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Abstract 

Voice search is the technology underlying many spoken 

dialog applications that enable users to access information 

using spoken queries.  This paper reviews voice search 

technology, and proposes a new and effective method for 

computing semantic confidence measures. It explores the use 

of maximum entropy classifiers as confidence models, and 

investigates a feature selection algorithm that leads to an 

effective subset of prominent features for the classifier. The 

experimental results on a directory assistance application 

show that the reduced feature set not only makes the model 

more effective in handling different recognition and search 

engine combinations, but also results in a very informative 

confidence measure that is closely correlated with the actual 

voice search accuracy. 

Index Terms: voice search, directory assistance, confidence 

measure, Tf-Idf vector space model, maximum entropy 

model. 

1. Introduction 

The confidence measure in a dialog system depicts the 

system’s level of uncertainty in its interpretation of a user’s 

utterance. It is an important component of a spoken dialog 

system – the dialog manager relies on it to determine an 

appropriate conversation strategy. Unlike confidence 

measures in automatic speech recognition (ASR) [1], the 

confidence measure of a dialog system needs to take into 

account the uncertainties from different components in the 

inference stages that lead to an interpretation of a user’s 

utterance. In [2] and [3], features from ASR and semantic 

analysis, either knowledge-based or data-driven, have been 

used in deriving a confidence measure. In [4], features from 

ASR and classification components are used to derive 

confidence measures for a call-routing dialog system. This 

paper addresses the problem of confidence measures in a new 

type of spoken dialog system, voice search applications. 

      Voice search is the technology underlying many spoken 

dialog applications that provide users with the information 

they request with a spoken query. For example, directory 

assistance is one of the most popular voice search 

applications, in which users issue a spoken query to an 

automated system which returns phone number and address 

information for a business or an individual.  

     The characteristics of voice search pose new challenges to 

spoken dialog technology. A voice search application differs 

from ATIS [5] style systems. It does not require detailed 

semantic analysis to obtain the semantic frame and its slots 

from an utterance, as in [2] and [3]. It differs from call-

routing types of applications in the sense that its inventory of 

―routing destinations‖ is enormous, sometimes containing 

hundreds of thousands entries. The available data will seldom 

be sufficient to train a statistical model like a Maximum 

Entropy (ME) classifier or boosting algorithms. For ASR, the 

vocabulary of a voice search system can be much bigger than 

a typical domain-specific application -- sometimes reaching 

millions of lexical entries. Voice search further needs to be 

robust to high ASR error rates (typically around 30~40%), 

and linguistic diversity in users’ queries – users may not know 

or would not say the exact name of an entry, e.g., users would 

typically say ―Sears Department Store‖ or ―Sears‖ rather than 

the technically correct name, ―Sears Roebuck & Company.‖ 

The remaining part of this section introduces the voice 

search technology that addresses these challenges. After that, 

the issues of confidence measures for voice search are 

discussed in section 2. Section 3 describes our experiments 

and results, and section 4 concludes the paper. 

1.1. Robust voice search technology 

A typical voice search system consists of several components 

– an automatic speech recognizer converts a user’s speech 

input into a query in text form; a search component looks for 

the entries in an inventory, e.g., businesses in yellow pages, 

that match the query; a disambiguation component reduces 

the size of the result set according to any additional 

information provided by a user; and a dialog manager that 

controls the flow of the conversation with a user. 

In [6], finite state transducers (FSTs) are used as language 

models (LMs) for ASR. The FSTs are constructed from the 

―signatures‖ of business listing names in a database. Since the 

output from the transducer is the same as the listing names in 

the database, the spoken language understanding (SLU) can 

be a simple database lookup to find the information requested 

by a user. However, this approach is not robust to linguistic 

diversity and ASR errors.  

In our current work, we propose an architecture in which 

we perform ASR using an n-gram language model trained 

with database listing names and smoothed with a large 

vocabulary back-off LM [7], and use the vector space model 

(VSM) [8] for SLU. The VSM has been widely used in 

information retrieval. It represents ASR results and listing 

names as Tf-Idf weighted vectors and finds the relevant 

listing (document) vector with the highest cosine similarity to 

an ASR (query) vector. The n-gram LM makes voice search 

robust to linguistic diversity, and the ―fuzzy‖ matching 

capability of VSM makes it robust to ASR errors and 

linguistic diversity. Our internal studies indicate that it 

significantly outperforms the FST-based approach. 

Listings in a database are often associated with category 

information, e.g., ―restaurant‖ or ―healthcare,‖ in a business 

database, or ―electronics‖ or ―DVDs‖ in a product database. 

To further improve search robustness, cosine similarity based 

on listing names is interpolated (smoothed) with a category 

similarity: sim( , ) cos( , ) (1 )cos( , ( )).Q L Q L Q C L     Here 

( )C L

 

is the category of L in a database. It is represented as a 

vector of the document that contains all the listing names of 

that category. In doing so, a query like ―Overlake hospital‖ is 

more likely to match the listing ―Overlake Medical Center‖ 

than the listing ―Overlake café,‖ because the former is of the 
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―healthcare‖ category and many listings in that category have 

―hospital‖ in their names. 

2. Binary Classification Models for 

Confidence Measure 

2.1. Confidence measure as a classification task 

Given a user’s spoken query Q  and the database listing L  

found by a voice search system as its answer, a confidence 

model has to decide how likely L  is the correct answer, 

based on some supporting statistics (features) collected from 

the process leading to the finding ofL . A confidence score of 

continuous value is often used by a dialog manager to adopt 

different response strategies at different confidence levels 

according to a designer’s specification. A binary statistical 

classifier assigns a probability to the CORRECT and 

INCORRECT decisions (classes). The probability of the 

CORRECT class can be used as the confidence score. 

2.2. Maximum entropy classification 

A Maximum Entropy (ME) classifier [9] is a discriminative 

model that generally yields better classification results than a 

generative model. It builds the conditional probability 

distribution  P | ,C Q L  from a set of features  F, where C is 

a random variable representing the classification destinations. 

In the case of confidence modeling, the range of the variable 

is {CORRECT, INCORRECT}.  and Q L  are random variables 

representing the spoken query and the database listing, 

respectively. A feature in  F  is a function of C ,  and Q L . 

The classifier picks a distribution  P | ,C Q L  to maximize 

the conditional entropy  | ,H C Q L  from a family of 

distributions, with the constraint that the expected count of a 

feature predicted by the conditional distribution equals to the 

empirical count of the feature observed in the training data:  
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where P  stands for empirical distributions over a training set.  

      It has been proven that the maximum entropy distributions 

that satisfy Eq. 1 have the following exponential (log-linear) 

form [9]: 
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 is a normalization 

constant, and il ’s are the parameters of the model. They are 

also known as the weights of feature if , which can be 

optimized using training data. For model training, we applied 

the stochastic gradient descent algorithm [10].  

2.3. Features 

Features are extracted from the ASR, SLU (search) and dialog 

manger components for the ME classification model. Below 

is a summary of the candidate features that have been 

considered: 

2.3.1. ASR features 

We included ASR confidence and ASR semantic confidence 

in the feature set. The former is the confidence measure from 

the ASR on the entire utterance, and the latter measure the 

confidence of the semantic content (associated with the 

semantic tags in W3C standardized SRGS grammar [11].) To 

make the confidence model applicable to voice search 

systems with different ASR engines, we chose to not include 

those features that are not broadly available in commercial 

recognizers, such as lattice density used in the referenced 

papers. To a certain degree, those features have already been 

encapsulated in the ASR confidence measures. 

2.3.2. Search features 

Given a query Q  and a hypothesized listing L , i.e., the 

listing with the highest category smoothed vector similarity 

with Q , the search related features include the Tf-Idf 

weighted vector similarity between Q  and L , with or 

without category smoothing (henceforth Tf-Idf score 

(Category) and Tf-Idf score (No Category)); the gap between 

the unsmoothed similarity score of L  and the highest 

unsmoothed vector similarity (Tf-Idf gap), which might be 

greater than 0 if the highest unsmoothed score is registered 

with a listing other than L ; the ratio between the maximum 

Idf value among the words existing in both Q  and L  and the 

maximum Idf value among all the words in L
(Covered/Uncovered Idf ratio); and the number of matching 

characters in Q  and L , normalized by the query and listing 

lengths: 2 /M Q L . (Normalized character matches.) Here

M  can be obtained with dynamic programming. 

2.3.3. Dialog manager features 

The dialog manager features include dialog turn, previous 

turn occurrence, and city match. The first is an integer that 

represents the dialog turn at which a spoken query was issued. 

The second is a binary variable that is activated if the listing 

returned by the search component has been hypothesized and 

presented to the user in a previous dialog turn and rejected by 

the user. The third is an application specific feature — it is 

activated in a directory assistance system if the city of the 

hypothesized business listing matches the city specified by the 

user at the beginning of a dialog. 

2.3.4. Combined features 

Combined features attempt to model the dependency among 

features across different components in voice search. They 

include the ASR confidence on the individual word that also 

exists in L  and has the highest Idf value, i.e. the ASR 

confidence of the word that contributes the most to the search 

result (Confidence of max. Idf word). Another combined 

feature is the joint of ASR sentence confidence and the 

smoothed Tf-Idf score, whose value set is the Cartesian 

product of the value sets of the two features. 

 

Many features described above have continuous values (e.g., 

ASR confidence, Tf-Idf score, etc). While the ME classifier, a 

log-linear model, can take continuous features, it assumes 

linear relation between feature values and the class boundary, 

which seldom holds in this case.  Figure 1 plots the 

percentage of CORRECT samples as a function of feature 

values for 4 different continuous features and shows 

nonlinearity for all the features. Therefore, instead of using 

continuous features, we quantize the features into 20 evenly 

distributed discrete buckets, and each bucket is represented by 



a binary random variable that has value 1 if a continuous 

feature falls into the bucket.  

 

Figure 1. End-to-end accuracy vs. feature values in a 

directory assistance system. Top left: ASR confidence feature. 

Top right: Tf-Idf score feature. Bottom left: Tf-Idf gap feature. 

Bottom right: normalized character match feature. 

3. Experiments 

3.1. Data 

A pilot directory assistance system has been deployed to a 

user group for data collection. The system logs the relevant 

information necessary to extract the features for each pair of 

utterance Q  and the hypothesized listing L . The training and 

testing of the ME classifier requires an assignment of 

CORRECT or INCORRECT class label to each pair. The labels 

were automatically assigned according to the users’ response 

to the following confirmation prompt (e.g., ―You are looking 

for the number for Macy’s, is it correct?‖). The users’ 

responses to the confirmation prompts were manually 

corrected for ASR errors. We partitioned the data into training 

(~700 pairs), development (~300 pairs) and test (~300 pairs) 

sets. The database that the system searches against contains 

~18 million business entries. 

3.2. Classification results 

Table 1 shows the error rate of the ME classifier on the 

binary classification task. The end-to-end error rate on the 

directory assistance task is around 36%. So the baseline 

(chance) error rate on classification is 36% if the system 

always makes a guess of CORRECT class. In contrast, the ME 

classifier that uses all the features cut the errors by 50%. 

Table 1. Binary classification error rates on the development 

and test set. 

3.3. Experiments on feature selection 

In the second experiment, we investigated the importance of 

different features on the classification accuracy, and selected 

a subset of features for our final confidence model. With 

fewer features, the model has fewer parameters and is less 

subject to over-fitting. In addition, the model is more practical 

because it poses fewer requirements on the voice search 

components to report different statistics. For that purpose, we 

studied the impact on the classification error rate by removing 

individual features from the feature set. Table 3 shows the 

development set error rates after the removal of individual 

features from the feature set, as well as the significance of the 

change inflicted by the removal of the feature (the null 

hypothesis probability in a sign test). According to it, the 

removal of Tf-Idf score without category smoothing is least 

significant (with null hypothesis probability 1.0). So this 

feature is removed to form an updated baseline and the 

experiment is repeated, with the new results listed in Table 3. 

From Table 3, we selected a subset of features whose 

removal inflicts a big performance change, in the sense that 

the null hypothesis probability is smaller than 0.5. The subset 

has 5 features, namely the ASR semantic confidence score, 

the ASR confidence on the word with the highest Idf value in 

the match against a listing, the category smoothed Tf-Idf 

score, the normalized character matches, and the Tf-Idf gap. 

Table 4 compares the error rate with and without feature 

selection on the test set, which shows no significant 

difference. Because there are no application dependent 

features in the subset, the confidence model can be applied to 

different voice search applications. 

Table 2. The development set error rate and significance of 

change (probability of null hypothesis) after the removal of 

individual features. 

Features Err. Rate P(null) 

All (baseline) 18.46% 

 All-City match 20.47% 0.11 

All-Dialog turn 20.47% 0.13 

All-Normalized Character Matches 19.80% 0.26 

All-ASR confidence 21.48% 0.02 

All-ASR semantic confidence 20.81% 0.06 

All-Joint ASR confidence/Tf-Idf score 20.81% 0.07 

All-Covered/uncovered Idf ratio 19.80% 0.21 

All-Confidence of max Idf word 19.13% 0.40 

All-Prev turn occurrence 20.47% 0.11 

All-Tf-Idf gap 19.80% 0.21 

All-Tf-Idf score (Category) 20.81% 0.13 

All-Tf-Idf score (No category) 18.46% 1.00 

Table 3. The development set error rate and significance of 

change (probability of null hypothesis) after the removal of 

individual features from the updated baseline feature set. 

Features Err. Rate P(null) 

Base = All - Tf-Idf score (No Category) 18.46%   

Base-City match 18.46% 1.00 

Base-Dialog turn 17.79% 0.86 

Base-Normalized character matches 19.13% 0.41 

Base-ASR confidence 18.79% 0.50 

Base-ASR semantic confidence 20.81% 0.03 

Base-Joint ASR confidence/Tf-Idf  score  18.46% 0.64 

Base-Covered/uncovered Idf ratio 18.46% 0.75 

Base-Confidence on max Idf word 19.46% 0.25 

Base-Prev turn occurrence 18.46% 1.00 

Base-Tf-Idf gap  19.80% 0.11 

Base-Tf-Idf score (Category) 19.13% 0.43 

Table 4. Classification error rate with the selected features.  

3.4. Confidence measure experimental results 

Binary classification is not the actual objective of confidence 

measures. A dialog manager often sets the thresholds for high, 

medium and low confidences, obtains a numeric score from 
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the confidence model and bases its decision upon what 

confidence interval the score falls into. We used the 

conditional probability P(CORRECT | Q, L) returned by the 

classifier as the confidence score. 

Figure 2 depicts the ROC curves for the acceptance rate 

of the positive data (i.e., voice search returns correct results) 

and the rejection rate of the negative data in relation to the 

acceptance threshold – a test case is accepted as CORRECT 

only when its confidence score is higher than the threshold. 

For example, at the intersection of the two curves (threshold ≈ 

0.6), the confidence measure accepts 80% of the correct 

search results and rejects 80% of incorrect search results. 

Based on this figure, dialog manager designers can select 

different thresholds according to their application scenarios. 

 

 
Figure 2. ROC curves for the acceptance of the CORRECT test 

data and the rejection of the INCORRECT test data. The X-

axis represents the acceptance threshold, and the Y-axis 

represents the recall of correct acceptances/rejections. 

 
Figure 3. Distribution of test data in different confidence 

intervals.  

  
Figure 4. Correlation between the confidence measure and 

the actual voice search accuracy. X-axis represents the 

confidence intervals; Y-axis represents the test set accuracy. 

        A confidence measure is not very informative if it 

reports a borderline confidence (around 0.5) most of the time.  

Figure 3 shows that the proposed confidence model assigns 

either very high (>0.8) or very low (< 0.2) confidence scores 

to most of the test data.  

       Finally, a confidence measure should reflect the true end-

to-end accuracy – the higher the score it assigns to a test case, 

the more likely the test case get the correct search result. 

Figure 4 illustrates the accuracy of test data at different 

confidence intervals, which shows a strong correlation 

between the confidence measure and the actual voice search 

accuracy. 

4. Conclusions 

Voice search applications bear their own characteristics that 

require different technological solutions. A viable solution 

combines robust ASR and a robust search algorithm. The 

maximum entropy classifier has been successfully applied to 

derive confidence measure in the framework of voice search. 

We have shown that feature selection can reduce the number 

of features without sacrificing accuracy, and hence made the 

confidence measure more effective in handling different 

recognition and search engines. The experimental results 

show that the confidence measure is very informative and has 

a good correlation with the actual end-to-end voice search 

accuracy.  
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