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Abstract. We present a study exploring the promise of deuetp computa-

tional systems to support the discovery and exeoudf opportunistic activities
in mobile settings. We introduce the challengenohbile opportunistic plan-
ning, describe a prototype namktbbile Commodities, and focus on the con-
struction and use of probabilistic user modelsferithe cost of time required
to execute opportunistic plans.

1 Introduction

We believe that computing systems may one day geogreat value to people by
continuing to identify feasible plans for achievisgnding goals in an opportunistic
manner—in stream with ongoing activities. We shedplore here the promise of
developing methods that can make people aware pbramities and means for
achieving goals in mobile settings. The fundameiteh is straightforward: During
the progression of a planned trip, we considerteosstanding goals and precondi-
tions specified by a mobile traveler, perform arcskeaver a space of feasible way-
points for satisfying the goals, and seek to idegrmtnd alert the traveler about options
for achieving one or more standing goals at minioaes.

We present a prototype system, narivghile Commodities (MC), which performs
a search over the locations of shops, points efést, and services, and then deliber-
ates about the time and distance added to trigsinblude waypoints through these
locations. MC attempts to minimize the cost of adgg a product, service, or experi-
ence, including a consideration of the cost of tirequired to include the goal-
satisfying waypoint. The MC prototype consists lafee programs, one running as a
client application on Windows Mobile Pocket PC thatesses GPS information via a
Bluetooth puck, the second program running as &tdgscompanion for assessing
preferences, configuring and inspecting policie® the third, a server-based system
that engages in two-way communication with mobé#gides via GPRS.

We review the challenge of mobile opportunisticnpliag, and discuss how dis-
tinct subproblems are addressed by different compisnof MC. We shall focus on
the key problem of finding the time to carry ouplanned activities opportunistically,
when such activities are overlayed on the execubbexisting plans. We present
details on the construction and evaluation of pbiltsic user models to infer the
context-sensitive cost of allocating time to sgtief additional goals, and describe
how the models are used in MC to guide the seancbdportunistic plans.



2 Opportunistic Planning Challenge

Performing background analyses to identify feasigportunistic plans requires (1) a
means for encoding background goals, (2) a metbodédnerating feasible plans for
achieving such goals, and (3) a method for evalgatie economic value of alternate
plans. A critical aspect of the economic valueopportunistic plans is the context-
sensitive cost of the additional time required #bisfy secondary goals. We shall
focus on predictive user modeling of the cost wietin Section 3.

Figure 1 displays the main components of mobilecoymistic planning that reflect
the core competencies implemented in the MC prptaty The destination analysis
component ascertains the intended destinationusiain motion. Methods for iden-
tifying a driver's destination includes (1) acqogithe destination from a user, (2)
using user-specified rules that identifies a desitim from a set of previously encoded
set destinations classified by time of day and afayeek, (3) use of a location linked
to a forthcoming meeting, drawn from an online ndkr, and (4) the inference of a
probability distribution over forthcoming destirati based on a driver’s partial trajec-
tory. We have explored the use of all four methodglC. Space limitations limit our
review of probabilistic models of destinations hese refer readers to detailed dis-
cussion in [5]. The current implementation of M®was users to specify destinations
directly, to specify destinations as a functiorthad time of day and day of week, or to
use the locations of forthcoming meetings drawmfiam electronic calendar.
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Fig. 1. Flow of analysis for mobile opportunistic planningplemented within the Mobile
Commodities (MC) prototype.

A second component of MC contains a representatioatanding, background
goals asserted by users and the preconditionspleaify when goals should be acti-
vated. We formulated a sample ontology of proslactd services and we seeded the
system with several classes of products, servaed,social goals. Products and ser-



vices encoded in the system include such goalbtaéning groceries, gasoline, meals,
haircuts, and oil changes. Users can specify Bpeetailers or service providers by
name. Social goals allow for the specificatioraafations of friends and family. For
each goal, we allow users to specify preconditionsa form that defines when the
goal should be activated.

Users can express policies in terms of recurreati®i¢o acquire items that require
cyclic replenishment or satiation. For example,tfar goal of refueling their vehicles,
users can specify a threshold amount of gasolinairéng in their car’s fuel tank.
When the amount of gas remaining drops below thestiold level, a background
search for opportunities to seek gasoline is trigde The frame-based specification
of a policy for purchasing gasoline allows usersnidude the capacity of their fuel
tank, the average miles per gallon, and the fuehieing. Figure 2a shows a view of
the goals and conditions specification tool for tf@al of refueling. For recurrent
goals such as replenishing groceries or getting i, users provide a target duration
between each purchase or receipt of service. sGoal preferences are specified via
the MC desktop program, which synchronizes witleevesr that communicates with
the MC mobile application.

A geospatial search component identifies locatitivag can satisfy active goals.
MC uses the Microsoft MapPoint database to idembifations of shops and services.
This subsystem takes the user’s current locati@htarget destination, computes an
efficient route to the destination, then identif@@ndidate locations that can satisfy the
active goals should they be added as waypointhenvay to the destination. For
enhancing the tractability of MC’s search, we lithie number of locations of oppor-
tunistic waypoints to those within a maximal totech distance of locations from
points on the expected path that a user will take.

We will highlight the operation of MC with the exata of the system computing
recommendations for opportunistic gasoline purchatbe MC server has access to
all of the gas stations in the Seattle area viaMbpPoint database. The system also
has access to a gasoline pricing service beinglaj@»@ at our organization. The
service provides prices updated daily for all staiin major cities. Figure 2b shows
the locations of gas stations in the Greater Seetlion. Figure 2c shows the overlay
of prices for different qualities of fuel.

The planning component attempts to satisfy actvalggand to minimize the cost
of diverging from the efficient path to the primadgstination. The planner also per-
forms an economic analysis, seeking to minimizeetkgected cost of satisfying active
goals. The planner first examines the efficierthpe the user to their primary desti-
nation and considers active goals and their assatieandidate locations. It then
performs an exhaustive search over alternate rab#&tsnclude locations that satisfy
goals as waypoints on the path to the destinatitor.each path, it caches the path, the
goals satisfied, the available prices of the ddsitems or services available at the
waypoints, a set of directions that routes theadrivom the current location through
the identified locations, and the total number dlemand time required for each
modified route. The economic analysis subsystemuiges a context-sensitiast of
time for the user, and seeks to minimize the total tm#e user of diverting off of the
most efficient path to the primary destination, dzhen the additional costs of time
and of transportation.
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Fig. 2. a: Form within the desktop MC client that allowsets to specify goals and precondi-
tions, focused here on the gasoline purchase erarmpliew of filling stations for the Seattle
area,; c: overlay of current prices for fuel by tyffduel at each location

3 Considering Cost of Divergence

It is not always possible to take time out, eveorify a short time, to add a new desti-
nation to a trip—especially in opportunistic siioas, where time may not have been
allocated ahead of time for making stops. Inform&drviews with potential users of
MC highlighted the need for opportunistic planngrgepresent and reason in a so-
phisticated manner about the cost of time and atditional travel costs, considering
the preferences of the users they support. Weupdrthe challenge of endowing the
MC with a sense for the cost of time in differeantexts.

A user’s time is indeed a precious and limitesource—in many cases the most
precious resource handled by the opportunisticran Reasoning about the cost of
time is especially important in a system desigredtrade off increasing amounts of
distance and time on a trip for accessing incrghsibetter “deals.” We focused on
methods that could allow MC to consider the cosarmiving at a primary destination
later than an initially intended target arrival time.

In the general case, the planner needs to considkiple properties of a destina-
tion and the overall context to assign a cost déydassociated with an unplanned
stop. We explored the use of the Microsoft Outloalendar as a means for represent-
ing and accessing properties of destinations. e the use of an online calendar as
a transitional representation for context and fwthing events; we foresee future
versions of MC relying on richer representationpatterns of daily activity. Beyond
using the calendar in a standard way to represasihéss appointments and special
social events, MC users set up recurrent appoirtsrtdat capture daily patterns of
activity, such as target times for arriving at warid for returning home. We gave the
MC desktop application the ability to access suallydife events and more tradi-
tional appointments via an interface to MicrosoftEange.

3.1 Assessment of Costsof Time

The computation of the cost of time in MC nakese of several assessments that
are used in conjunction with probabilistic infererto generate the expected costs of
time under uncertainty about context. We found tha&t assessments and training



required approximately a half-hour session of wagkwith forms generated by the
MC desktop client. Users first indicate on a seglag-by twenty-four hour spread-
sheet-style palette, swaths of time associated avibbv, medium, or high cost of arriv-
ing at a destination after a target arrival tinhésers then directly assess a cost of time
in dollars per hour for each of the three statés. we shall see, these background
costs are considered by MC when no informatioroigeh on a user’s calendar. Users
also assess costs of delay for contexts where endal is showing a forthcoming
appointment. Users are asked to also consider ajppents as being associated with
low, medium, and high costs contexts, and assegsikar cost of delayed arrival for
each of the contexts. Users can optionally enterdy penalty, a dollar value repre-
senting what users would be willing to pay to avioding late at all. After assessment
of background and meeting-centric time costs, th@ désktop application uploads a
database of costs by time to the MC server. Thess@pplication uses these costs in
doing cost analysis during opportunistic planning.

3.2 Learning Predictive M odelsfor the Cost of Time

MC includes a subsystem for constructing probatiiligser models that are used at
run time to infer context-sensitive costs of delayse user models in MC infer (1) the

probability that a meeting is associated with a,lovedium, or high cost context, and
(2) the probability that a target time drawn fronfoathcoming appointment on the

user’'s calendar is relevant. The first step indiog the predictive models is that ex-
traction of a time-sorted list of appointments fraraser’s online calendar.

A form displaying the list is composed for utsgging. The form contains two sets
of radio selection buttons, adjacent to each app@int item. Users indicate for each
meeting whether it is appropriate to consider thet $ime listed in the appointment as
a relevant deadline, and, if so, whether the mgethould be associated with a high,
medium, or low cost of being late. Given a datalEsagged appointments, the sys-
tem prepares a training set composed of appoinsreemiotated with tags from the
users, and also a set of properties associatedeaith Outlook appointment. The
properties include the day and time of the appa@ntmmmeeting duration, strings from
the subject and location fields, information abiinet organizer, the number and nature
of the invitees, the response status of the usemtonline invitation, whether the
meeting is a recurrent meeting or not, and whetietime was marked as busy versus
free on the user’s calendar. We also include ofe of the user, whether the user was
the organizer of the meeting versus listed as aired| or optional attendee by another
organizer. We employ the Microsoft Active Diregta@ervice to recognize and anno-
tate organizational relationships among the us$er,drganizer, and the other atten-
dees. As an example, the system recognizes whestbesrganizer and attendees are
peers, managers, or direct reports. Finally, we médhether the attendees, organizer,
or location is “atypical” given the other meetinigsthe users data base; that is, we
identify whether they are present in less thaneagiined small fraction of all meet-
ings in the training set.

Given the library of cases, the desktop MC apghecaemploys Bayesian structure
learning to build Bayesian networks that predidevancies and cost-of-delay func-
tions. The system constructs models by perfornfiagristic search over feasible
probabilistic dependency models, guided agesian score to rank candidate mod-



els. The Bayesian structure search method we ngogs both global and local
search [2,3]. For each variable, the method creattee containing a multinomial
distribution at each leaf, exploiting the localsture search methods.
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Fig. 3. Bayesian model learned from library of taggedaapiments. The model predicts rele-
vancy of target times and the cost function assediwith arrival after the specified start time.

A sample predictive model for the cost of time damged from training data from a

subject testing the MC system is displayed in FégBr The subject tagged appoint-
ments from February 21, 2005 to March 4, 2006,s& tahich took the subject ap-

proximately 45 minutes. We performed a holdoutssrealidation, using 85 percent

of the case library for training the model, and tbmaining 15 percent of data to test
the predictive accuracy of the models on the remg@id5 percent of holdout data.

Target variables for the association of a deadkite the start of an appointment and
the cost of being delayed are highlighted as ardedes. Table 1 displays the accu-
racies of the inferences about the likelihood didiimes being associated with calen-
dar items and the probability distribution over theeting being in the class of low,

medium, or high cost of arriving after the targeival time. The table displays sig-

nificant predictive lifts over the marginal modéds both of these inferences, showing
the value of using the model over background siegis

Table 1. Classification accuracy of predictive model whestéd on a holdout set. The accu-
racy of the respective marginal models are listeuelth the accuracies of the learned models

Relevant deadline Cost of delayed arrival
Learned model 0.90 0.88
Marginal model 0.52 0.44

3.3 Integrating Cost of Timeinto Opportunistic Planning

Adding waypoints to a pre-existing trip in an opjooistic manner adds time and fuel
costs to an overall trip. Reasoning about the bptbns for addressing background



goals requires computing the additional costs &mheplan option. In the simple, non-
probabilistic case, we consider the additional tene miles incurred with the diver-
gence off the most efficient path for each oppdstimplan. We refer to this cost as
the cost of divergence (CD) associated with eacdidate plan.

MC makes use of the inferences from the ptegianodel to generate the cost of
diverging from the ideal route to the destinatidihe analysis considers (1) the as-
sessed background default cost of time in diffesgtoations, (2) inferences from the
predictive model, based on the properties of ahfanning appointment, about the
probability distribution over the cost of arrivirag progressively later times after a
target start time, and (3) the likelihood that tamget start time of an active appoint-
ment is relevant. We use these quantities to coenfngtexpected cost of divergence
(ECD) associated with any amount of time and/otatiice added to the trip by consid-
ering the costs associated with the deadline rateaad not relevant situations, and
combining the two situations together weighted iy likelihood of relevance and its
complement.

We focus now on details of how the predictivedel is used in MC to compute the
cost of divergence. We shall uSand S to refer to background, non-appointment
situations and special appointment contexts, resjede We useAd to refer to the
additional miles associated with the plan &tdo refer to the additional time of the
trip due to the inclusion of one or more opporttioisvaypoints to achieve standing
goals, in addition to the estimate of the time megflito execute the goal once at the
appropriate location. We decompaseinto the time until a target time", and the
time, t%, that falls after the target start time. For ¢hse where the time for executing
the modified travel plan leads to arrival after tagget time, the cost is the sum of the
background time cost incurred before the deadi@(&’,t°), the penalty for arriving
after the target timeC’(S’, t*>0), and cost of arriving at the primary destinatat
increasingly later times after the target time passedC(S't%). MC also considers
the additional transportation costs (fuel and waad tear on the vehicleg, associ-
ated with the divergence from the efficient pattht® primary destination. This trans-
portation costC'(Ad) is a function of the difference in distance inesibetween the
opportunistic plan and the primary trifgl, for each plang? refers to the cost context
(low, medium, and high) for an active target time.

We usep(AlE) to refer to the probability that a deadline fhe tappointmenA is
relevant conditioned on evidenEg a set of properties of a forthcoming appointment
S'. The probability that a deadline is not releviargimply the complement, P{A|E).
For the case where the deadline is not relevaatcadist of time is just the background
default cost based on the default context or sina€C(S’,At). For the case where the
deadline is active, we have the background time mwsirred before the deadline,
C(S, 1), the penalty for being tardg’(S’, t%>0), and the growing cost of lateness,
capturing the increasing cost with arriving late flee appointmentC(S’, t%). MC is
uncertain as to the cost functions associated avitliing after the target times associ-
ated with specific appointments, so the system edegpan expectation by summing
over the probability distribution of time cost fuimns inferred by the predictive
model. Putting these terms together, weightinginiflaences of the appointment and
non-appointment scenarios by the appropriate hkelis, and adding the transporta-
tion cost, we compute the ECD for each alternat¢eras,



ECD =C'(Ad)
+(L- p(A| E))C(S°, At)
+ p(A| E)(Z p(S* | E)(C(S*,t*) +CP(S,t%)) +C(S",t°))

wherep(S?E) is the probability that each appointment costtexin(low, medium, and
high) is active. The costs of divergence describeithis section are used to identify
the best opportunistic plans in the MC prototype.

4 Operation of MC

When MC users get into their automobiles, the Mobile client recognizes a Blue-
tooth puck in the car. A signal is sent from thebite device to the MC server, identi-
fying the server that the user is beginning a tij@t us consider the example of op-
portunistically purchasing gasoline. When MC bedimsvork to satisfy the goal of
identifying a best location to purchase gasolihe, gystem executes a cycle of analy-
sis on the server every 10 minutes. In each cybke system identifies the driver’s
location. When planning is active, the server congmt accesses the user's assess-
ments of the cost of time for the default periodtiofe and for appointments. The
system also accesses a database of the user'sdimitiy appointments and examines
the appointment properties. It then computes ¢t af time with Equation 1.

For each cycle of opportunistic planning, Heever application first computes an
ideal path from the user’s current location to @élssumed destination, using the Map-
Point route planner. As an example, when the gasgloal is active, the application
identifies all filling stations within the great&eattle region and loads current gas
prices. The system exhaustively searches throughnative routes from the current
location to the destination, going through eachdatate waypoint.

For each candidate route and waypoint, a divergenogles and time for the new
route, by taking the difference in miles and indiassociated with the new trip and
the original trip, as well as the cost assumedtiertime required to stop and fill up.
An overall dollar value cost of divergence is comepufor each candidate trip. This
cost is added to the cost of the intended purcltaseputed as the price of the gas and
the number of gallons required to fill the drivetasik. The system then prioritizes the
alternate routes from low net cost to higher casis sends the top five candidates to
the MC mobile client, along with summary informatiabout each candidate, includ-
ing turn-by-turn directions for each. The direcsadivert the user off of the current
path through the way point and then back to thal filestination. Drivers can config-
ure an alerting policy to limit the number of nitiftions during each trip.

@



Cost analtjsfs
Time cost: $ 55/hr

$37.63
$0.39 $5.74
2.58 extra miles 6.27 extra minutes $2.24 1 gallon $2.60 / gallon
A Milcs A Timc Froduct Net cost
Time Mile Instruction For Toward x|
5:05 AM 21 Road name changes to Montlake Bivd E 32yds ~
9:05 AM 21 Take Ramp {LEFT) onto SR-520 5.9 mi WA-520 / Bellevue
9:13 AM 8.1 Turn RIGHT onto Ramp 0.2m  1-405/1-90 / Everett / Renton
3:13AM 8.2 Take Ramp (LEFT} onto 1-405 79m  1-405[Everett 3
9:23 AM 16.1 Atexit 22, turn RIGHT onto Ramp 0.2m  ME 160thSt
9:24 AM 16.3 Turn RIGHT (North-East) onto Juarita Woodinville Way NE 38 yds
9:24 AM 16.4 lz‘ At 47.7438 -122.1849, return West on Juanita Woodinville Way NE 98 yds v
Fig. 4. Top: Portion of MC'’s deliberation about the bestypoint to stop for fuel. Three alter-

nate plans of the larger search space that satisfigoal are displayed. Bottom: Economic
summary of the cost of diverging from the routéhte primary destination for best plan.

C7|I MC - Directions. c‘?"
On On vour way: Gas
Directions 801)9 164th Ave NE
| m 164ﬂ. Ave NE 17/gallon - regular
lon - regular
56 A 527 e Directions
. [ElBack  Next[H] Turn right onto NE 51st St
Destination Take Ramp onto SR-520
152 Waverly Way Right onto Ramp WA-202
- Turn left onto SR-202
Active Goals Right onto 164th Ave NE
AokE s Arrive at Arco
(Less than 1/8th tank)
Tok | Mem i L=y

Fig. 5. Mobile views of a notification about a best catade for opportunistic fueling.

To illustrate how MC operates, we present screensi@ted by a visualization util-
ity that we created to step through the resultsiGfs searches. The system displays
the original route, as well as candidate routeslacations for purchasing gas ordered
from lowest cost to highest cost candidates. Dipeportion of Figure 4 shows a se-
guence of views displayed by the system. Each gieows a candidate opportunistic
plan. A summary of the divergence analysis, iniclgdhe net cost, as well as break-
outs for the cost of time and for the purchaselisplayed for each candidate plan. A



summary analysis is displayed in the lower portérigure 4. Views rendered on a
prototype MC mobile client of a notification abcan opportunity, and of the direc-
tions for the path including the recommended waypaire displayed in Figure 5.

5 Reéated Work

Several prior studies are relevant to the work dd. MPattersonet al. [6] examined
an application that identifies when cognitively qumomised people have likely
strayed off of expected paths, and that works terthem back to a primary destina-
tion. Bohnenbergest al. explored the recommendation of paths through amhg
mall based on representations of shoppers’ inteff@$t In other related work, Hor-
vitz, et al. [4] described the use of machine learning frongéaycase libraries of
Outlook appointments to construct probabilistic misdo predict whether users will
attend meetings or not and models of the costtefrimption for those meetings.

6 Summary and Directions

The Mobile Commodities project has focused on idi@ny challenges and opportu-

nities for building opportunistic planning systetthat work continuously to address
goals encoded by people. We presented methodsiadels used in MC, a prototype

that highlights key components and challenges mithile opportunistic planning. On

future directions, we are pursuing four extensidta$:bundling of opportunities and

simultaneous search over multiple goals, couplgt amn exploration of more sophis-

ticated planning techniques to address the condniadthallenges; (2) integration of

destination prediction services and the generadimadf the methods by considering

probability distributions over drivers’ destinat&n(3) moving to a more comprehen-
sive cost-benefit analysis of opportunities, inahgdthe development of the ability to

learn over time to recognize special offers andraiously low prices, and (4) devel-

opment of pricing systems and mechanisms that all@tailers to post standing and
time-limited offers to people in a manner sensitogreferences and context, poten-
tially negotiating directly with peoples’ opportstic planners. We hope that our ini-
tial efforts will stimulate the user modeling commity to focus more attention on

challenges with mobile opportunistic planning. ¥ée great opportunities ahead.
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