstly, existing products, including
ones that run on flash [15], are originally designed for hard disks
and are not optimized for NAND flash characteristics. Secondly,
existing products are not targeted to most sensor network work-
loads. Sensor network storage workload may be highly write in-
tensive: data may be added to the database more frequently than
it is read. This is different from many traditional database appli-
cations where data is read more frequently than it is written. A
log-structured B-Tree indexing method was proposed in [21] to ad-
dress these two problems.

However, all existing indexing schemes, including those in com-
mercial products and research prototypes, suffer from the drawback
that they are not optimized forall available flash devices or realistic
workloads. They do not consider all factors in the design space and
are suboptimal in many situations. For example, as we will show
later, the log-structured design [21] performs well with a write-
intensive workload on an on-board flash chip, but performs poorly
when run with a read-write workload or with a compact flash card.
Similarly, disk-based designs are suitable for certain types of flash
and workloads, but are suboptimal for others. This limits the use
of existing schemes in practical system design, especially when the
system is being designed for multiple types of workloads and flex-
ibility in flash devices.



We address this in FlashDB with a self-tuning indexing method
that can adapt itself to the dynamic behavior of multiple device and
workload parameters that affect performance. Our current proto-
type can run on more capable sensor nodes such as iMotes [11],
ENSBox [8], XYZ [13], NIMS [17], or CarTel [10]; however, its
simplicity and small memory footprint (6kB for a database of 30,000
records, independent of record size) promises its use in more re-
source constrained devices (such as motes).

We make the following contributions in this paper:

• We discuss the design space of factors that influence flash
based storage system design, through experiments with our
flexible flash test bed.

• Indexing has an extra resource overhead compared to archiv-
ing the raw data. We evaluate when indexing is desirable.

• We present a self-tuning B+-tree design that can adapt to the
dynamic behavior of the workload and the underlying device.

• We formalize the self-tuning nature of the index as a two state
task system and propose an online algorithm that matches the
theoretical lower bound of competitive ratio.

• We provide a framework to determine the optimal size of an
index node that minimizes energy and latency for a given
device. This framework is applicable not only to our storage
system design but also to existing indexing methods.

• We prototype and test our proposals on multiple flash de-
vices such as compact flash and secure digital. Our evalu-
ation shows that our indexing scheme outperforms existing
schemes underall workloads and flash devices we consider.

The next two sections discuss the design space and the need for a
self-tuning database. Sections 4 and 5 discuss our system design.
Evaluation is presented in section 6.

2. FLASH STORAGE DESIGN SPACE
2.1 Flash Characteristics

Flash devices are primarily of two types: NOR and NAND. While
NOR devices have faster and simpler access procedures, their stor-
age capacity is lower and these are thus preferred for program stor-
age. NAND flash offers significantly higher storage capacity (cur-
rently 32Gb in a single chip) and is more suitable for storing large
amounts of data. The key properties of NAND flash that directly in-
fluence storage design are related to the method in which the media
can be read or written, and are discussed in [22]. In summary, all
read and write operations happen at page granularity (or for some
devices up to 1/8th of a page granularity), where a page is typically
512-2048 bytes. Pages are organized into blocks, typically of 32 or
64 pages. A page can only be written after erasing the entire block
to which the page belongs. Page write cost is typically higher than
read, and the block erase requirement makes writes even more ex-
pensive. A block wears out after 10,000 to 100,000 repeated writes,
and so write load should be spread out evenly across the chip.

The above characteristics are those of basic flash chips. These
chips are however available in various packages such as compact
flash (CF) cards, secure digital (SD) cards, mini SD cards, micro
SD cards, USB sticks, and even as composite chip modules that
provide a disk like ATA bus interface to the host node using the
flash module. These packages are often preferred over raw chips
due to several advantages. For instance, in remote deployments ac-
cessed only infrequently, data may be retrieved simply by replac-
ing the flash cards. Moreover, the flash may be upgraded as higher
capacity flash becomes available without redesigning the node cir-
cuit board. Generic sensor node designs may already provide for a
PCMCIA or CF interface to attach a flash card (e.g., Stargate).

Device R (µJ) W (µJ) R (µs) W (µs)
Samsung 128MB 0.74 9.9 15 200

Compact Flash 512MB 2970 6220 18000 29000
Mini SD 512MB 109 22292 1100 193000

128MB+Mica2 [14] 57.83 73.79 0.969 1081

Table 1: Page read and write costs for some flash packages (R:
Read, W: Write). The CF card used is a Sandisk Ultra II and
the mini SD card used is from Kingston.

When used in one of these packages, the interface to the flash
chip is through an abstraction layer called Flash Translation Layer
(FTL). The FTL provides a disk like interface, which includes the
capability to read and write a page directly without worrying about
the erase-before-write constraint. The FTL also provides wear lev-
elling by distributing writes uniformly across the media. However,
FTL internally needs to deal with the characteristics of the underly-
ing flash device. Thus, even if a storage system uses a flash package
with a built-in FTL, it is prudent to consider the flash characteristics
in the storage design.

2.1.1 Experimental Observations
We measure the behavior of different flash packages to guide our

design decisions in FlashDB. We set up a testbed that allows us to
read and write pages directly to flash packages without using the
file system. Testbed details can be found in [16].

Read/Write Costs. Table 1 shows the energy consumed and time
taken for page read and write for various flash cards, as derived
from our experiments. In addition, it also shows the costs for a
flash chip interfaced to a mote [14] (row 4). As a comparison, we
also include the same data for a flash chip [19] from its data sheet
(row 1), if it were to be interfaced in a manner that the chip itself
were to be the bottleneck in read-write operations.

Our measurements show thatread write costs and their ratios
differ significantly across flash packages.For example, a write is
≈ 200 times more expensive than a read for the mini SD card,
while it is only≈ 2 times more expensive for the CF card.

Moreover, in some instances, the data transfer bus used to inter-
face the flash chip may not be fast enough to take full advantage of
the chip speed, thus making the energy and time costs dependent
on the bus speed rather than chip limitations [22].

Access Pattern. Our measurements show that the energy and time
to read and write a page on different flash packages follow a lin-
ear model consisting of a fixed access cost and an incremental
(per page) access cost. The energyEr and Ew spent for read-
ing and writingNp consecutive CF card pages can be approxi-
mated byEr = 2884.53 + 92.41Np(µJ) andEw = 6144.57 +
121.93Np(µJ). This model is based on extensive measurements
for Np ∈ [1, 10000] and averaging over 10 random runs for each
measurement. For the SD card, the models areEr = 96.79 +
20.98Np(µJ) andEw = 22350.40 + 21.41Np(µJ).

A similar model for a flash chip interfaced to a mote was shown
in [14]. Thus, accessing a large number of pages at once may be
beneficial since that would amortize the fixed cost over a larger
number of pages.

Another observation in our experiments is that re-writing to the
same (logical) page address is slower than writing to a new page
address in sequential order. The variation is small for read. The
average page write time, for the mini SD card, for re-writing to the
same page address was observed to be four times that for writing
to a subsequent page in sequential order. The reason for this comes
from the page write constraint for flash devices mentioned earlier,
and the method used to cope with it in the card’s firmware. The
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Figure 1: A B+-tree.

exact numbers observed are specific to the cards used and may vary
across manufacturers.

2.2 Workload Properties
Two important workload properties can affect the performance

of a storage system.

Read-write Ratio. While most sensor applications are write-intensive,
they do experience varying read-write ratio over time. For exam-
ple, in an acoustic sensing application [8], a sensor can store data
frequently when birds chirp around it and can read data frequently
when scientists query sensors for different chirping instances. The
data access pattern may even change dynamically or vary for dif-
ferent segments of the stored data. For instance, certain data points
below an interesting threshold value may be rarely retrieved but
other data values may be frequently accessed.

Even when the application workload is mostly write-only, the
workload experienced by the index itself may not be so. As we
show in Sections 2.3 and 3, updating an index requires reading a
part of it to locate where to apply the update. Therefore, different
parts of the index can experience different read-write ratio; i.e.,
some part of the index can be read-intensive while some other part
can be write-intensive.

Data Pattern. The variation of data values to be indexed can affect
the reads/writes seen by different parts of an index. If the data to be
indexed are random in nature, different parts of the index structure
are likely to be updated with similar frequency. However, if the
data is correlated in nature, such as if data values measured over a
short time period lie within a short range, some part of the index
may become more write-intensive than others at a given time. In
many situations, workload pattern may not be known a priori or
may change over time.

2.3 Indexing Methods
To support database-style queries on stored data, we consider

B+-tree, a popular indexing data structure used in various incar-
nations in database systems. Powerful queries such as lookup,
range queries, multi-dimensional range-queries, and joins can be
efficiently supported by a B+-tree. It supports efficient operations
to find, delete, insert, and browse the data. Typically, it is used as
an external (outside of RAM) index to maintain large data sets. A
B+-tree is a balanced tree in which every path from the root node
to a leaf node has the same length. In each B+-tree node, keys
(value field being indexed) and pointers are interspersed as a list
< p0, k0, p1, k1, · · · , pd >, where⌈n/2⌉ ≤ d ≤ n (except the
root node) andn is fixed for a particular tree. The elementski in
the list represent keys to be indexed, in sorted order while the ele-
mentspi represent pointers to child nodes or to data records. The
leaf nodes store all the keys to be indexed. In a leaf node, a pointer
pi points to the actual data record with keyki. The last pointerpd

points to its next sibling, which helps scanning a large range of data
in sorted order. In a non-leaf node, a pointerpi points to the sub-
tree whose leaf nodes contain keysk in the rangeki ≤ k < ki+1.
Figure 1 shows an example B+-tree index.

To searchfor a keyk in a B+-tree index, the tree is traversed top
(root) to bottom, choosing the appropriate child pointer at every

non-leaf node. This requires reading all the nodes on the path from
the root node to the target leaf node. To search for keys within a
range[l, h], the leaf node containingl is first located. Then sibling
pointers are used to read the next leaf node until the node contains
keys> h. To insert a keyk, the leaf nodeL that should contain
k is first located. IfL contains less thann items,k is inserted into
L. Otherwise, half ofL’s items are put into a new nodeL′ and
k is inserted intoL or L′. Creation of the new nodeL′ requires
recursively adding a new entry intoL’s parent node. Finally, to
deletea keyk, the leaf nodeL containingk is first located (via top-
down traversing). If after deletion ofk, L contains less thann/2
items, it is merged with the previous leaf node and pointers to it are
recursively deleted fromL’s parent node. See [20] for details.

Two different B+-tree designs exist for flash based indexes. The
first design, here referred to as B+-tree(Disk), assumes that the
storage is a disk-like block-device. The second design, called B+-
tree(Log), uses a log-structured index.

B+-tree(Disk). This design is built upon a disk-like abstraction
(such as the one provided by FTL) over flash. A B+-tree node, de-
pending on its size, is stored over multiple consecutive flash pages.
To read the node, corresponding pages need to be read. To update a
node, corresponding pages are read into RAM, modified, and then
written back. Microsoft SQL Everywhere [15] uses this design.

The advantage of B+-tree(Disk) design is code portability: the
existing implementation for hard disks can be run on flash. The
disadvantage is that updates are expensive. Even if only a small
part of a B+-tree(Disk) node is updated (e.g., a pointer is changed),
the whole node needs to be read into RAM and written back. If the
node is written to a new physical page, the old page needs to be
garbage collected. Therefore, B+-tree(Disk) is inappropriate with
write-intensive workload.

B+-tree(Log). This design, inspired by log-structured file sys-
tems [5, 18] and proposed in [21], avoids the high update cost of
B+-tree(Disk). The basic idea behind B+-tree(Log) is to organize
the index as transaction logs. A write operation on a B+-tree node
is encoded as a log entry and is placed in an in-memory buffer.
When the buffer contains enough data to fill a page, it is written to
flash. Another in-memory data structure maintains, for each node,
a linked list of page addresses where log entries for the node are
stored on the flash.

The advantage of B+-tree(Log) is its small update cost since
the page write cost is amortized over multiple updates. However,
reading a node is expensive because many log entries, which may
spread over multiple pages, need to be read to construct the node.

3. THE NEED TO SELF-TUNE
We argue that existing indexing schemes are not optimized forall

flash devices orall workloads discussed in the last section, limiting
their performance, especially when the system is designed for mul-
tiple types of workloads and flexibility in flash devices. To address
this shortcoming, an indexing scheme must be able to dynamically
adapt itself to underlying storage and workload properties. The fol-
lowing discussion uses some evaluation results given in Section 6.

Which of the above two B+-tree designs should one use?The
decision depends on the workload and device characteristics. B+-
tree(Log) is optimized for write-intensive workload (e.g., where
data is queried rarely) and for devices where writes are significantly
more expensive than reads (e.g., SD card), because B+-tree(Log)
reduces flash writes at the cost of increased flash reads. Our eval-
uation shows that B+-tree(Log) is80% more efficient than B+-
tree(Disk) with SD card and write-only workload. However, chang-
ing either device property or workload property can make B+-
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Figure 2: Cumulative distribution of read/write ratio of differ-
ent nodes in a B+-tree. The workload consists of 30K writes of
random and sequential values.

tree(Log) perform worse than B+-tree(Disk). For example, with a
CF card, whose read and write costs are comparable, B+-tree(Log)
performs32% worse than B+-tree(Disk) (even with a write-only
workload), and with a read-intensive workload, B+-tree(Log) can
be40% more expensive than B+-tree(Disk). This happens because
the increased cost of additional reads in B+-tree(Log) does not get
compensated by the reduced cost of writes.

What if the workload or flash device used is unknown or can
change over time?Multiple applications with different workload
properties may use the same database. The same application may
experience varying read/write ratio at different times (e.g., a write-
intensive sensing application may become read-intensive when sev-
eral queries follow an interesting event). The flash device may be
upgraded after the database has been designed. The database de-
signer may not know which flash card the application user will plug
in. As discussed above, choosing an inappropriate design can incur
a high penalty in performance. This motivates a self-tuning in-
dexing scheme that dynamically adapts its storage structure to the
workload and underlying storage device, thus optimizing energy
and latency foranyworkload or storage.

The self-tuning aspect of an indexing scheme can further in-
crease the performance beyond the best achievable by either B+-
tree(Log) or B+-tree(Disk), even if the workload and device are
fixed. Assume that the workload is write-intensive and the flash
used has significantly higher write cost than read. We know that
B+-tree(Log) is better than B+-tree(Disk), butis B+-tree(Log) op-
timal? Consider the most favorable workload for B+-tree(Log)—
insert-only workload. Note that even though the workload only
inserts new keys to the B+-tree(Log), individual B+-tree nodes see
both read and write operations (many B+-tree(Log) nodes are read
in order to locate the right nodes to insert keys). Figure 2 shows
the cumulative distribution of read/write ratio of different nodes of
a B+-tree constructed by a write-only workload. It shows that al-
though most of the nodes of the tree have very small read/write ra-
tio, some nodes have very high read/write ratio. Generally, these
nodes are near the root node and are read to access leaf nodes.
Clearly, B+-tree(Log) design is not suitable for these nodes; rather
they should be structured as B+-tree(Disk) nodes. Thus, the index
should be able to tune its structure at a granularity finer than the en-
tire index; each node should be organized independently depending
on the workload it experiences.

4. FLASHDB
FlashDB is a database optimized for flash devices. It is self-

tuning; after it is initially configured with the page read and write
costs of the underlying storage device, it automatically adapts its
storage structure in a way that optimizes energy consumption and
latency for the workload it experiences. Thus, FlashDB instances
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Figure 3: FlashDB Architecture.

running on different flash devices or having different workloads
(e.g., with different read/write ratio or different data correlation)
will choose different organization of data on the underlying physi-
cal device. FlashDB consists of two main components (Figure 4): a
Database Management System that implements the database func-
tions including index management and query compilation, and a
Storage Manager that implements efficient storage functionalities
such as data buffering and garbage collection.

The primary focus of this paper is the self-tuning Index Manager
(that uses a B+-tree data structure) of FlashDB’s database manage-
ment system and related functionalities of the Storage Manager.
In the rest of this section, we briefly describe the Logical Storage
component of Storage Manager. The Index Manager and the rest
of the Storage Manager will be described in next two sections.

Logical Storage (LS). LS provides a logical sector address abstrac-
tion on top of physical flash pages. Components over LS access
sectors through two APIs,ReadSector andWriteSector, in
the granularity of asector, typically of the same size as a physical
flash page. Also, available addresses for writing may be obtained
via Alloc and unused sectors freed usingFree. LS hides flash-
specific complexities using:

Out-of-place Update: As in-place update is expensive in all
flash devices, whenWriteSector(addr, data) is called, LS
finds the next unused physical pagep, writesdata to it, and main-
tains a mapping from logical addressaddr to p. The page previ-
ously mapped byaddr is marked dirty.

Garbage Collection: It cleans dirty pages produced byFree
andWriteSector operations. Since a page can not be erased
independently, first, a flash block containing dirty pages is chosen.
Then, valid pages of the block are copied to another block. Finally,
the block is erased.

The Storage Manager (SM) is configured with a partition of the
physical storage space; other applications bypassing SM, such as
file systems, operate outside this partition. The SM partition can be
grown or shrunk dynamically. Growing the SM storage partition
does not affect existing data; subsequentAlloc andWriteSector
operations take this additional physical space into account. Shrink-
ing the partition requires remapping used sectors and copying their
data to pages within the new partition.
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5. SELF-TUNING INDEXING
In this section, we present our self-tuning B+-tree (hereafter re-

ferred to as B+-tree(ST)) designed for NAND flash.

5.1 B+-tree(ST) Design
The fundamental new feature of B+-tree(ST) is the flexibility to

store an index node in one of two modes:Logor Disk. When a node
is in Log mode, each node update operation (e.g., adding or delet-
ing keys) is written as a separate log entry, similar to B+-tree(Log).
Thus, to read a node inLogmode, all its log entries (which may be
spread over multiple pages) need to be read and parsed. When a
node is inDisk mode, the whole node is written together on con-
secutive pages (number of pages depends on the node size), and
hence reading a node requires reading the corresponding sectors.
At any point of time, some logical nodes of a B+-tree(ST) may
be in Log mode while the others inDisk mode. Moreover, nodes
may change their modes dynamically as workload or storage device
change. Figure 4(a) shows a snapshot of a logical B+-tree(ST).

5.1.1 Storage Manager Components
B+-tree(ST) introduces two components in the Storage Manager

of FlashDB: aLog Bufferand aNode Translation Table (NTT). The
Log Buffer, which can hold upto one sector worth of data, is used
only by the nodes currently inLogmode. When a node inLogmode
is modified, the corresponding log entries are temporarily held in
the Log Buffer. When a page worth of entries are collected, they
are written to flash together, to avoid expensive small writes.

For simplicity, FlashDB currently supports ACID semantics of
individual read/write operations only; more complex transactions
will be explored in our future work. To ensure this, all or none of
the log entries for an individual write operation are flushed from
the Log Buffer to flash. This is done by flushing the Log Buffer
to flashbeforea write operation if the Log Buffer does not have
enough space to holdall the log entries for the new operation.

The NTT maps logical B+-tree(ST) nodes to their current modes
and physical representations. Figure 4(b) shows a part of the NTT
for the logical tree in Figure 4(a). For a node inDisk mode (e.g.,
node A), the NTT records the addresses of the sectors (e.g., 5)
where the node is written on flash. For a node inLog mode, the
NTT maintains a linked list of addresses of all the sectors that con-
tain at least one valid log entry for that node. For example, in Fig-
ure 4(b), node B has at least one log entry in sectors 4, 7, and 12.
Note that a sector containing node B’s log entries can contain log
entries for other nodes as well (e.g., in sector 4 in Figure 4(c)), as
the Log Buffer may have log entries for many nodes when flushed.

5.1.2 Operations
As described in Section 2.3, operations such as key search, addi-

tion, and deletion on a B+-tree translate to create, read, and update
of tree nodes. Given the NTT, we perform these node-level oper-
ations as follows. To create a node with idx, we create an entry

with id x with Log mode in the NTT. To read or update a nodex,
we first read its current mode fromNTT [x]. If x is in Disk mode,
we read the node from or update to the sectors given byNTT [x].
Operations onx in Log mode are more involved. To updatex, we
construct a log entry for the update operation and put it into the
Log Buffer. Later, when the Log Buffer has one sector worth of
data, all the log entries in the Log Buffer are written to an available
sector provided by theAlloc() API of Logical Storage and the
address of the sector is added at the beginning of the linked list at
NTT [x]. To readx, we read the Log Buffer and all the sectors in
the linked list atNTT [x] to collect log entries forx and parse the
logs to construct the logical node.

5.1.3 Structure of Sector, NTT and Log Entries
B+-tree(ST) data, before being written to a flash sector, is en-

capsulated with a small header that contains the following fields:
1) Checksum to check for errors during read, and 2)NodeMode
which can beLog or Disk. NodeMode enables identifying sectors
before applying optimizations for a specific mode (e.g., compaction
and garbage collection described in Section 5.3.1).

Each NTT entry contains the following fields: 1)SectorList
which points to sectors containing the node or its log entries, 2)
IsLeaf which is true if the logical node is a leaf node, and 3)
LogVersionwhich is the latest version of log entries of the node.

Each log entry of a node inLog mode contains the following
fields. 1)NodeID: it is the logical node id which distinguishes
log entries of different nodes. 2)LogType: it describes the op-
eration on the logical node and can be of three types:ADD KEY,
DELETE KEY, andUPDATE POINTER. The first two types are
used to add and delete a (key, pointer) tuple in B+-tree nodes, while
the last type is required for updating the last pointer of a nonleaf
node1 or the sibling pointer of a leaf node. It is relatively easy to
convert a node into, or construct a node from, log entries of these
three types. 3)SequenceNumber: it is incremented by one after
each log entry generated for the logical node. It helps in applying
the log entries in the order they are generated. 4)LogVersion: it
is the latest version of log entries, as logs can become stale due to
our compaction mechanism described in Section 5.3.1.

The log entries contain enough information such that even if the
application crashes and loses its in-memory NTT, the NTT can be
reconstructed by scanning the entire flash. This is an expensive op-
eration and can be avoided by periodically checkpointing the NTT
into flash (Section 5.3.3).

5.2 Self-tuning Issues
To make B+-tree(ST) efficient and self-tuning, the mode of a

node must be decided and updated carefully. Further, the size of an
index node must be chosen optimally. The second issue can help
improve B+-tree(Disk) and B+-tree(Log) designs also.

1Each node has one more pointers than keys.
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5.2.1 Mode Switching Algorithm
At the heart of B+-tree(ST), there is an algorithm that decides

when a node should switch betweenDisk andLog modes. Switch-
ing between modes incurs costs. To switch a nodex from Log to
Disk mode, the node is constructed by reading the log entries for
the node, and is written back inDisk mode. To switch it fromDisk
to Logmode, first, the node is read inDiskmode, then, it is encoded
into a set of log entries representing the node, and finally, the logs
are placed in Log Buffer.NTT [x] is modified accordingly.

We now address the switching algorithm. Since a node inDisk
mode is optimized for reads and a node inLog mode is optimized
for write, intuitively, a node should be inDisk mode (or inLog
mode) when it expects to see a lot of read operations (or, write op-
erations respectively). Switching between modes incurs costs, and
so we need to ensure that nodes do not switch modes unnecessarily.
Moreover, since switching decisions must be made dynamically,
we need an online algorithm for switching.

We can abstract the switching problem as aTwo-state Task Sys-
temshown in Figure 5. A node can be in two modes:LogandDisk.
A readR or a writeW can be served by the node in either mode,
but the costs are different in different modes. The node can switch
from one mode to the other by paying a certain cost. The goal is to
find an online algorithm for the node to dynamically choose modes
to minimize the total cost of serving requests and switching modes.

The above problem is a generalization of file migration on two
states [2] and a special case of metrical task system [3]. This prob-
lem has a known lower bound of 3 on the competitive ratio2 [3].

Our online algorithm to make switching decisions in B+-tree(ST)
is shown in Algorithm 5.2.1. The algorithm is simple and practical:
it only needs to be configured with the costs of reading and writing
a page and can be implemented with a single counter per node. The
algorithm is run independently for each node of the tree. Moreover,
its competitive ratio matches the theoretical lower bound, as stated
in Theorem 1.

THEOREM 1. AlgorithmSWITCHMODE is 3-competitive.

Proof: See [16].
Note that the competitive ratio assumes worst case scenarios; our

algorithm performs much better in practice. Our evaluation shows a
performance within1.3× of the optimal solutions with a real work-
load (Section 6).3

Implementation. SWITCHMODE implementation requires main-
taining one counter for every B-tree node, representing the accu-
mulated difference of costs of the two modes since the last mode

2Competitive ratioof an online algorithm is the worst case of the
ratio between the cost incurred by the algorithm and the best-case
cost (possibly found by an offline optimal algorithm).
3We recently developed another 3-competitive algorithm that per-
forms within 1.05× of the optimal algorithm with real work-
loads [1].

ALGORITHM 1. : SWITCHMODE

(The following algorithm runs for each B-tree noden)

1. InitializeS ← 0 when migrate to the current mode.
2. For every read-write operationO

• Supposec1 is the cost of servingO in current mode
andc2 is the cost of serving it in the other mode.

• S ← S + (c1 − c2)
3. Suppose,M1 andM2 are the costs for transition between

two modes. Then, switch to the other mode ifS ≥ M1 +
M2

switch. We store the counter for nodex in NTT [x]. Supposecr

andcw represent the costs of reading and writing one sector (i.e.,
one page in the underlying flash). Also assume that a B+-tree(ST)
node inDiskmode takesks sectors. Then, computing costs inDisk
mode is simple: each read and write operation on the node costs
ks · cr andks · cw respectively. InLog mode, if a write operation
generatesl log entries, and a flash page can contain maximumke

entries, the cost of the write operation isl · cw/ke. Similarly, if the
log entries for a node are spread overp flash pages, then reading
the node costsp · cr. If the node is currently inLog mode, values
for p andl can be accurately determined. However, if the node is
currently inDisk mode, these values can only be estimated. Our
evaluation shows thatp = 3 andl = 2 are reasonable estimates.

5.2.2 Optimal Node Size
Theoretically, the size of a B+-tree node can be of any number

of pages, such asks = 1, 2... or even a block4. Gray et al. [9], use
a utility-cost analysis to suggested that for disk-based systems, a
B+-tree node size of around 16KB provides the maximum utility-
cost ratio, based on disk access costs.What B+-tree node size is
the optimal for flash?

Intuitively, bigger nodes have the benefit of shortening the height
of the tree and thus reducing the number of nodes need to be read to
reach from the root to the target leaf node. However, a bigger size
also increases the cost of retrieving an individual node: the bigger
the node, the more data needs to be read from the storage. These
two competing factors lead to the following utility-cost analysis.

Consider a B+-tree indexingN items. The size of a B+-tree
node isNodeSize and a node can containEntriesPerNode en-
tries. Then, the height (in nodes) of the tree is given by:

Height ∼ log2(N)/log2(EntriesPerNode) (1)

The utility on a B+-tree node measures how much closer the
node brings an associative search to the destination data record leaf
node, and is defined by the divisor of Equation 1.

NodeUtility = log2(EntriesPerNode) (2)

For example, if each index entry is 16 bytes, then a 1 KB index
page that is70% full will contain about 44 entries. Such a node
with have a utility of 5.5, about half the utility of a 48K node. In-
tuitively, the bigger a node, the smaller the height of the index, and
the fewer the number of nodes required to touch before accessing a
key at a leaf node.

Now consider the cost of accessing a node. First, assume that all
B+-tree operations are writes and all nodes are inDisk mode. A
write operation requires reading all the nodes in the path from the

4Storing a node in a flash block simplifies the design of a B+-tree,
since we can do in-place update at block-level. However, it may
hurt performance.
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Figure 6: Utility/cost for B +-tree nodes of different sizes. The B+-tree has 30K 16 bytes index entries and each node is70% full.

root to a leaf node and then writing at least the leaf node. Thus, the
amortized access cost for a single node is:

Cost =
Height

Height + 1
ReadCost+

1

Height + 1
WriteCost (3)

We can now plug experimentally observed costs from section 2.1.1
into the above equation. Finally, the utility/cost ratio of a certain
node size is the ratio of Equation 2 and Equation 3.

We now relax some of the assumptions above. For B+-tree(Log),
each individual node read operation requires reading multiple pages
while each individual node write operation requires writing a frac-
tion of a page. For read-intensive workload, nodes will be read
more often than they are written. The above analysis can easily be
extended for these two cases by adjusting the weights ofReadCost
andWriteCost in Equation 3. The results of such analysis are
shown in Figure 6(a).

Figure 6(a) plots the utility/cost ratios for Samsung K9K1G08R0B
(128MB) flash chip under various node sizes and for real work-
loads (details in Section 6). It shows that, for all modes of a B-Tree
node (DiskandLog) and for different workload (read-intensive and
write-intensive),the utility/cost ratio is maximized when the node
size is as small as possible. However, in practice, the smallest gran-
ularity of read/write operations in a flash is a page; therefore, the
utility/cost ratio is maximized when a node can be fit in exactly one
flash page (typically 512 bytes).

Figure 6(b) shows the utility/cost ratio for the Sandisk CF card
(512MB), and surprisingly, ratio is maximized when the node size
is approximately 4KB.

The difference can be explained by Figure 6(c). Supposer de-
notes the ratio between fixed and incremental costs of accessing a
storage device, i.e, if the cost of accessingx bytes is approximated
asa+bx, r = b/a. For the compact flash card (CF) ,r ≈ 104. Due
to this high value ofr, the access cost is highly dominated by the
fixed cost and the cost curve for CF is relatively flat in Figure 6(c);
therefore, it converges to the logarithmic utility curve until the node
size is around 4K. However, flash chips have a relatively smaller
value ofr ≈ 103, and therefore the cost curve diverges from the
utility curve from the very beginning. Intuitively, the higher the
value ofr, the higher the optimal node size.

FlashDB uses the above framework to compute the optimal node
size for the flash it operates on. The above analytical results match
FlashDB experiments [16].

5.3 Optimizations to B+-tree(ST)

5.3.1 Log Compaction and Garbage Collection
In building an index, a B+-tree(ST) nodex can get updated many

times, resulting in a large number of log entries potentially spread
over a large number of sectors on flash. This has two disadvantages.
First, it makesNTT[x].SectorList very long and increases
the memory footprint of the NTT. Second, it becomes expensive

to readx, since a large number of sectors are read. To overcome
these problems, we incorporate two types of log compaction. First,
as done in [21], all the log entries forx are read into memory and
then written back to a small number of new sectors. This is help-
ful, since log entries forx may share sectors with log entries of
other nodes, and hence provides the opportunity to be clustered into
fewer sectors. However, it still cannot guarantee an upper bound of
the number of sectors required for a node, since the number of log
entries for a node can grow indefinitely over time.

To address this concern, we propose asemantic compactionmech-
anism, where log entries having opposite semantics are discarded
during compaction. For example, if the data itemk is added to
nodex and then deleted from it later (e.g., during a node split op-
eration afterx becomes full),x will have log entriesADD KEY
k andDELETE KEY k. These two log entries cancel each other
and are hence discarded. Similarly, multipleUPDATE POINTER
log entries forx can be replaced by the last entry. For such com-
paction, we must consider the sequence number of the log entries
such that we apply the logs in order. It is easy to show that if a
node can contain at mostn data items, it will have at mostn + 1
log entries, bounding the size of the linked list inNTT [x] to be
(n + 1)/EntriesPerSector. Semantic compaction requires log
entries to have a version number which is incremented after each
semantic compaction. After compaction,NTT [x] is updated with
the current sector address list. During subsequent reads, log entries
of order versions are ignored.

Semantic compaction introduces stale log entries (having older
version numbers) and we use a Log Garbage Collection (LGC)
component to reclaim the space. Note that LGC is different from
the Garbage Collection (GC) in Storage Manager; GC reclaims
spaces from dirty pages, while LGC reclaims spaces from dirty log
entries. LGC is activated when the flash is low in available space
(i.e., when Storage Manager fails to allocate a new sector.) It starts
by scanning the whole flash. For each sector, LGC first looks at its
header information to determine if the sector contains log entries.
We call such sectorsLogsectors. For eachLogsector, LGC counts
the fraction of stale log entries in that sector. It it is above a thresh-
old, the sector is selected for garbage collection. LGC then writes
the fresh log entries to the Log Buffer, removes the sector address
from the NTT, and returns the sector to Storage Manager. The Log
Buffer eventually flushes the log entries to flash and adds the new
addresses to the NTT.

5.3.2 Bigger Log Buffer
If available, FlashDB can use a large Log Buffer as writing a

large amount of data at a time has smaller per byte cost than writing
smaller amounts at a time. In addition, when writing to flash, log
entries can be reorganized such that entries of the same node stay
in as few sectors as possible. This reduces NTT memory footprint
and read cost, since fewer pages need to be read to collect all the
log entries for a node.



5.3.3 Checkpoint and Rollback
FlashDB also supports checkpointing and rollback of indices.

Checkpointing allows a device to capture the state of an index,
while rollback allows it to go back to a previously checkpointed
state. This helps deal with software bugs, hardware glitches, en-
ergy depletion, and other faults possible in sensor nodes.

Checkpointing requires making both in-memory states and in-
flash data persistent. The NTT is less than6KB as shown in Sec-
tion 6.3, and storing it into flash is a negligible storage overhead.
However, simply storing the NTT is not sufficient due to Logical
Storage and Garbage Collection functions in the Storage Manager.
First, the NTT keeps track of logical addresses of sectors and the
Logical Storage may change the mapping between logical to phys-
ical addresses over time. So, if the rollback operation loads a previ-
ously checkpointed NTT, physical pages currently mapped by sec-
tor addresses in the NTT may not be the same ones mapped during
the checkpoint time. To address this, we replace the sector ad-
dresses in a checkpointed NTT with their physical addresses. Sec-
ond, garbage collection may copy the content of a pagep to a new
locationp′ and erasep. If p is part of a checkpointed version, fu-
ture rollback operation will fail to find the data forp (which is now
in p′). To address this, during garbage collection, we update the
checkpointed NTT withp′. Note that, we do not need to update the
whole NTT, only the page containingp needs update. Moreover,
garbage collection is an infrequent operation, so the amortized cost
is small. Since updating in-flash NTT is expensive we prefer blocks
with no checkpointed data over the ones having checkpointed data
for garbage collection.

Rollback requires loading the NTT into memory, creating new
logical addresses in Logical Storage that map to the physical ad-
dresses in in-flash NTT, and placing the logical addresses in the
restored NTT in memory.

6. EXPERIMENTAL EVALUATION
Our current FlashDB prototype is written in .NET compact frame-

work, a common language run time environment for embedded de-
vices such as Stargates. In this section we evaluate performance of
this prototype. We enable the log compaction optimization (Sec-
tion 5.3.1); but use a small Log Buffer to hold logs worth one flash
page—a bigger buffer will provide better performance of FlashDB.
In the rest of the section, we first try to understand under what
situation indexing provides more benefit than archiving data in an
append-only list. Second, we investigate B+-tree(ST)’s performance
under different flash types and workloads. Third, we measure the
memory footprint of B+-tree(ST). Finally, we investigate how SWITCH-
MODE performs with real workload.

Flash Devices. We use the following types of flash in our eval-
uation: (1) FLASHCHIP: Samsung K9K1G08R0B (128MB) flash
chip, (2) CAPSULE: a Toshiba flash chip interfaced to a mote [14]
(we used the cost numbers reported in [14] in our flash emula-
tor), (3) COMPACT FLASH (CF): the Sandisk compact flash card
(512MB), and (4) SECUREDIGITAL (SD): Kingston mini SD card
(512 MB). We use FLASHCHIP as the default flash type. The prop-
erties of the CF and mini SD cards were obtained from experiments
with our testbed (Section 2.1.1).

Workloads. We use three different workloads. (1) LABDATA : a
stream of temperature data collected from 35 sensors in our of-
fice building. It consists of30, 000 data points. (2) RANDOM:
a sequence of30, 000 random data points. (3)SEQUENTIAL: a
sequence of30, 000 unique data points in increasing order. We
use LABDATA as the default workload. We use RANDOM and
SEQUENTIAL for sensitivity study; the cost with real workloads
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should be between that of RANDOM and SEQUENTIAL.
In all figures in this section, the labels SEQ, RND, and LAB

denote SEQUENTIAL, RANDOM, and LABDATA data respectively.
The labels Disk, Log, and ST refer to an index using B+-tree(Disk),
B+-tree(Log), or B+-tree(ST) respectively.

6.1 When is Indexing Useful?
Different data management policies may be adopted for archiv-

ing a data stream. In one extreme, data can be stored as an append-
only list (call it a List) with cheaper(O(1)) data insertion and more
expensive query operation (each query would require a sequentially
scan of costO(n)). On the other extreme, data can be indexed us-
ing a B+-tree, with slightly more expensive (O(Log(n)) data in-
sertion and cheap (O(Log(n)) query operation. Here we evaluate
these two policies to understand when building a B+-tree index is
preferable over a List.

Figure 7 compares energy consumption of B+-tree(ST) and List
under different query rates. The x-axis shows the number of queries
made, and the y-axis shows the total energy consumed by first
archiving the LABDATA data (i.e., building B+-tree(ST) or List)
and then querying the data. Each query asks for data within a ran-
domly chosen small range.

When the number of queries made is small (≈ 0), List is more
energy efficient than B+-tree(ST). This is expected, since the ad-
ditional cost of building a B+-tree(ST) is not compensated by a
small number of queries processed. However, the total cost for List
grows fast as the number of queries increases. In contrast, addi-
tional queries incur much smaller cost with B+-tree(ST), demon-
strated by relatively flat curves for B+-tree(ST). Interestingly, the
curves for B+-tree(ST) and List cross at a very small number of
queries: around 300 queries, for both types of flash in Figure 7.
This tells us thatbuilding an index is useful when we expect that
the number of queries on the archived data will be more than1%
of the total number of data items.

6.2 Tunability of B+-tree(ST)
In this section we evaluate how well B+-tree(ST) adapts with

different devices and workloads. First, we use different types of
flash with LABDATA as the default workload. Then, we use differ-
ent workloads with FLASHCHIP as the default flash device. Finally,
we vary both flash devices and workloads.

Varying Flash Devices. Figure 8(a) shows the energy consumed
for indexing the LABDATA data with different indexing schemes
over different types of flash. We see that B+-tree(Log) is40% and
80% more efficient than B+-tree(Disk) when used over FLASHCHIP

and SECUREDIGITAL respectively. On the other hand, B+-tree(Disk)
is 38% and32% more efficient than B+-tree(Log) for CAPSULE

and COMPACT FLASH respectively. This supports our claim that
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Figure 8: Energy and time with different storage devices.

none of these two schemes is flexible in terms of flash types. This
can be explained by Figure 8(b), that shows the number of pages
read and written by B+-tree(Disk) and B+-tree(Log). As shown,
B+-tree(Log) writes≈ 28K fewer pages and reads≈ 132K more
pages than B+-tree(Disk). This increased number of reads is jus-
tified over the reduced number of writes if a page read is at least
≈ 132/28 = 4.7 times cheaper than a page write. For FLASHCHIP

and SECUREDIGITAL , reads are> 10× cheaper than writes, mak-
ing B+-tree(Log) more efficient than B+-tree(Disk) over these de-
vices. In contrast, for CAPSULE and COMPACT FLASH, read and
write costs are comparable, implying that B+-tree(Disk) is better
for these devices. Similar conclusions holds for the time required
to build the index, as shown in Figure 8(c).

Further, B+-tree(ST) performs better than or as good as the best
of B+-tree(Log) and B+-tree(Disk) for all flash packages. The rea-
son is that in B+-tree(ST), individual nodes stay in the mode which
is optimal in respect to the device and workload seen by the node.
With FLASHCHIP and SECUREDIGITAL , most of the index nodes
stay in theLog mode, giving a performance comparable to B+-
tree(Log). In fact, B+-tree(ST) consumes less energy than B+-
tree(Log), since some of the read-intensive nodes near the root of
the index stay in theDisk mode. Due to this finer granularity con-
trol of node mode, B+-tree(ST) consumes, for example,10% less
energy than B+-tree(Log) for FLASHCHIP.

Varying workload . We now investigate whether B+-tree(ST) can
tune itself to different workloads. We use SEQUENTIAL, RAN-
DOM, and LABDATA data under two different scenarios. First, we
consider a write-intensive scenario where the index is built with no
queries made. Second, we consider a read-intensive scenario where
each data item is queried 10 times after the index is built. We use
FLASHCHIP as the storage device for this set of experiments.

Figure 9 shows the sum of energy consumed to build the index
and query it with different workloads. As discussed previously,
B+-tree(Log) better than B+-tree(Disk) in the write intensive case
but worse with read-intensive workloads. This is explained by the
fact that retrieving a B+-tree(Log) node typically requires reading
multiple flash pages where log entries for the node is stored. With
increasing query workload, this additional cost dominates. The fig-
ures also show that B+-tree(ST) successfully tunes itself to perform
better than both B+-tree(Disk) and B+-tree(Log), under all work-
loads. The results for latency, omitted for brevity, are similar [16].

Sensitivity Analysis. We now investigate how sensitive different
indexing schemes are to varying workload and device properties.
We vary two properties in our experiments: (1) R/W frequency:
this is the ratio of read counts to write counts in the LABDATA

workload, with the number of writes being fixed to 30,000, and
(2) W/R cost: this is the ratio of write cost to read cost of the
device, with the read cost being fixed to1uJ . Figure 12 shows

the energy consumed by different indexing schemes under differ-
ent workload and device properties. As shown, with increasing
R/W frequency, the cost for B+-tree(Log)increases slightlywhile
that for B+-tree(Disk)decreases significantly. In contrast, with
increasing W/R cost, the cost for B+-tree(Log)decreases signifi-
cantlywhile that for B+-tree(Disk)decreases slightly. As a result,
the graphs for B+-tree(Disk) and B+-tree(Log) orient in different
directions and intersect, implying the benefits of different schemes
in different regions of the working space. Note that the line of in-
tersection between two planes would have been different if we used
RANDOM or SEQUENTIAL, instead of LABDATA .
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Again, note that, B+-tree(ST) always performs better than both
B+-tree(Disk) and B+-tree(Log).

6.3 Memory Footprint
The NTT used by B+-tree(ST) has one of the biggest footprints

of FlashDB implementation. The NTT needs to maintain infor-
mation for each index node, and therefore its size increases with
the number of index nodes. Figure 10 shows the size of the NTT
as a function of the number of data items being indexed. Increas-
ing the number of data items increases the number of index nodes,
and hence increases the size of the NTT. However, the footprint is
reasonably small even with large number of data items, showing
the feasibility of using our indexing mechanism in a cluster-head,
gateway, or more capable sensor node. Moreover, B+-tree(ST) has
a smaller footprint than B+-tree(Log), explained by the fact that
theDiskmode nodes in B+-tree(ST) do not require to maintain the
addresses of pages containing log entries of the nodes. The graph
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also shows that, interestingly, SEQUENTIAL data requires a larger
NTT. This is due to the fact that a B+-tree has more index nodes
if the data is inserted in increasing (or decreasing) order, instead of
random order. With SEQUENTIAL, items are always inserted into
the latest leaf node and leaf nodes remain unused after they are split
into half. Since leaf nodes have the smallest possible size, the to-
tal number of nodes increases. The other in-memory data structure
used is the Log Buffer, which has a very small overhead (one page,
≈ 512B, in our implementation).

6.4 Performance ofSWITCHMODE

As proved, our SWITCHMODE algorithm is 3-competitive, i.e.,
it incurs at most 3 times the cost of an optimal algorithm in the
worst case scenario. To understand SWITCHMODE’s behavior with
a real workload, we build a B+-tree(ST) over the LABDATA data
and capture the read/write sequences,Wrw, on 10 random logi-
cal B+-tree nodes, their transition sequenceTSwitchMode between
Disk andLog modes, and the average energyESwitchMode con-
sumed by reading/writing only these nodes. We then use the traces
Wrw off-line to compute the optimal transition sequenceTOPT

of the same 10 nodes. Finally, we compute the average energy
EOPT consumed by these nodes had they followedTOPT . Fig-
ure 11 shows the optimality ratioESwitchMode/EOPT . Clearly,
the optimality ratio is far better than 3 in practice. For all types of
flash, SWITCHMODE’s cost is within1.25× the optimal cost. We
observed the same bound in experiments with other workloads.

7. CONCLUSION
We discussed the design space of database design for flash based

storage in sensor networks. In addition to the flash characteristics,
we also considered the influence of storage and retrieval workload
that affects design choices such as whether to use indexing and
which data structures to use for indexing. We showed that while
existing log based designs proposed to address flash characteristics
help improve performance, they are neither optimal, nor universally
applicable across all workloads and flash devices. Our proposed
self-tuning design can adapt itself to various combinations of sys-
tem parameters to not only achieve the best of the performance of
existing methods that are applicable in different regions of the de-
sign space but in fact improve the performance over and above the
specialized methods for most regions. An analysis of the algorithm
used for self-tuning was presented to evaluate its optimality. Ex-
periments with real world data and our embedded implementation
demonstrate the multiple advantages of our design.
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