
Similarity Measures for Short Segments of Text

Donald Metzler1, Susan Dumais2, Christopher Meek2

1University of Massachusetts 2Microsoft Research
 Amherst, MA Redmond, WA

Abstract. Measuring the similarity between documents and queries has been
extensively studied in information retrieval. However, there are a growing
number of tasks that require computing the similarity between two very short
segments of text. These tasks include query reformulation, sponsored search,
and image retrieval. Standard text similarity measures perform poorly on such
tasks because of data sparseness and the lack of context. In this work, we study
this problem from an information retrieval perspective, focusing on text
representations and similarity measures. We examine a range of similarity
measures, including purely lexical measures, stemming, and language
modeling-based measures. We formally evaluate and analyze the methods on a
query-query similarity task using 363,822 queries from a web search log. Our
analysis provides insights into the strengths and weaknesses of each method,
including important tradeoffs between effectiveness and efficiency.

1 Introduction

Retrieving documents in response to a user query is the most common text retrieval
task. For this reason, most of the text similarity measures that have been developed
take as input a query and retrieve matching documents. However, a growing number
of tasks, especially those related to web search technologies, rely on accurately
computing the similarity between two very short segments of text. Example tasks
include query reformulation (query-query similarity), sponsored search (query/ad
keyword similarity), and image retrieval (query-image caption similarity).

Unfortunately, standard text similarity measures fail when directly applied to these
tasks. Such measures rely heavily on terms occurring in both the query and the
document. If the query and document do not have any terms in common, then they
receive a very low similarity score, regardless of how topically related they actually
are. This is well-known as the vocabulary mismatch problem. This problem is only
exacerbated if we attempt to use these measures to compute the similarity of two short
segments of text. For example, “UAE” and “United Arab Emirates” are semantically
equivalent, yet share no terms in common.

Context is another problem when measuring the similarity between two short
segments of text. While a document provides a reasonable amount of text to infer the
contextual meaning of a term, a short segment of text only provides a limited context.
For example, “Apple computer” and “apple pie” share the term apple, but are
topically distinct. Despite this, standard text similarity measures would say that these

two short segments of text are very similar. However, computing the similarity
between the query “Apple computer” and a full document about “apple pie” will
produce a low similarity score since the document contains proportionally less text
that is relevant to the query, especially compared to a full document about “Apple
business news”.

In this paper, we explore the problem of measuring similarity between short
segments of text from an information retrieval perspective. Studies in the past have
investigated the problem from a machine learning point of view and provided few, if
any comparisons to standard text similarity measures. In this work, we describe a set
of similarity measures that can be used to tackle the problem. These measures include
simple lexical matching, stemming, and text representations that are enriched using
web search results within a language modeling framework. In addition, we formally
evaluate the measures for the query-query similarity task using a collection of
363,822 popular web queries. Our analysis provides a better understanding of the
strengths and weaknesses of the various measures and shows an interesting tradeoff
between effectiveness and efficiency.

The remainder of this paper is laid out as follows. First, Section 2 provides an
overview of related work. We then describe the various ways to represent short
segments of text in Section 3. Section 4 follows up this discussion by describing the
similarity measures we investigated. Section 5 provides the details of our
experimental evaluation on the query-query similarity task. Finally, in Section 6 we
wrap up and provide conclusions and directions of future work.

2 Related Work

Many techniques have been proposed to overcome the vocabulary mismatch problem,
including stemming [5,9], LSI [3], translation models [1], and query expansion [6,14].
This section describes several of these techniques that are most related to our work.
The task we focus on is a query-query similarity task, in which we compare short text
segments, such as “Apple computer”, “apple pie”, “MAC OS X”, and “iMAC”.

Translation models, in a monolingual setting, have been used for document
retrieval [1], question answering [8], and detecting text reuse [7]. The goal is to
measure the likelihood that some candidate document or sentence is a translation (or
transformation) of the query. However, such models are less likely to be effective on
very short segments of texts, such as queries, due to the difficulty involved in
estimating reliable translation probabilities for such pieces of text.

Query expansion is a common technique used to convert an initial, typically short,
query into a richer representation of the information need [6,10,14]. This is
accomplished by adding terms that are likely to appear in relevant or pseudo-relevant
documents to the original query representation. In our query-query matching work,
we explore expanding both the original and candidate query representations.

Sahami and Heilman proposed a method of enriching short text representations that
can be construed as a form of query expansion [11]. Their proposed method expands
short segments of text using web search results. The similarity between two short
segments of text can then computed in the expanded representation space. The
expanded representation and DenseProb similarity measure that we present in

Sections 3 and 4 are similar to this approach. However, we estimate term weights
differently and analyze how such expansion approaches compare, in terms of
efficiency and effectiveness, to other standard information retrieval measures.

Finally, since we evaluate our techniques on a query-query similarity task, it
should be noted that this problem, and the related problem of suggesting and
identifying query-query reformulations has been investigated from a number of
angles, ranging from machine learning approaches [4] to query session log
analysis[2]. These techniques are complimentary to the core representational and
similarity ideas that we explore in our work.

3 Text Representations

Text representations are an important part of any similarity measure. In this section,
we describe three different ways of representing text. Although these representations
can be applied to text of any length, we are primarily interested in using them to
represent short segments of text.

3.1 Surface Representation

The most basic representation of a short segment of text is the surface representation
(i.e. the text itself). Such a representation is very sparse. However, it is very high
quality because no automatic or manual transformations (such as stemming) have
been done to alter it. While it is possible that such transformations enhance the
representation, it is also possible that they introduce noise.

3.2 Stemmed Representation

Stemming is one of the most obvious ways to generalize (normalize) text. For this
reason, stemming is commonly used in information retrieval systems as a rudimentary
device to overcome the vocabulary mismatch problem. Various stemmers exist,
including rule-based stemmers [9] and statistical stemmers [5].

Although stemming can significantly improve matching coverage, it also
introduces noise, which can lead to poor matches. Using the Porter stemmer, both
“marine vegetation” and “marinated vegetables” stem to “marin veget”, which is
undesirable. Overall, however, the number of meaningful matches introduced
typically outweighs the number of spurious matches.

Throughout the remainder of this paper, we use the Porter stemmer to generate all
of our stemmed representations.

3.3 Expanded Representation

Although stemming helps overcome the vocabulary mismatch problem to a certain
extent, it does not handle the contextual problem. It fails to discern the difference
between the meaning of “bank” in “Bank of America” and “river bank”. Therefore, it

is desirable to build representations for the short text segments that include
contextually relevant information.

One approach is to enrich the representation using an external source of
information related to the query terms. Possible sources of such information include
web (or other) search results returned by issuing the short text segment as a query,
relevant Wikipedia articles, and, if the short text segment is a query, query
reformulation logs. Each of these sources provides a set of contextual text that can be
used to expand the original sparse text representation.

In our experiments, we use web search results to expand our short text
representations. For each short segment of text, we run the query against a
commercial search engine’s index and retrieve the top 200 results. The titles and
snippets associated with these results are then concatenated and used as our expanded
representation. In Figure 1, we show a portion of the expanded representation for the
short text segment “apple pie”. As we see, this expanded representation contains a
number of contextually relevant terms, such as “recipe”, “food”, and “cooking” that
are not present in the surface representation. We note that this expanded
representation is similar to the one proposed in [11].

4 Similarity Measures

In this section we describe three methods for measuring the similarity between short
segments of text. These measures are motivated by, and make use of, the
representations described in the previous section. We also propose a hybrid method
of combining the ranking of the various similarity measures in order to exploit the
strengths and weaknesses of each.

<query>apple pie</query>

<title>Applie pie – Wikipedia, the free encyclopedia</title>
<snippet>In cooking, an apple pie is a fruit pie (or tart) in which the principal filling ingredient is
apples . Pastry is generally used top-and-bottom, making a double-crust pie, the upper crust of which
...</snippet>
<url>en.wikipedia.org/wiki/Apple_ pie</url>

<title>All About Food – Apple Pies</title>
<snippet>Apple Pie. Recipes. All-American Apple Pie. American Apple Pie. Amish Apple Pie .
Apple Cream Pie. Apple Crumble Pie. Apple Pie . Apple Pie in a Brown Bag. Best Apple
Pie</snippet>
<url>fp.enter.net/~rburk/pies/ applepie/applepie.htm</url>

<title>Apple Pie Recipe</title>
<snippet>Apple Pie Recipe using apple peeler corer slicer ... Apple Pie Recipe. From Scratch to
Oven in 20-Minutes. Start by preheating the oven. By the time it's ...</snippet>
<url>applesource.com/applepierecipe.htm</url>
…

Fig. 1. Example expanded representation for the text “apple pie.” The expanded
representation is the concatenation of the title and snippet elements.

4.1 Lexical

The most basic similarity measures are purely lexical. That is, they rely solely on
matching the terms present in the surface representations. Given two short segments
of text, Q and C, treating Q as the query and C as the candidate we wish to measure
the similarity of, we define the following lexical matching criteria:

• Exact – Q and C are lexically equivalent. (Q: “seattle mariners tickets”, C:
“seattle mariners tickets”)

• Phrase – C is a substring of Q. (Q: “seattle mariners tickets”, C: “seattle
mariners”)

• Subset – The terms in C are a subset of the terms in Q. (Q: “seattle mariners
tickets”, C: “tickets seattle”)

These measures are binary. That is, two segments of text either match (are deemed
‘similar’) or they do not. There is no graded score associated with the match.
However, if necessary, it is possible to impose such a score by looking at various
characteristics of the match such as the length of Q and C, or the frequency of the
terms in some collection.

It should also be noted that exact matches ⊆ phrase matches ⊆ subset matches.
Exact matches are very high precision (excellent matches), yet very low recall since
they miss a lot of relevant material. At the other extreme, subset matches are lower
precision, but have higher recall. Any candidate C that contains a term that does not
appear in the query Q will not match under any of these rules, which is very
undesirable. Therefore, we expect that matches generated using these lexical rules
will be have high precision but poor recall.

4.2 Probabilistic

As we just described, lexical matching alone is not enough to produce a large number
of relevant matches. In order to improve recall, we must make use of the expanded
text representations. To do so, we use the language modeling framework to model
query and candidate texts.

To utilize the framework, we must estimate unigram language models for the query
(θQ) and each candidate (θC). For ranking purposes, we use the negative KL-
divergence between the query and candidate model, which is commonly used in the
language modeling framework [14]. This results in the following ranking function:

∑
∈

≡

−=−

Vw
CQ

CQQCQ

wPwP

CEHKL

)|(log)|(

),()(),(

θθ

θθθθθ

(1)

where V is the vocabulary, H is entropy, CE is cross entropy, and ≡ denotes rank
equivalence.

The critical part of the ranking function is how the query and candidate language
models are estimated. Different estimates can lead to radically different rankings.
We now describe how we estimate these models using the representations available to
us.

We begin with the query model. The most straightforward way of estimating a
query model is to use the surface representation. This is estimated as:

||
)|(,

QS

tf
wP QSw

Q =θ
(2)

where QS denotes the query surface representation, tfw,QS is the number of times w
occurs in the representation, and |QS| is the total number of terms in QS. This
estimate will be very sparse since we are using the surface representation. This
allows Equation 1 to be computed very efficiently since most terms in the summation
(Vw∈) will be zero.

We also consider the case when we use the expanded representation of the query,
as described in Section 3.3. The estimate, which is analogous to the unexpanded case,
is:

Q

QQEw
Q QE

CwPtf
wP

µ
µ

θ
+

+
=

||

)|(
)|(,

(3)

where QE is the query expanded representation, and µQ is a smoothing parameter.
This type of estimation is commonly used in the language modeling community and is
often referred to as Dirichlet or Bayesian smoothing [13]. Since this estimate is much
more dense than the unexpanded estimate, it is more time consuming to evaluate
Equation 1. Due to the amount of data we work with in our experiments, we truncate
this distribution by only keeping the 20 most likely terms and setting the remaining
probabilities to 0. Pruning similar to this was done in [11] for the same reason.

Finally, we describe how the candidate model is estimated. Rather than exploring
both estimates using both unexpanded and expanded representations, we restrict
ourselves to expanded representations. Therefore, we get the following estimate:

C

CCEw
C CE

CwPtf
wP

µ
µ

θ
+

+
=

||

)|(
)|(,

(4)

where CE is the candidate expanded representation, and µC is a smoothing parameter.
Unlike the expanded query model, we do not truncate this distribution in any way.

Finally, it is important to recall that expanded representations may be created using
any number of external sources. Our use of the web was simply a matter of
convenience. However, we can use this same general framework with expanded
representations generated using any possible external text source.

4.3 Hybrid

We are often interested in taking the matches generated by several different similarity
measures and combining them. We call these hybrid techniques. Given two or more
lists of matches, we stack the lists according to some pre-defined ordering (denoted
“>”) of the lists, to form a combined list. For example, given match lists A and B,
and ordering A > B, we form the hybrid list AB, which is list B appended to the end

of list A. Since the same match may occur in more than one set of results, we must
remove duplicates from the combined list. Our deduplication policy states that we
keep the highest ranked match and remove all others. Although this combination
scheme is naïve, it has the advantage that there are no combination parameters to
learn.

4.4 Summary of Methods Evaluated

Table 1 summarizes the methods we evaluate in the next section. For each method,
we include the query and candidate representations and the similarity measure used.

The Lexical method, which considers the surface forms of the query and candidate,
makes use of a hybrid technique that ranks exact matches first, then phrase matches,
and finally subset matches. The Stemming method also uses a hybrid technique that
first ranks matches using the Lexical method just described and then ranks any exact
matches that result after stemming both the query and the candidate. We refer to these
types of matches as “exact stems” matches.

The SparseProb method is the first of the two probabilistic methods. It uses the
unexpanded query representation, the expanded candidate representation, and ranks
using the negative KL-divergence, whereas the DenseProb method uses expanded
representations for both the query and the candidate and also ranks using the negative
KL-divergence.

Finally, the Backoff method is a hybrid method that ranks exact matches, exact
stems matches, and then DenseProb matches. The goal here is to see what benefit, if
any, is achieved by replacing the phrase and subset matches from the Stemming
method with DenseProb matches. We hypothesize that the DenseProb matches will
be better than the often poor phrase and subset matches.

Many other query/candidate representation combinations are possible beyond those
listed in Table 1. For example, it may be reasonable to use an expanded query form
and a surface candidate form. However, in order to maintain a reasonable scope, we
constrain ourselves to the methods described in this section.

Method
Name

Query
Representation

Candidate
Representation

Similarity Measure

Lexical Surface Surface
Hybrid

(Exact > Phrase > Subset)

Stemming Stemmed Stemmed
Hybrid

(Lexical > Exact Stems)

SparseProb Surface Expanded Probabilistic

DenseProb Expanded Expanded Probabilistic

Backoff Various Various
Hybrid

(Exact > Exact Stems > DenseProb)

Table 1. Overview of query representation, candidate representation, and similarity measure
used for each matching method.

5 Experimental Evaluation

In this section we evaluate the similarity measures proposed in Section 4. We begin
by showing some illustrative examples of matches generated using our algorithms.
We then formally evaluate the methods in the context of a query-query similarity task.

5.1 Illustrative Examples

Table 2 provides illustrative matches returned using the various matching techniques
described in Section 4. Although many of these results look reasonable, it is difficult
to quantify how much better any one method is by simply looking at these results.
Therefore, in the next section we formally evaluate the different match types.

5.2 Query-Query Similarity

We now describe our query-query similarity experiments. Here, we are interested in
evaluating how well the various methods we described in Section 4 can be used to
find queries that are similar to some target query. This task is a general task that is
widely applicable. For example, such a query-query similarity system could be used
to recommend alternative queries to users of a web search engine or for session
boundary detection in query log analysis.

Query: "seattle mariners"
Lexical Stemming SparseProb DenseProb Backoff
seattle

mariners
seattle

mariners
seattle mariners

tickets
seattle mariners

tickets
seattle mariners

seattle seattle mariners tickets mariners tickets seattle mariner

mariners mariners seattle mariners
seattle mariners

baseball
seattle mariners

tickets

 seattle mariner
seattle mariners

baseball seattle mariners mariners tickets

seattle mariners

schedule
seattle mariners

schedule
seattle mariners

baseball

 mariners baseball mariners baseball
seattle mariners

schedule
 seattle baseball seattle baseball mariners baseball

 mariners red sox mariners
tickets

seattle baseball

 mariners schedule mariners schedule
red sox mariners

tickets

 seattle mariner
cheap mariners

tickets
mariners schedule

Table 2. Examples matches taken from our test collection for the query "seattle mariners". The
Seattle Mariners are a baseball team from Seattle. For each method, we show the 10 matches
with the highest similarity score.

5.2.1 Data
The following data resources were used in our experimental evaluation. A sample of
363,822 popular queries drawn from a 2005 MSN Search query log was used as our
candidate pool of queries to match against. For each query, we generated an
expanded representation, as described in Section 3.3. In our experiments, we set µQ to
0 and µC to 2500. To handle this amount of data, we built an index out of the
expanded representations using the Indri search system [12].

We also randomly sampled a set of 120 queries from the same log to use as target
queries. These target queries were then matched against the full set of 363k queries.
For each of these target queries, we ran the methods described in Section 4 and
pooled the results down to a depth of 25 per method. A single human assessor then
judged the relevance of each candidate result with respect to the target query using a
4-point judgment scale. Table 3 provides a description and examples of each type of
judgment.

The result of this assessment was 5231 judged target/candidate pairs. Of these
judgments, 317 (6%) were Excellent, 600 (11%) were Good, 2537 (49%) were Fair,
and 1777 (34%) were Bad. In order to determine the reliability of the judgments, four
assessors judged 10 target queries. The inter-annotator agreement was then computed
for these queries and was found to be 60%. However, when Excellent and Good
judgments were binned and Fair and Bad judgments were binned, the agreement
increased to 80%. This indicates the boundary between Fair and Bad is interpreted
differently among users. For this reason, we will primarily focus our attention on the
boundary between Excellent and Good and between Good and Fair. In addition, the
Excellent and Good matches are the most interesting for many practical applications
including query suggestion and sponsored search.

5.2.2 Evaluation
We are interested in understanding how our matching methods compare to each other
across various relevance criteria. Since we are interested in using standard
information retrieval metrics, such as precision and recall, we must binarize the
relevance judgments. For each experiment, we state the relevance criteria used.

Judgment Description Examples
(Query / Candidate)

Excellent
The candidate is semantically equivalent to the user

query.
atlanta ga /

atlanta georgia

Good
The candidate is related to (but not identical to) the

query intent and it is likely the user would be
interested in the candidate.

seattle mariners /
seattle baseball tickets

Fair
The candidate is related to the query intent, but in an
overly vague or specific manner that results in the
user having little, if any, interest in the candidate.

hyundia azera /
new york car show

Bad The candidate is unrelated to the query intent.
web visitor count /

coin counter

Table 3. Description of the relevance judgment scale.

We first evaluate the methods using precision-recall graphs using two different
relevance criteria. The results are given in Figure 2. For the case when Excellent
matches are considered relevant (left panel), we see that the Lexical and Stemming
methods outperform the probabilistic methods, especially at lower recall levels. This
is not surprising, since we expect lexical matches to easily find most of the Excellent
matches. In addition, we see that Stemming consistently outperforms the Lexical
method. However, the Backoff method dominates the other methods at all recall
levels. This results from backing off from stricter matches to less strict matches. For
example, for the query “atlanta ga”, the Lexical method will match “atlanta ga”, but
neither the Lexical nor the Stemming methods will match “atlanta georgia", which is
actually an Excellent match that is found using the DenseProb method.

When we relax the relevance criteria and consider both Excellent and Good
judgments to be relevant (right panel), we see an interesting shift in the graph. Here,
the probabilistic methods, SparseProb and DenseProb, outperform the Lexical and
Stemming methods at all recall levels, except very low levels. This suggests that the
Lexical and Stemming methods are good at finding Excellent matches, but that they
are worse at finding Good matches compared to the probabilistic methods. We
further test this hypothesis later in this section. However, once again, we see that the
Backoff method outperforms all of the methods at all recall levels.

One reason why the Backoff method is superior to the non-hybrid probabilistic
methods is the fact that the SparseProb and DenseProb methods often fail to return
exact matches high in the ranked list. This is caused by truncating the expanded
query distribution before computing the KL divergence. Since exact matches account
for a majority of the Excellent judgments, this causes the entire curve to be shifted
down. By forcing the exact and exact stems matches to occur first, we are ‘stacking
the deck’ and promoting matches that are likely to be high precision. This, combined
with the high recall of the DenseProb method, results in a superior matching method.

It is clear that exact matches are very likely to result in Excellent matches.
However, it is not clear how phrase and subset lexical matches compare to stemming
and probabilistic matches. To measure this, we compute the precision at k for the
Lexical and Backoff methods, where k is the number of results returned by the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re

ci
si

on

Lexical
Stemming
SparseProb
DenseProb
Backoff

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re

ci
si

o
n

Lexical
Stemming
SparseProb
DenseProb
Backoff

Fig. 2. Interpolated, 11-point precision-recall curves for the five matching methods described
in Section 4. On the left, candidates judged ‘Excellent’ are considered relevant. On the right,
candidates judged ‘Excellent’ or ‘Good’ are considered relevant.

Lexical method. This evaluation allows us to quantify the improvement achieved by
replacing the low precision phrase and subset matches with the high precision exact
stems matches and high recall DenseProb matches.

The results are presented in Table 4 for two relevance criteria. We stratify the
queries with respect to k, the number of Lexical method matches for the query, and
compute precision at depth k over these queries. We only include values of k
associated with 10 or more queries, since it misleading to compute and compare
means over smaller samples. As the results show, the Backoff method is superior in
every case. This suggests that the stemming and probabilistic matches (used in the
Backoff method) are considerably better at finding both Excellent and Good matches
compared to the phrase and subset matches (used in the Lexical method).

5.2.3 Effectiveness vs. Efficiency
One important practical aspect of the techniques developed is efficiency. Generating
lexical and stemming matches is very efficient. The probabilistic methods are slower,
but not unreasonable. Generating matches against our collection of 363,822
candidates using a modern single CPU machine takes 0.15 seconds per query using
the SparseProb method and 3 seconds per query using the DenseProb method.

The DenseProb method requires, a priori, an index of expanded representations for
both the candidates and the incoming queries. If we are asked to generate DenseProb
matches for a query that is not in our index, then we must generate this representation
on the fly. However, the SparseProb method does not exhibit this behavior and can
be used to efficiently generate matches for any incoming query.

Therefore, SparseProb is the the best choice in terms of speed and coverage.
However, if speed is not an issue, and high quality results are important, then
DenseProb is the better choice.

6 Conclusions and Future Work

In this paper we studied the problem of measuring the similarity between short
segments of text. We looked at various types of text representations, including
surface, stemmed, and expanded. We showed how web search results can be used to
form expanded representations of short text segments. We then described several

 R = {Excellent} R = {Excellent, Good}

k Queries Lexical Backoff Lexical Backoff

1 40 0.7500 0.8125 0.7500 0.8125

2 38 0.3235 0.4853 0.3382 0.5882

3 31 0.2688 0.4194 0.3978 0.5914

Table 3. Precision at k, where k is the number of matches returned using the Lexical method.
In this table, the evaluation set of queries was stratified according to k. Queries indicates the
the number of queries associated with each k . Only values of k associated with 10 or more
queries are shown.

similarity measures based on these representations, including lexical matching and
probabilistic measures based on language models estimated from unexpanded and
expanded representations. We then formally evaluated and compared these measures
in the context of a query-query similarity task over a large collection of popular web
search queries. Our results showed that lexical matching is good for finding
semantically identical matches and that the probabilistic methods are better at finding
interesting topically related matches. It was shown that a simple hybrid technique
that combines lexical, stemmed, and probabilistic matches results in far superior
performance than any method alone.

The probabilistic framework presented in this paper provides a general method for
measuring the similarity between two short segments of text. Although we chose to
use web search results as the basis of our expanded representation in this work, an
interesting direction of future work would be to use a variety of other sources of
external text, such as query reformulation logs, queries that result in similar click
patterns, and Wikipedia. It would also be worthwhile to evaluate these techniques in
an end-to-end application, such as a query-query reformulation system, in order to see
what impact they have in a more practical setting.

References

[1] Berger, A. and Lafferty, J. Information retrieval as statistical translation. In Proceedings of
SIGIR ’99, pages 222-229, 1999.

[2] Cucerzan, S. and Brill, E. Extracting semantically related queries by exploiting user session
information. Technical Report, Microsoft Research, 2005.

[3] Deerwester, S., Dumais, S., Landauer, T., Furnas, G. and Harshman, R. Indexing by latent
semantic analysis. In JASIST, 41(6), pages 391-407, 1990.

[4] Jones, R. Generating query substitutions. In Proceedings of WWW 2006, pages 387-396,
2006.

[5] Krovetz, R. Viewing morphology as an inference process. In Proceedings of SIGIR ’93,
pages 191-202, 1993.

[6] Lavrenko, V. and Croft, W.B. Relevance based language models. In Proceedings of
SIGIR ‘01, pages 120-127, 2001.

[7] Metzler, D., Bernstein, Y., Croft, W.B., Moffat, A., and Zobel, J. Similarity measures for
tracking information flow. In Proceedings of CIKM ‘05, pages 517-524, 2005.

[8] Murdock, V. and Croft, W.B. A Translation Model for Sentence Retrieval. In Proceedings
of HLT/EMNLP ‘05, pages 684-691, 2005.

[9] Porter, M. F. An algorithm for suffix stripping. Program, 14(3), pages 130-137, 1980.
[10] Rocchio, J. J. Relevance Feedback in Information Retrieval, pages 313-323. Prentice-

Hall, 1971.
[11] Sahami, M. and Heilman, T. A web-based kernel function for measuring the similarity of

short text snippets. In Proceedings of WWW 2006, pages 377-386, 2006.
[12] Strohman, T., Metzler, D., Turtle, H., Croft, W. B. Indri: A language model-based search

engine for complex queries. In Proceedings of the International Conference on Intelligence
Analysis, 2005.

[13] Zhai, C. and Lafferty, J. A study of smoothing methods for language models applied to ad
hoc information retrieval. In Proceedings of SIGIR ‘01, pages 334-342, 2001.

[14] Zhai, C. and Lafferty, J. Model-based feedback in the language modeling approach to
information retrieval. In Proceedings of CIKM ‘01, pages 403-410, 2001.

