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Abstract. Measuring the similarity between documents anerige has been
extensively studied in information retrieval. Hoxee, there are a growing
number of tasks that require computing the sintildbetween two very short
segments of text. These tasks include query reflation, sponsored search,
and image retrieval. Standard text similarity nueas perform poorly on such
tasks because of data sparseness and the lacktektdn this work, we study
this problem from an information retrieval perspext focusing on text
representations and similarity measures. We exarairrange of similarity
measures, including purely lexical measures, stemmiand language
modeling-based measures. We formally evaluateaaatyze the methods on a
qguery-query similarity task using 363,822 queriesf a web search log. Our
analysis provides insights into the strengths aedkmnesses of each method,
including important tradeoffs between effectivenasd efficiency.

1 Introduction

Retrieving documents in response to a user quetlyeisnost common text retrieval
task. For this reason, most of the text similantgasures that have been developed
take as input a query and retrieve matching doctsneidowever, a growing number
of tasks, especially those related to web searchntdogies, rely on accurately
computing the similarity between two very short reegts of text. Example tasks
include query reformulation (query-query similajjtysponsored search (query/ad
keyword similarity), and image retrieval (qQuery-igeacaption similarity).

Unfortunately, standard text similarity measurekvidaen directly applied to these
tasks. Such measures rely heavily on terms ocauirinboth the query and the
document. |If the query and document do not hayetarms in common, then they
receive a very low similarity score, regardlesshofv topically related they actually
are. This is well-known as the vocabulary mismaiobblem. This problem is only
exacerbated if we attempt to use these measupesrtpute the similarity of two short
segments of text. For example, “UAE” and “Unitethl8 Emirates” are semantically
equivalent, yet share no terms in common.

Context is another problem when measuring the aiityjl between two short
segments of text. While a document provides soresle amount of text to infer the
contextual meaning of a term, a short segmentfaely provides a limited context.
For example, “Apple computer” and “apple pie” shahe term apple, but are
topically distinct. Despite this, standard text imity measures would say that these



two short segments of text are very similar. Hogrewxcomputing the similarity
between the query “Apple computer” and a full doemmabout “apple pie” will

produce a low similarity score since the documannttains proportionally less text
that is relevant to the query, especially compdced full document about “Apple
business news”.

In this paper, we explore the problem of measusimgilarity between short
segments of text from an information retrieval pexdive. Studies in the past have
investigated the problem from a machine learninigitpof view and provided few, if
any comparisons to standard text similarity measuta this work, we describe a set
of similarity measures that can be used to tadidegproblem. These measures include
simple lexical matching, stemming, and text repmésons that are enriched using
web search results within a language modeling fraonk. In addition, we formally
evaluate the measures for the query-query simjlarsk using a collection of
363,822 popular web queries. Our analysis provaldmtter understanding of the
strengths and weaknesses of the various measudeshaws an interesting tradeoff
between effectiveness and efficiency.

The remainder of this paper is laid out as followsirst, Section 2 provides an
overview of related work. We then describe theiotss ways to represent short
segments of text in Section 3. Section 4 followghis discussion by describing the
similarity measures we investigated. Section 5vigles the details of our
experimental evaluation on the query-query simiatask. Finally, in Section 6 we
wrap up and provide conclusions and directionaitfre work.

2 Related Work

Many techniques have been proposed to overcomeottebulary mismatch problem,
including stemming [5,9], LSI [3], translation mdsi€1], and query expansion [6,14].
This section describes several of these technithetsare most related to our work.
The task we focus on is a query-query similarigktan which we compare short text
segments, such as “Apple computer”, “apple pie” AMOS X”, and “iIMAC”.

Translation models, in a monolingual setting, haeen used for document
retrieval [1], question answering [8], and detegtiext reuse [7]. The goal is to
measure the likelihood that some candidate docummeséntence is a translation (or
transformation) of the query. However, such moaetsless likely to be effective on
very short segments of texts, such as queries, tduthe difficulty involved in
estimating reliable translation probabilities fack pieces of text.

Query expansion is a common technique used to coamdnitial, typically short,
qguery into a richer representation of the informatineed [6,10,14]. This is
accomplished by adding terms that are likely toesppn relevant or pseudo-relevant
documents to the original query representation.oun query-query matching work,
we explore expanding both the original and candidatery representations.

Sahami and Heilman proposed a method of enricting sext representations that
can be construed as a form of query expansion [Thgir proposed method expands
short segments of text using web search resulise sSimilarity between two short
segments of text can then computed in the expamdpresentation space. The
expanded representation and DenseProb similaritpsore that we present in



Sections 3 and 4 are similar to this approach. éi@y we estimate term weights
differently and analyze how such expansion appreschompare, in terms of
efficiency and effectiveness, to other standardrimftion retrieval measures.

Finally, since we evaluate our techniques on a yggaery similarity task, it
should be noted that this problem, and the relgisablem of suggesting and
identifying query-query reformulations has beenestgated from a number of
angles, ranging from machine learning approachds t¢4 query session log
analysis[2]. These techniques are complimentarth& core representational and
similarity ideas that we explore in our work.

3 Text Representations

Text representations are an important part of amylagity measure. In this section,
we describe three different ways of representixgy #lthough these representations
can be applied to text of any length, we are prilpanterested in using them to
represent short segments of text.

3.1 Surface Representation

The most basic representation of a short segmetatxbis the surface representation
(i.e. the text itself). Such a representationasyvsparse. However, it is very high
quality because no automatic or manual transfoonati(such as stemming) have
been done to alter it. While it is possible thatls transformations enhance the
representation, it is also possible that they thice noise.

3.2 Stemmed Representation

Stemming is one of the most obvious ways to geizerghormalize) text. For this
reason, stemming is commonly used in informatidrieeal systems as a rudimentary
device to overcome the vocabulary mismatch probl&farious stemmers exist,
including rule-based stemmers [9] and statistitexhsners [5].

Although stemming can significantly improve matahircoverage, it also
introduces noise, which can lead to poor matchdsing the Porter stemmer, both
“marine vegetation” and “marinated vegetables” stem‘marin veget”, which is
undesirable. Overall, however, the number of megfni matches introduced
typically outweighs the number of spurious matches.

Throughout the remainder of this paper, we usePibreer stemmer to generate all
of our stemmed representations.

3.3 Expanded Representation

Although stemming helps overcome the vocabularymatsh problem to a certain
extent, it does not handle the contextual probleinfails to discern the difference
between the meaning of “bank” in “Bank of Americaid “river bank”. Therefore, it



<query>apple pie</query>

<title>Applie pie — Wikipedia, the free encyclopediage>

<snippet>In cooking, an apple pie is a fruit pie (or taib)which the principal filling ingredient ig
apples . Pastry is generally used top-and-bottoakimg a double-crust pie, the upper crust of whjch
...<Isnippet>
<url>en.wikipedia.org/wiki/Apple_ piesar|>

<title>All About Food — Apple Piegdtle>
<snippet>Apple Pie. Recipes. All-American Apple Pie. AmericApple Pie. Amish Apple Pie|.
Apple Cream Pie. Apple Crumble Pie. Apple Pie . lepPie in a Brown Bag. Best Appl
Pie<snippet>

<url>fp.enter.net/~rburk/pies/ applepie/applepie.hmk>

[

<title>Apple Pie Recipekitle>
<snippet>Apple Pie Recipe using apple peeler corer sliceApple Pie Recipe. From Scratch fo
Oven in 20-Minutes. Start by preheating the oventt® time it's ...fAnippet>
<url>applesource.com/applepierecipe.htore

Fig. 1. Example expanded representation for the text ‘mpple.” The expanded
representation is the concatenation of the tittt smppet elements.

is desirable to build representations for the shestt segments that include
contextually relevant information.

One approach is to enrich the representation usingexternal source of
information related to the query terms. Possiblgrces of such information include
web (or other) search results returned by issuiregshort text segment as a query,
relevant Wikipedia articles, and, if the short teseégment is a query, query
reformulation logs. Each of these sources provédsst of contextual text that can be
used to expand the original sparse text representat

In our experiments, we use web search results toarek our short text
representations. For each short segment of tert,run the query against a
commercial search engine’s index and retrieve tpe200 results. The titles and
snippets associated with these results are thecatmmated and used as our expanded
representation. In Figure 1, we show a portiothefexpanded representation for the
short text segment “apple pie”. As we see, thigaexled representation contains a
number of contextually relevant terms, such asifec “food”, and “cooking” that
are not present in the surface representation. M that this expanded
representation is similar to the one proposed 1. [1

4 Similarity M easures

In this section we describe three methods for maagthe similarity between short
segments of text. These measures are motivatedabyg, make use of, the
representations described in the previous sectibie. also propose a hybrid method
of combining the ranking of the various similarityeasures in order to exploit the
strengths and weaknesses of each.



4.1 Lexical

The most basic similarity measures are purely &xicThat is, they rely solely on
matching the terms present in the surface reprasens. Given two short segments
of text, Q andC, treatingQ as the query an@ as the candidate we wish to measure
the similarity of, we define the following lexicalatching criteria:

e Exact —Q and C are lexically equivalent.(: “seattle mariners tickets'C:

“seattle mariners tickets”)

* Phrase —C is a substring ofQ. (Q: “seattle mariners tickets"C: “seattle

mariners”)

e Subset — The terms i@ are a subset of the terms@ (Q: “seattle mariners

tickets”, C: “tickets seattle”)

These measures are binary. That is, two segmétesteither match (are deemed
‘similar’) or they do not. There is no graded sa@ssociated with the match.
However, if necessary, it is possible to imposehsacscore by looking at various
characteristics of the match such as the lengtQ eindC, or the frequency of the
terms in some collection.

It should also be noted that exact matchésphrase matche&l subset matches.
Exact matches are very high precision (excelleriches), yet very low recall since
they miss a lot of relevant material. At the otbatreme, subset matches are lower
precision, but have higher recall. Any candidatthat contains a term that does not
appear in the quer® will not match under any of these rules, whichvery
undesirable. Therefore, we expect that matchesrgisd using these lexical rules
will be have high precision but poor recall.

4.2 Probabilistic

As we just described, lexical matching alone isemaugh to produce a large number
of relevant matches. In order to improve recall, must make use of the expanded
text representations. To do so, we use the largguaapeling framework to model
guery and candidate texts.

To utilize the framework, we must estimate uniglanguage models for the query
(f) and each candidatedd). For ranking purposes, we use the negative KL-
divergence between the query and candidate modethws commonly used in the
language modeling framework [14]. This resultshia following ranking function:

~KL(8,,6.) = H(6,) - CE(8,,6.) ©)
=" P(w|6,)logP(w|6,)

whereV is the vocabularyH is entropy,CE is cross entropy, and denotes rank
equivalence.

The critical part of the ranking function is howetlyuery and candidate language
models are estimated. Different estimates can teaddically different rankings.
We now describe how we estimate these models tilsengepresentations available to
us.



We begin with the query model. The most straightéod way of estimating a
guery model is to use the surface representafitis is estimated as:

tf, @
o= e

where QS denotes the query surface representatiiys is the number of times
occurs in the representation, arf@g| is the total number of terms Q@S This
estimate will be very sparse since we are usingstmace representation. This
allows Equation 1 to be computed very efficienilyce most terms in the summation
(wOV ) will be zero.

We also consider the case when we use the expapa@egkentation of the query,
as described in Section 3.3. The estimate, wisi@nalogous to the unexpanded case,
is:

woe + HoP(W|[C) ®
| QE | +44,

where QE is the query expanded representation,ugnid a smoothing parameter.
This type of estimation is commonly used in theglzage modeling community and is
often referred to as Dirichlet or Bayesian smoaHit3]. Since this estimate is much
more dense than the unexpanded estimate, it is timaee consuming to evaluate
Equation 1. Due to the amount of data we work witbur experiments, we truncate
this distribution by only keeping the 20 most likeerms and setting the remaining
probabilities to 0. Pruning similar to this waséadn [11] for the same reason.
Finally, we describe how the candidate model isveded. Rather than exploring
both estimates using both unexpanded and expargfg@sentations, we restrict
ourselves to expanded representations. Theref@erget the following estimate:

ce * HPW|C) O
|CE[+44

where CE is the candidate expanded representatioiyc is a smoothing parameter.
Unlike the expanded query model, we do not truntagedistribution in any way.

Finally, it is important to recall that expandegnesentations may be created using
any number of external sources. Our use of the wab simply a matter of
convenience. However, we can use this same gefrarabwork with expanded
representations generated using any possible aktent source.

tf
P(w| &) =

tf,,
P(w|&:) =

4.3 Hybrid

We are often interested in taking the matches geegiby several different similarity
measures and combining them. We call thed®id techniques. Given two or more
lists of matches, we stack the lists accordingames pre-defined ordering (denoted
“>") of the lists, to form a combined list. Foraxple, given match lists A and B,
and ordering A > B, we form the hybrid list AB, whiis list B appended to the end



IVINeatrhn?ad Repr%eir'zition Regran@(iriiieon Similarity Measure

Lexical Surface Surface (Exact > ?'/]brgg e > Subset)
Stemming Stemmed Stemmed (Lexicaliygigct Stems)
SparseProb Surface Expanded Probabilistic
DenseProb Expanded Expanded Probabilistic

Backoff Various Various (Exact > Exagygtgiws > DenseProp)

Table 1. Overview of query representation, candidate repregion, and similarity measure
used for each matching method.

of list A. Since the same match may occur in mbantone set of results, we must
remove duplicates from the combined list. Our gdidation policy states that we
keep the highest ranked match and remove all othédthough this combination

scheme is naive, it has the advantage that therex@rcombination parameters to
learn.

4.4 Summary of Methods Evaluated

Table 1 summarizes the methods we evaluate ingkesection. For each method,
we include the query and candidate representaindghe similarity measure used.

The Lexical method, which considers the surfacenfoof the query and candidate,
makes use of a hybrid technique that ranks exatthwea first, then phrase matches,
and finally subset matches. The Stemming methonl @des a hybrid technique that
first ranks matches using the Lexical method jestcdibed and then ranks any exact
matches that result after stemming both the quedythe candidate. We refer to these
types of matches as “exact stems” matches.

The SparseProb method is the first of the two pridiséic methods. It uses the
unexpanded query representation, the expandeddzadiepresentation, and ranks
using the negative KL-divergence, whereas the Dmde method uses expanded
representations for both the query and the cargligladl also ranks using the negative
KL-divergence.

Finally, the Backoff method is a hybrid method thatks exact matches, exact
stems matches, and then DenseProb matches. Thhageds to see what benefit, if
any, is achieved by replacing the phrase and subs#¢thes from the Stemming
method with DenseProb matches. We hypothesizettlieaDenseProb matches will
be better than the often poor phrase and subsehesat

Many other query/candidate representation comlainatare possible beyond those
listed in Table 1. For example, it may be reastséd use an expanded query form
and a surface candidate form. However, in orden&intain a reasonable scope, we
constrain ourselves to the methods described snseition.



Query: "seattlemariners"’

Lexical Stemming SparseProb DenseProk Backoff
segttle segttle seatt_le mariners seatt_le mariners | .o mariners
mariners mariners tickets tickets
seattle seattle mariners ticket$ mariners tickets eattle mariner
. . . seattle mariners | seattle mariners
mariners mariners seattle marinerg ’
baseball tickets

seattle mariners

seattle marine! seattle mariners mariners tickets
baseball i
seattle mariners | seattle mariners | seattle mariners
schedule schedule baseball
. . seattle mariners
mariners basebal mariners basebpgll
schedule
seattle baseball seattle basebd|ll mariners biaseba
. red sox mariners
mariners : seattle baseball
tickets

. . red sox mariners
mariners schedulg mariners schedule tickets

cheap mariners

. mariners schedulg
tickets

seattle mariner

Table 2. Examples matches taken from our test collectiorife query "seattle mariners". The
Seattle Mariners are a baseball team from Se&tleeach method, we show the 10 matches
with the highest similarity score.

5 Experimental Evaluation

In this section we evaluate the similarity measymegposed in Section 4. We begin
by showing some illustrative examples of matcheseggted using our algorithms.
We then formally evaluate the methods in the cdriéa query-query similarity task.

5.1 Illustrative Examples

Table 2 provides illustrative matches returned gishre various matching techniques
described in Section 4. Although many of theseltesook reasonable, it is difficult
to quantify how much better any one method is lypsy looking at these results.
Therefore, in the next section we formally evaluatedifferent match types.

5.2 Query-Query Similarity

We now describe our query-query similarity experitse Here, we are interested in
evaluating how well the various methods we desdrilmeSection 4 can be used to
find queries that are similar to some target quefhis task is a general task that is
widely applicable. For example, such a query-queémilarity system could be used
to recommend alternative queries to users of a sedrch engine or for session
boundary detection in query log analysis.



Examples

Judgment Description (Query / Candidate)
Excellent The candidate isemantically equivalerib the user atlanta ga /
query. atlanta georgia
The candidate is related to (but not identicakhe) seattle mariners /
Good query intent and it is likely theser would be

interested in the candidate seattle baseball tickets

The candidate is related to the query intent, tairi
Fair overly vague or specific manner that results in the
user having little, if any, interest in the candiela

hyundia azera /
new york car show

web visitor count /

Bad The candidate isrelatedto the query intent. coin counter

Table 3. Description of the relevance judgment scale.

5.2.1 Data

The following data resources were used in our expertal evaluation. A sample of
363,822 popular queries drawn from a 2005 MSN Seqtery log was used as our
candidate pool of queries to match against. Farheguery, we generated an
expanded representation, as described in SectBorirBour experiments, we e to

0 andpc to 2500. To handle this amount of data, we bailtindex out of the
expanded representations using the Indri searc¢bmayd2].

We also randomly sampled a set of 120 queries frarsame log to use as target
queries. These target queries were then matcheidstghe full set of 363k queries.
For each of these target queries, we ran the metlkedcribed in Section 4 and
pooled the results down to a depth of 25 per methdagsingle human assessor then
judged the relevance of each candidate result sggpect to the target query using a
4-point judgment scale. Table 3 provides a degoripand examples of each type of
judgment.

The result of this assessment was 5231 judgedtteagelidate pairs. Of these
judgments, 317 (6%) were Excellent, 600 (11%) weosd, 2537 (49%) were Fair,
and 1777 (34%) were Bad. In order to determinaehability of the judgments, four
assessors judged 10 target queries. The intertaion@greement was then computed
for these queries and was found to be 60%. Howewnvben Excellent and Good
judgments were binned and Fair and Bad judgment® Wwened, the agreement
increased to 80%. This indicates the boundary éetwFair and Bad is interpreted
differently among users. For this reason, we wilinarily focus our attention on the
boundary between Excellent and Good and between @od Fair. In addition, the
Excellent and Good matches are the most intereftinghany practical applications
including query suggestion and sponsored search.

5.2.2 Evaluation

We are interested in understanding how our matchiathods compare to each other
across various relevance criteria. Since we aterdsted in using standard
information retrieval metrics, such as precisiord aecall, we must binarize the
relevance judgments. For each experiment, we #tateelevance criteria used.
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Fig. 2. Interpolated, 11-point precision-recall curvestfwe five matching methods described
in Section 4. On the left, candidates judged ‘Hre¢ are considered relevant. On the right,
candidates judged ‘Excellent’ or ‘Good’ are consékrelevant.

We first evaluate the methods using precision-tegaphs using two different
relevance criteria. The results are given in Figlire For the case when Excellent
matches are considered relevant (left panel), weetisat the Lexical and Stemming
methods outperform the probabilistic methods, esfigat lower recall levels. This
is not surprising, since we expect lexical matdioesasily find most of the Excellent
matches. In addition, we see that Stemming cangist outperforms the Lexical
method. However, the Backoff method dominates dtteer methods at all recall
levels. This results from backing off from stricteatches to less strict matches. For
example, for the query “atlanta ga”, the Lexicalthoal will match “atlanta ga”, but
neither the Lexical nor the Stemming methods wiitoh “atlanta georgia”, which is
actually an Excellent match that is found using@esmseProb method.

When we relax the relevance criteria and considah tExcellent and Good
judgments to be relevant (right panel), we seentaresting shift in the graph. Here,
the probabilistic methods, SparseProb and DensePrtperform the Lexical and
Stemming methods at all recall levels, except Vewylevels. This suggests that the
Lexical and Stemming methods are good at findingelignt matches, but that they
are worse at finding Good matches compared to tiobabilistic methods. We
further test this hypothesis later in this sectibtowever, once again, we see that the
Backoff method outperforms all of the methods htedall levels.

One reason why the Backoff method is superior & ribn-hybrid probabilistic
methods is the fact that the SparseProb and DeviseRethods often fail to return
exact matches high in the ranked list. This isseduby truncating the expanded
query distribution before computing the KL divergen Since exact matches account
for a majority of the Excellent judgments, this sasi the entire curve to be shifted
down. By forcing the exact and exact stems matbhesccur first, we are ‘stacking
the deck’ and promoting matches that are likeljpechigh precision. This, combined
with the high recall of the DenseProb method, tednla superior matching method.

It is clear that exact matches are very likely &sult in Excellent matches.
However, it is not clear how phrase and subset#xnatches compare to stemming
and probabilistic matches. To measure this, wepttenthe precision & for the
Lexical and Backoff methods, wheleis the number of results returned by the



R = {Excellent} R = {Excellent, Good}
k | Queries Lexical Backoff Lexical Backoff
1 40 0.7500 0.8125 0.7500 0.812%
2 38 0.3235 0.4853 0.3382 0.5882
3 31 0.2688 0.4194 0.3978 0.5914

Table 3. Precision ak, wherek is the number of matches returned using the Lexiethod.
In this table, the evaluation set of queries weatified according t. Queries indicates the
the number of queries associated with elactOnly values ok associated with 10 or more
queries are shown.

Lexical method. This evaluation allows us to qifgrthe improvement achieved by
replacing the low precision phrase and subset matetith the high precision exact
stems matches and high recall DenseProb matches.

The results are presented in Table 4 for two relegecriteria. We stratify the
queries with respect i the number of Lexical method matches for the guand
compute precision at deptk over these queries. We only include valueskof
associated with 10 or more queries, since it miilgpto compute and compare
means over smaller samples. As the results sh@vBackoff method is superior in
every case. This suggests that the stemming asfshbilistic matches (used in the
Backoff method) are considerably better at findrmgh Excellent and Good matches
compared to the phrase and subset matches (udfeel liexical method).

5.2.3 Effectiveness vs. Efficiency

One important practical aspect of the technique®ldped is efficiency. Generating
lexical and stemming matches is very efficient. Phebabilistic methods are slower,
but not unreasonable. Generating matches against collection of 363,822
candidates using a modern single CPU machine talkés seconds per query using
the SparseProb method and 3 seconds per querythsiienseProb method.

The DenseProb method requiragyriori, an index of expanded representations for
both the candidates and the incoming queries.elfwe asked to generate DenseProb
matches for a query that is not in our index, thenmust generate this representation
on the fly. However, the SparseProb method doéexiubit this behavior and can
be used to efficiently generate matchesafityincoming query.

Therefore, SparseProb is the the best choice mstesf speed and coverage.
However, if speed is not an issue, and high qualiyults are important, then
DenseProb is the better choice.

6 Conclusions and Future Work

In this paper we studied the problem of measurimg similarity between short
segments of text. We looked at various types &f tepresentations, including
surface, stemmed, and expanded. We showed hovsesbh results can be used to
form expanded representations of short text segmehlte then described several



similarity measures based on these representatiocisiding lexical matching and
probabilistic measures based on language modelneatst from unexpanded and
expanded representations. We then formally evaduahd compared these measures
in the context of a query-query similarity task peelarge collection of popular web
search queries. Our results showed that lexicalchiveg is good for finding
semantically identical matches and that the prdiséibimethods are better at finding
interesting topically related matches. It was shdhat a simple hybrid technique
that combines lexical, stemmed, and probabilistiataimes results in far superior
performance than any method alone.

The probabilistic framework presented in this pgpe@vides a general method for
measuring the similarity between two short segmehtext. Although we chose to
use web search results as the basis of our expaegeesentation in this work, an
interesting direction of future work would be toeua variety of other sources of
external text, such as query reformulation logsereps that result in similar click
patterns, and Wikipedia. It would also be worthwhib evaluate these techniques in
an end-to-end application, such as a query-quéoymeilation system, in order to see
what impact they have in a more practical setting.
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