
Abstract 
Technical developments and trends are providing a 
fertile substrate for creating and integrating ma-
chine learning and reasoning into multiple applica-
tions and services.  I will review several illustrative 
research efforts on our team, and focus on chal-
lenges, opportunities, and directions with the 
streaming of machine intelligence into daily life. 

1 Reflections on Trends and Directions 
Over the last decade, technical and infrastructural develop-
ments have come together to create a nurturing environment 
for developing and fielding applications of machine learning 
and reasoning—and for harnessing automated intelligence 
to provide value to people in the course of their daily lives. 
These developments include (1) technical advancements in 
machine learning and reasoning, (2) the growth in CPU and 
memory capabilities within commonly available devices and 
platforms, (3) the connectivity, content, and services pro-
vided by the evolving Web, and (4) the increasing availabil-
ity of data resources, including corpora of behavioral data 
collected via inexpensive sensors, and through ongoing in-
teraction with software and services. 

1.1 Panoply of Applications and Services 
Opportunities for integrating applications of machine intel-
ligence into the daily lives of people are growing with the 
increasing popularity of computing systems, the widening 
diversity of web services, the growing popularity of portable 
devices that contain general-purpose operating systems, and 
ongoing innovations in human-computer interaction—
including the increasing prowess of speech recognition, 
handwriting, and sketch-understanding interfaces.   
 
Various examples of the integration of automated learning 
and reasoning into daily life have been appearing as implicit 
and explicit extensions to traditional systems and services, 
and also in prototypes and systems that provide qualitatively 
new kinds of experiences.  I will review several projects and 
efforts undertaken by our team that highlight directions and 
approaches to introducing potentially valuable machine 
learning and reasoning into the daily lives of people. 

 
An example of an implicit integration of ambient learning 
and reasoning is the effort by our team to create a probabil-
istic action prediction and prefetching subsystem that is em-
bedded deeply in the kernel of Microsoft’s Windows Vista 
operating system.  The predictive component, operating 
within a component in the Vista operating system called 
Superfetch, learns by watching sequences of application 
launches over time to predict a computer user’s application 
launches. These predictions, coupled with a utility model 
that captures preferences about the cost of waiting, are used 
in an ongoing optimization to prefetch unlaunched applica-
tions into memory ahead of their manual launching. The 
implicit service seeks to minimize the average wait for ap-
plications to be ready to use after launching actions.   
 
Moving from the depths of operating system kernels to the 
infrastructure of a city, there is great opportunity for collect-
ing data and learning predictive models from constellations 
of sensors embedded throughout a large-scale region. The 
JamBayes traffic forecasting service [Horvitz et al., 2005] 
serves as an example of an explicit extension of ambient 
intelligence to familiar views of digital maps that display the 
flow of traffic in urban areas. The JamBayes client, operat-
ing on desktop systems and portable devices, accesses the 
JamBayes predictive traffic service that employs machine 
learning and reasoning about the context-sensitive flow of 
traffic. The system overlays predictions about future traffic 
conditions on a digital traffic flow map.  The system com-
bines multiple variables that consider key contextual evi-
dence as well as the dynamics of flow across a greater urban 
area to predict when free-flowing traffic will likely become 
jammed and how long it will be until current jams melt 
away.  A descendant of JamBayes developed by our team 
named ClearFlow provides users with context-sensitive 
routing based on reasoning about the current and future 
flows on road segments within a regional traffic system. 
 
Beyond serving as an overlay of predictive services on traf-
fic flow maps, JamBayes also provides a qualitatively new 
functionality—surprise detection and surprise forecasting.  
We have been pursuing research on surprise forecasting, 
aimed at developing and fielding sensing and reasoning sys-
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tems that have the ability to detect and to alert users when 
current or future events will likely surprise them.  Such rea-
soning promises to provide significant value to people in the 
course of daily life as it explicitly considers the misalign-
ment between computational forecasts about the world and 
the inferred expectations of people with regards to important 
outcomes.  JamBayes’ surprise modeling considers a user’s 
context-sensitive expectations about current and future traf-
fic, and infers when situations that it is inferring would 
likely be interpreted as anomalous or “surprising” from the 
user’s perspective.  Users can configure the system to gen-
erate alerts when particular kinds of surprises occur, based 
on context.   In operation, the surprise modeling and analy-
sis is used to let people know when current or projected 
flows (both high and low) on routes that they have ex-
pressed interest in would likely surprise them.    
 
Let us now move to systems that learn and reason about a 
computer user’s activities and that can provide qualitatively 
new experiences for users.  In the Web Montage prototype 
[Anderson and Horvitz, 2002], data collected in the back-
ground about a user’s desktop activity is analyzed via ma-
chine learning, and predictive models are constructed that 
are used to generate personalized adaptive portals, pages 
that are composed dynamically by coalescing automated 
clippings from multiple web sources.  The system builds 
models of the cost of navigation and the value of content to 
triage information based on time of day and ongoing activi-
ties, including for example, the current and recent patterns 
of topics at focus of attention on the desktop. Content drawn 
in a selective manner from multiple sources is arranged and 
laid out via an optimization of expected value.   
 
Another example of overlaying intelligence to provide new 
kinds of experiences is the MemoryLens effort [Horvitz et 
al., 2004], which has been exploring the use of machine 
learning and reasoning to model aspects of human memory.  
The LifeBrowser prototype developed within the Memory-
Lens effort employs inferences about the memorability of 
events and items to provide new kinds of  browsing and 
searching experiences such as variable density timelines.  It 
also uses the inferences about landmarks to extend familiar 
search functionality by integrating a backbone of memora-
ble personal events and activities into the display of time-
sorted search results.   
 
Other examples of new functionalities and services leverage 
components that reason about peoples’ focus of attention 
and interruptability [Horvitz et al., 1999; Horvitz et al. 
2003b; Fogarty et al. 2005; Iqbal and Bailey, 2006], as well 
as about people’s current and future presence and availabil-
ities [Horvitz et al., 2002].  We have explored the use of 
these components in systems that can reason about both the 
urgency of incoming communications and the status of a 
user’s workload and focus of attention.  Such systems have 
the ability to weigh the cost of deferring communications 
with the cost of interrupting the user.  Examples of proto-
types constructed in this realm include the Priorities system 

[Horvitz et al., 1999], the larger cross-platform alerting sys-
tem named Notification Platform [Horvitz et al. 2003], and 
several of our Bestcom efforts.  Research in this realm high-
lights the potential for machine learning and reasoning to 
play a significant role with enhancing communications.   
 
The Notification Platform continues to build and triage in-
formation from multiple sources within a unified inbox, and 
reasons about the best devices and modalities to employ.  
The related Bestcom effort (for best-means communica-
tions) centers on assisting people to establish communica-
tions with one another.  Within Bestcom research, we have 
investigated the promise of systems with the ability to un-
derstand communication preferences, the goals of a com-
munication, current and future availabilities, and context.  
Prototypes explore how agents, working on behalf of a con-
tactor and contactee, can negotiate about the best time and 
type of communication to undertake, and then execute con-
nections.  In the general Bestcom methodology, a contactor 
requests a communication with a contactee (the contactor 
“Bestcoms” the contactee), and an optimization is executed 
based on identity, context, goals, connectivity, and devices 
available now and in the future.  Actions may range from a 
real-time voice call to a rescheduling of a voice or video-
conference for a later time.  Various prototypes have been 
created, including systems that perform smart routing of 
calls based on context, executing on a portable device (e.g., 
the Bayesphone [Horvitz, et al., 2005]), and systems em-
ploying a larger infrastructure, such as the Bestcom-ET sys-
tem fielded internally at Microsoft [Horvitz et al., 2003c]. 
 
Machine learning and reasoning can provide value with the 
overall coordination of people in the course of daily life.  
The Coordinate system [Horvitz et al., 2002] was initially 
developed to support the Notification Platform and Bestcom 
efforts, but the work also led to standalone presence and 
availability forecasting services that provide people with 
new kinds of awareness. Coordinate continues to collect 
data about the presence and activities of people at different 
locations and devices, and employs machine learning and 
reasoning to perform availability forecasting.  The system 
can pass its inferences to computational agents, or provide 
to people (who have been granted access privileges), such 
predictions as the time until a user will return to their office, 
read email, regain access to a networked computing system, 
or finish a conversation that is currently in progress.   

1.2 Rise of Intention and Preference Machines 
Moving from particular examples to trends, we are seeing 
the use of machine learning, inference, and decision making 
to drive the creation of preference machines and intention 
machines in multiple domains.  Preference machines include 
the set of systems referred to as recommender systems, em-
ploying collaborative filtering to predict the preferences of 
users about different sets of items, content, and experiences 
based on partial information about activities, demographics, 
and preferences.  Such systems typically leverage predictive 
models constructed from the activities or assessments of a 



large set of users.  The world has come to know of such 
systems as recommendations in online commerce situations.   
 
Intention machines are services that employ models that 
predict peoples’ activities and goals.  Such work includes 
the predictive models used in the Microsoft operating sys-
tem described earlier, and numerous other projects.  As an 
example of intention machines in common use, the lives of 
many millions of people are touched daily via web search 
engines that reason about the goals of users given sparse 
queries.  Logs of queries and page accesses serve as a rich 
case library for building predictive models. Microsoft has 
been investigating the use of machine learning based on logs 
of user search activity to continue to enhance the functions 
used to rank results associated with queries.  Recent work 
on constructing predictive models from logs of user data is 
highlighted in [Burges et al., 2005] and [Downey et al., 
2007]. Other models are used to identify overall satisfaction 
with results. Learning and reasoning is also being used to 
optimize the presentation of advertisements.  Such research 
is undoubtedly going on at other companies providing Web 
search, and services associated with targeted advertising. 
 
Intention and preference machines will see even more exotic 
uses, including their use in geocentric services.  As an ex-
ample, our team has been building intention and preference 
machines with data we collected over several years from 
volunteers who participated in the Microsoft Multi-User 
Location Survey (MSMLS).  We have been exploring the 
uses of the data in learning and reasoning systems, including 
the construction of a system that can predict and then har-
ness drivers’ likely destinations, given initial driving trajec-
tories [Krumm and Horvitz, 2006].  Beyond geocentric in-
tention machines, we have been exploring the feasibility of 
building geocentric preference machines, that perform geo-
centric collaborative filtering: Given sets of sensed destina-
tions of multiple people and the sensed destinations of a 
particular driver, what places, unvisited previously by that 
driver, might be of interest, and how and when might the 
driver be best informed (e.g., by hearing a paid advertise-
ment when he or she is approaching such destinations). 
 
Intention machines and preference machines are becoming 
important and increasingly common assets in business.  
Competitive pressures will lead to an ongoing polishing of 
these models and increasingly elegant, desirable interactions 
with people. 

2 Challenges and Opportunities 
Bringing the fruits of machine intelligence into daily life 
faces an array of interesting challenges—and with the chal-
lenges come opportunities for innovation.  

2.1 Learning and Supervision  
Designs for introducing intelligent reasoning into the world 
often depend critically on acquiring a case library of rich 
data that can be used to build predictive systems.  The con-
struction of case libraries for machine learning often re-

quires the labeling of hidden states, such as the ground truth 
of intentions or preferences.  In some situations, users may 
have to engage in explicit tagging activities or supervision.  
In many cases, it is possible to tag intentions and prefer-
ences with in-stream supervision, a phrase we use to refer to 
assigning labels in an implicit manner, in the course of ac-
tivity.  In-stream supervision includes situations where the 
target states of interest are tagged according to definitions of 
logged events. As an example, the core predictive models of 
Coordinate employ in-stream supervision, where states and 
transitions that capture user presence and availability are 
logged automatically. Web Montage and Vista Superfetch 
harness in-stream supervision in a similar manner.   
 
As another example, in-stream supervision employed in the 
Lookout calendaring and scheduling agent [Horvitz, 1999], 
is used to build two predictive models without cost to the 
user.   Lookout computes the likelihood that someone re-
viewing email might like to perform a scheduling task based 
on the content of the email message at focus.  The system 
collects and labels cases for building a model of users’ in-
tentions in the course of a user’s normal activity.  To collect 
cases, Lookout runs in the background and notes when users 
examine an email message and then turn, within a time hori-
zon, to a calendar view or scheduling task.  Positive and 
negative examples of messages and the details of message 
headers and bodies are stored along with the observed action 
in a case library.  Lookout also uses in-stream supervision to 
learn about the ideal timing of actions.  The system watches 
behind the scenes and records the amount of time that peo-
ple focus on email messages before moving onto calendar-
ing tasks or onto other messages.  Lookout builds a case 
library of messages and dwell times collected through such 
in-stream supervision and constructs a predictive model that 
provides real-time recommendations about how long the 
system should wait before engaging the user, given proper-
ties of the message (such as the message length) at the 
user’s focus of attention. Such a predictive model, learned 
without human intervention, provides Lookout with an 
awareness of attentional patterns of users, enabling Lookout 
to courteously withhold potentially distracting engagements 
while a user reviews a message.   
 
A similar approach to supervision is used in the Priorities 
system for prioritizing email by urgency.  Priorities learns to 
infer the expected cost of delayed review for each incoming 
email message.  Predictive models are constructed based on 
explicit supervised learning or on in-stream supervision, 
considering a user’s activities.   For an example of the latter, 
when running in in-stream supervision mode, messages that 
are deleted without being read are assigned a lower urgency 
than messages read soon after they arrive.   
 
In-stream supervision methods do not have to be fully 
automatic and operate as complete sleuths.  Priorities re-
search explored a middle ground of allowing users to be-
come more involved with in-stream supervision.  In ver-
sions of Priorities, users could inspect and modify in-stream 



supervision policies.   Such awareness and potential modifi-
cation allows the in-stream supervision to become a 
grounded collaboration between the machine and user.  The 
system also allows users to inspect the case libraries before 
invoking the modification or regeneration of predictive 
models.  By collaborating in such a mixed-initiative manner 
about the process of the tagging process, in-stream supervi-
sion can be made more accurate.   
 
A number of systems have employed more costly probes for 
hidden states.  For example, the BusyBody system learns 
and then uses personalized models that predict the cost of 
interruption of a computer user based on the user’s activity 
and context [Horvitz et al., 2004b].  During a training phase, 
BusyBody makes intermittent requests for the current cost 
of interruption.  We have investigated minimizing user 
training effort by automatically tagging a user’s cost of in-
terruption via a proxy such as the delays in responding to 
notifications.  Developing a grounded collaboration on 
learning via using a sharing of policies is promising.   
 
Beyond in-stream supervision, unsupervised and semi-
supervised learning show promise for reducing the cost of 
training systems.  In another approach, we have been ex-
ploring the harnessing of active learning in guiding the allo-
cation of supervision efforts, including an approach we refer 
to as selective supervision—the application of decision-
theoretic methods to triaging cases for explicit tagging [Ka-
poor et al., 2007].  This research includes efforts on lifelong 
learning focused on developing systems that reason in an 
ongoing manner about the costs of additional probing of 
users for input versus the long-term benefits of enhanced 
performance of a system in an environment over time. 
 
On a related challenge, people may wish to use a system 
right away, before training a system.  In one approach, pre-
trained generic models can be made available and users can 
select and use the most appropriate model immediately.  
Such generic models may often not be able to provide the 
accuracy delivered by a personalized model.  However, they 
can deliver value immediately.  The case libraries of such 
models can be extended or washed out over time with new 
user-specific data.  In another approach, a model mixture 
approach can be used, where the output of the pre-trained 
model is combined with the output of a personal model that 
is growing more sophisticated over time with addition of 
new labeled cases—and the fusion of the predictions of the 
models weights the personalized model progressively more 
heavily in the model-mixture analysis with increasing data.   
 
As an example, consider learning in the Microsoft Outlook 
Mobile Manager (OMM) [Microsoft Corporation, 2000], a 
product derived from the Priorities effort.  OMM provides 
users with a pre-built predictive model for email urgency. In 
the training process, numerous user-specific features are 
removed, so the system operates, for example, on features 
expected to have overall universality, such as structural as-
pects of email, including length of messages and the number 

of people on the recipients list.  As a user provides cases to 
the system, a personal model is constructed and is continu-
ally revised with the addition of new cases.  As the quantity 
of cases grows in the personal model, its output is weighted 
more heavily in combination of model outputs, until the 
initial predictive model is completely washed out. 
 
Challenging areas of research include developing a better 
understanding of the best approaches to constructing generic 
models that can provide valuable, usable initial experiences 
with intelligent applications and services, but that allow for 
efficient adaptation downstream with a user’s explicit train-
ing efforts or in-stream supervision.  Research may lead to 
deeper insights about setting up systems for “ideal adapta-
bility” given expectations about the nature of different kinds 
of environments, and adaptations, given the users and uses. 

2.2 Criticality of Mixed-Initiative Capabilities 
Intelligent systems with the ability to support a mix of ma-
chine and human initiatives to address problems at hand are 
especially critical for applications of ambient intelligence—
where solutions, support, recommendations, and warnings 
are offered typically in stream with ongoing activities [Hor-
vitz 2007].  There is a great opportunity for developing sys-
tems that understand how to work in a collaborative manner 
with users, where the system has skills in recognizing op-
portunities for problem solving and in understanding which 
aspects of problems the machine versus the person might 
best solve.  Mixed-initiative interaction would also benefit 
by providing systems with the ability to infer subtleties of 
cognitive states of people so as guide the “if and when” of 
interventions. A set of principles of mixed-interactive inter-
action and the value of harnessing decision-theoretic princi-
ples for guiding action under uncertainty for guiding mixed-
initiative interaction are presented in [Horvitz, 1999].  Work 
is progressing on mixed-initiative user interaction on multi-
ple fronts, including such efforts as explorations into effi-
cient interfaces and interactions for correcting recognition 
errors [Shilman et al., 2006]. 

2.3 Mental Models, Transparency, and Control 
Attempts to weave machine learning and reasoning into 
daily life face a challenge of making the behavior of sys-
tems understandable to people. There has been little work to 
date on the perceptions and overall mental models of lay-
people about the operation of learning and reasoning sys-
tems—and about the influence that different mental models 
about the operation of automated reasoning may have on 
usage, acceptance, training, and effective configuration and 
control of systems by people.  Concerns about how auto-
mated reasoning operates and how system behaviors can be 
modified will likely increase as the systems move into roles 
and activities that people care deeply about, and as the re-
sponsibilities of systems shift from making gentle recom-
mendations to taking higher-stakes actions in the world on 
behalf of people.  
 



Understanding and addressing potential concerns with the 
transparency, trust, and controllability of intelligent systems 
is a challenging, multidimensional research area. There is 
opportunity to better understand peoples’ mental models and 
to construct explanations to make the workings and conclu-
sions of systems more transparent.  In some cases, it may be 
useful for systems to employ explicit explanation subsys-
tems [Suermondt, 1992] or even to modify reasoning with 
alternate approximations so as to enhance the understand-
ability of the deliberation of reasoning systems [Horvitz et 
al., 1989]. 
 
Innovations in this realm promise to allow people to better 
understand the basis for automated actions, to build confi-
dence—or appropriate distrust—in the actions and policies 
executed in different settings, and to understand if, when, 
and how a system’s behavior might be changed to better suit 
a user’s wishes or expectations.  

2.4 Privacy, Data, and Machine Intelligence 
With the advent of increasingly ubiquitous sensing and rea-
soning, and the rise of preference and intention machines in 
multiple arenas, people will seek to understand and to con-
trol how personal data is being used. Developing approaches 
to addressing potential concerns about the privacy of data 
used for learning and reasoning will be important in the 
adoption of applications of machine intelligence.  I will 
touch on several promising approaches to enhancing the 
handling of privacy in learning and reasoning systems. 
 
Protected sensing and personalization.   In many applica-
tions, it is feasible to perform machine learning and reason-
ing within a protected shroud of privacy, where the sensed 
data about activities and content of people is kept in the 
local control of their owners, e.g., on stores within users’ 
personal machines.  For example, a geocentric intention 
machine with the ability to predict someone’s destination 
while they are driving can be learned from personal GPS 
data that has been collected, stored, and processed locally.  
As another example, local analysis of potentially sensitive 
data, stored within a system designed to protect sensing, 
learning, and reasoning, can be used to enhance web search; 
in work on the PS prototype, a comprehensive index of a 
users email, documents, and web search activity is con-
structed locally.  A large list of web results is requested 
from a Web search engine, and this list of, e.g., several hun-
dred results, is re-ranked with local models that consider 
relationships between the content of the web pages and in-
formation in a user’s personal store [Teevan et al., 2005]. 
 
Protected sensing and personalization could be employed in 
conjunction with predictive models constructed from volun-
teers and with third-party content.  For example, a predictive 
model about destinations can constructed from data built 
from multiple volunteers, and then incorporated and used 
locally within a user’s shroud of privacy.  A large cache of 
advertising content might be intermittently downloaded to a 
user’s system, but matched privately within the protective 

shroud of a user’s machine to do local targeted advertising 
based on location, web pages being viewed, communica-
tions, and other content and activities.  
 
Learning and harnessing preferences about privacy.  
The language used to define legal and organizational poli-
cies about the access and use of personal data are often lim-
ited to particular conceptions of privacy for purposes of 
clarity, expediency, and universal application.  However, 
“privacy” is not a simple, nor a universal concept even 
within the same culture.  A recent study of the sensitivities 
that people might have with sharing different types of in-
formation with people in different groups revealed that there 
are significant variations in preferences among people [Ol-
son et al., 2005].  Such results highlight the potential value 
of performing additional investigation of preferences about 
allowable uses of personal data in reasoning systems—and 
the application of learned insights to the design of expres-
sive representations, interfaces, and controls that allow peo-
ple to custom tailor policies for the sharing of data with 
other people and applications. 
 
As a community, we need to better understand the varied 
and varying preferences of people with regard to the use of 
their personal data in learning and reasoning systems.  Such 
understanding includes the study of potentially changing 
sensitivities about the use of data and the trades that people 
may be willing to make in cases where valuable services are 
offered when personal data is shared with organizations and 
people. Machine learning itself can be useful in probing 
preferences about privacy [Olson et al., 2005].   
 
Partial revelation.  Personal data can be transformed via 
such processes as anonymization, summarization, abstrac-
tion, and obscuration (via such techniques as the controlled 
introduction of errors) in pursuit of making the sharing of 
the data with people, organizations—or a specific reasoning 
system hosted by a particular organization—more accept-
able.  There is an opportunity to study peoples’ preferences 
about sharing data that has undergone different transforma-
tions.  Such preferences can be coupled with analyses that 
provide insights about losses in the fidelity of reasoning 
with different transformations so as to provide guidance 
about the most appropriate matching of transformations to 
end uses.   
 
Restricted rights. There is an opportunity to develop meth-
ods that annotate user data with privacy metadata which 
restricts the usage of the data to specified uses.  Developing 
schemas and infrastructure to support data rights manage-
ment for restricting the use of personal data would likely be 
a significant undertaking, and would depend on the devel-
opment and widespread adoption of standards.  Such a pri-
vacy infrastructure, perhaps developed as part of more com-
prehensive efforts to introduce standards for representing 
higher-level semantics on the Web, could be enabling for 
developing intelligent applications that employ sensitive 
data in a trusted manner.  



3 Summary 
I discussed trends that are leading to a nurturing environ-
ment for creating valuable applications of machine intelli-
gence.  I presented several examples of implicit and explicit 
applications of automated intelligence, including applica-
tions that are enabling new services and experiences.  Then, 
I reviewed several challenges, touching on topics in the 
realms of learning, mixed-initiative interaction, understand-
ability and control, and the privacy of data resources used in 
machine learning and reasoning.   I hope that these reflec-
tions are helpful to the community of researchers pursuing 
the tantalizing vision of enhancing the lives of people via 
the fielding of applications of machine intelligence. 
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